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Abstract 

A novel diagnostic scheme to develop quantitative indexes of diabetes is introduced in 
this paper. The fractal dimension of the vascular distribution is estimated because we 
discovered that the fractal dimension of a severe diabetic patient’s retinal vascular distribution 
appears greater than that of a normal human’s. The issue of how to yield an accurate fractal 
dimension is to use high quality of images. To achieve a better image-processing result, an 
appropriate image-processing algorithm is adopted in this work.  

Another important fractal feature introduced in this paper is the measure of lacunarity, 
which describes the characteristics of fractals that have the same fractal dimension but 
different appearances. For those vascular distributions in the same fractal dimension, further 
classification can be made using the degree of lacunarity. 

As for the classification of diagnosis results, four different approaches are compared to 
achieve higher accuracy. In this study, the fractal dimension and the measure of lacunarity 
have shown their significance in the classification of diabetes and are adequate for use as 
quantitative indexes. 
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Abstract 

A novel diagnostic scheme to develop quantitative indexes of diabetes is introduced in 

this paper. The fractal dimension of the vascular distribution is estimated because we 

discovered that the fractal dimension of a severe diabetic patient’s retinal vascular distribution 

appears greater than that of a normal human’s. The issue of how to yield an accurate fractal 

dimension is to use high quality of images. To achieve a better image-processing result, an 

appropriate image-processing algorithm is adopted in this work.  

Another important fractal feature introduced in this paper is the measure of lacunarity, 

which describes the characteristics of fractals that have the same fractal dimension but 

different appearances. For those vascular distributions in the same fractal dimension, further 

classification can be made using the degree of lacunarity. 

As for the classification of diagnosis results, four different approaches are compared to 

achieve higher accuracy. In this study, the fractal dimension and the measure of lacunarity 



 

have shown their significance in the classification of diabetes and are adequate for use as 

quantitative indexes. 

Keywords: Fractal Dimension, Lacunarity, Image-Processing, Back-propagation Algorithm, 

Radial Basis Function Network, Genetic Algorithm, Voting Scheme, Classification, 

Diagnosis System. 

1. Introduction 

Clinically, the incidence of diabetic retinopathy (DR) is prevalent in patients diagnosed 

as having diabetes. DR has features of both micro vascular occlusion and leakage. The 

consequence of retinal capillary non-perfusion is retinal hypoxia, which, in turn, causes 

blindness. The fluorescein angiogram of a diabetic patient’s eye shows retinal vascular lesions 

caused by ischaemia. [1]. Relatively, severe retinal vascular disorders reflect higher degrees 

of diabetes. Therefore, an effective diagnostic scheme to develop quantitative indexes for 

diabetes is required. With these quantitative indexes, diabetics can maintain good metabolic 

control to retard the development of DR.  

Based on the aforementioned, this work is dedicated to the effort of establishing 

meaningful quantitative indexes. Due to the invariance when the scale is changed, the fractal 

dimension is adequate to quantify the degree of complexity [6]. Thus, the fractal dimension of 

the vascular distribution is estimated because we discovered that the fractal dimension of a 

severe diabetic patient’s retinal vascular distribution appears greater than that of a normal 



 

human’s. Based on the fractal characteristics of a fluorescein angiogram, a diagnosis model 

can be derived to help a diabetic with metabolic or medication control.  

Because the fractal dimension is a quantitative index in this context, it is very important 

to implement appropriate image-processing procedures to obtain sound image results for 

accuracy. To reduce all possible noise, an appropriate image-processing algorithm is adopted 

in this work. In addition to the image-processing technique, the threshold of the original 

image resolution is also examined in this paper. In the past, the resolution factor was never 

involved when estimating the fractal dimension. From our experiments, a low-resolution 

image cannot yield an accurate fractal dimension. Therefore, we present a new scheme for 

checking whether the resolution of the source image is high enough. Because high image 

resolution cannot improve the accuracy of the fractal dimension, improving the image 

resolution for this process simply wastes disk space and computation time. 

Another important fractal feature introduced in this paper is the measure of lacunarity, 

which describes the characteristics of fractals that have the same fractal dimension but with 

different appearances [5] [6]. In the past, lacunarity has rarely been discussed in any kind of 

application, especially in biomedical applications. Actually, for those vascular distributions in 

the same fractal dimension, further classification can be made using the degree of lacunarity. 

Four different approaches, the back-propagation algorithm, the radial basis function 

network, the genetic algorithm and the voting scheme, are compared for diagnosis 



 

classification results to achieve higher accuracy. 

2. Image Processing 

To yield an accurate fractal dimension, an appropriate image-processing algorithm is very 

important to generate a high-quality result. The algorithm adopted is described as follows: 

(a). Divide the original image into small blocks and estimate a local threshold for each block 

depending on the corresponding gray-level histogram. In this case, the gray-level value of 

the brightest 20% of the pixels is assigned as a local threshold. The global threshold 

approach is not suitable for this case because it generates too much noise. 

(b). An edge detecting technique is adopted to reduce the noise from the previous procedure. 

In this case, pixels with gradients greater than 10 are defined as edges [2]. 

(c). Remove the remaining isolated points. 

Figure 1.(b) shows the segmented image vascular distribution for Fig. 1.(a) after 

processing using our approach. 

(a)     (b)  

Figure 1: (a) Original image of a human retina; (b) Segmented result after image processing. 



 

3. Fractal Dimension 

Demonstrating the fractal characteristics of a medical image is valuable, for it provokes 

the development of new ways to discover a new order in the world of complex phenomena 

and structures. In this work, not only the fractal dimension of the vascular distribution is 

estimated but the influence of the image resolution on the fractal dimension is also explored. 

The fractal dimension is calculated using the box-counting method [3]. First, the image is 

divided into regular meshes with mesh size s. The number N(s) of grid boxes containing any 

vessel parts are then counted. The number N(s) depends on the choice for s. In this case, we 

changed size s from 1 to 2k pixels and counted the corresponding number N(s), where k = 0, 1, 

2,…. and 2k < image size. Second, the measurement in a log2 (N(s))/log2(s)-diagram is plotted. 

A straight line is then fitted to the plotted points in the diagram using the least square method 

[4]. As Mandelbrot suggested, a fractal set with the number N of boxes of size s obeys the 

power law [6]: 

DKssN −=)(                                      (1) 

where K is a constant and D denotes the dimension of the fractal set. Hence, the slope of the 

line is measured as (–Db) and Db is the box-counting dimension of the image. Figure 2 

illustrates the above procedure and we find Db is approximately equal to 1.092. 
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Figure 2: Box-counting dimension for Fig. 1.(b). (Db = 1.092) 

So far, we calculated the fractal dimension regardless of the image resolution. However, 

if the resolution of the original image is low beyond a certain degree, regardless what kind of 

image processing approach is implemented, it will be impossible to yield an accurate fractal 

dimension. Therefore, the appropriate resolution should be investigated before estimating the 

fractal dimension. In this case, we scanned an original image at different resolutions varying 

from 800 dpi to 50 dpi and then computed the corresponding fractal dimensions of the image. 

Figure 3 shows the results. We found that the fractal dimension would drop at 200 dpi 

resolution. This proves that a low-resolution image cannot yield an accurate fractal dimension. 

The fractal dimensions of images at a resolution higher than the lower bound all appear steady 

in value, that is, raising the resolution too high would simply waste the disk space and 

computation time. The fractal dimension accuracy cannot be improved using higher 

resolution of images. 
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Figure 3: Different resolutions and the corresponding fractal dimensions for Fig. 1.(b). 

4. Lacunarity 

In this paper, the term lacunarity is introduced to describe the characteristic offractals that 

have the same fractal dimension but with different appearances. As suggested by Fender [5] 

and Mandelbrot [6], two data sets could look different in spite of the fact that they have the 

same fractal dimension.  This is because they have different lacunarity. The degree of 

lacunarity is deduced from the gap size distribution. A distribution with a higher degree of 

lacunarity gives the impression of having definitely larger gaps and more clusters in the 

geometry. Conversely, a lower degree of lacunarity appears to have a more homogeneous 

distribution. For those vascular distributions in the same fractal dimension, further 

classification can be made using the lacunarity feature. 

Let P(m,L) be the probability that there are m intensity points within a box of size L. 

For any value of L, ∑
=

=
N

m
LmP

0
1),(          (2) 

where N is the number of possible points in the box of size L. (N is equal to the number of 

pixels the box contains.) 
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The definition of lacunarity is [16] 
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5. Classification 

In this study, four different strategies are presented to accomplish classifying the degree 

of seriousness of the diabetes. Each of these strategies is described as follows: 

5.1 Back-propagation algorithm 

The back-propagation algorithm is one of the most popular and widely used 

network-learning algorithms [7] [8] [9] [10]. The network architecture is illustrated in Fig. 4. 

The input layer consists of two nodes, which are the fractal dimension of the vascular 

distribution in the retinal image and its lacunarity, respectively. There are four nodes in the 

output layer, which indicate the degree of seriousness of the diabetes.  
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Figure 4. The design of network architecture 

Consider a single neuron j, the output yj of this neuron at iteration n is a function (called 



 

the activation function) of the total input vj fed to neuron j, 

))(()( nvfny jj =                      (6) 

Thus, vj is defined as 
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where m is the total number of inputs applied to neuron j, wji(n) is the synaptic weight of the 

connection from neuron i to neuron j at iteration n, and bj(n) is the bias applied to neuron j. 

To satisfy the requirement of differentiability [8], the following activation function is 

chosen: 
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To train the network, the synaptic weights are modified according to the error-correction 

learning rule. The error signal E to be minimized at the output of neuron j at iteration n is 

defined by 
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where the set C contains all of the neurons in the output layer of the network, dj(n) denotes the 

desired response for neuron j, and yj(n) refers to the function signal appearing at the output of 

neuron j at iteration n. 

The correction Δwji(n) applied to the synaptic weight is determined by the delta-rule: 
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where η is the learning-rate parameter. 



 

According to the chain rule, the gradient can be expressed as 
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Hence, the correction Δwji(n) can be computed by: 

)()()( nynnw ijji ηδ=∆                (13) 

where δj(n) denotes the local gradient and depends on whether neuron j is an output node or a 

hidden node [8]. 

For all of the neurons in the output layer, 

))(()()( nvfnen jjj ′=δ                    (14) 

For all of the neurons in the hidden layer, 
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where δk(n) requires the sum of δj(n) computed for the neurons connected to neuron k in the 

next hidden or output layer, assuming that the output layer consists of l neurons. 

5.2 Radial Basis Function Network 

Generally, classification tasks are more amenable to the radial basis function network than 

the back-propagation network [10]. A radial basis function network involves three layers. The 

higher the dimension of the hidden space, the more accurate the approximation will be [8]. 

The output units form a linear combination of the basis functions computed by the hidden 

units.  



 

Correspondingly, the number of nodes in the hidden layer is equal to the number of 

training data, while the input and the output layers are the same as in the back-propagation 

network. To make sure the interpolation matrix is nonsingular [8] [9] [10], the most common 

basis function chosen is a Gaussian function: 
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Hence, the output of hidden neuron j is calculated using 
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where X is the input vector, Wj is the weight vector associated with the hidden neuron j, and 

σj is the normalization factor. The closer the input to the center of the basis function, the 

greater the response of the neuron will behave [10].  

For an output neuron j, its value yj is determined by  

)( jj vfy =                           (18) 

Thus, vj is defined as 
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where m is the total number of inputs applied to neuron j, wji is the synaptic weight of the 

connection from neuron i to neuron j, and bj is the bias applied to neuron j. 

The normalization factor σj is determined by the average distance between the cluster 

center and the training data: 
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where M is the total number of training data. 

Similar to back-propagation algorithm, the correction Δwji(n) can be computed by: 

ijji yw ηδ=∆                        (22) 

where δj denotes the local gradient and is computed by 

)()( jjjj vfyd ′−=δ                     (23) 

where dj denotes the desired response for neuron j, and yj refers to the function signal 

appearing at the output of neuron j. 

5.3 Genetic Algorithm 

It appears that implementing genetic algorithms to find a set of weights instead of 

applying gradient-based methods may be advantageous for supervised learning classification 

problems [12] [13]. The third strategy we proposed is a novel approach, which makes 

classification based on a neural network that implements the genetic algorithm for network 

learning.  

The input and the output layers are the same as in the back-propagation network. Inspired 

by the back-propagation network, the chromosome for the solution consists of six genes: 

(w1, w2, th1, th2, th3, th4)  

where w1 and w2 are the weight factors for the input 1 and 2, and th1, th2, th3 and th4 are the 

corresponding thresholds for the output 1,2,3 and 4. 



 

With some drawbacks when applied to high-precision numerical problems, the binary 

representation traditionally used in genetic algorithms is replaced by floating point 

representation [11]. The output yj is determined by 

yi = f(w1*x1+w2*x2)-thi-i 

where f(x) is defined by  

xe
xf −+
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1)(                     (24) 

The solution for classification is the class i that has the minimum value of yi. The fitness 

function is calculated by summing errors between the desired output and the computed output 

over all the training examples.  
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where N is the number of training samples, d(n) denotes the desired output and s(n) denotes 

the calculated result.  

Because each chromosome consists of six genes, the crossover operator may be performed 

on five positions of the crossing points randomly according to probability of crossover pc. The 

next operator, mutation, is performed on gene-by-gene basis according to probability of 

mutation pm. 

5.4 Combining Multiple Classifiers based on a Voting Scheme 

As is often the case, for a specific application, each classifier could attain a different 

degree of accuracy, but none of them is totally optimal [14]. Some previous works have 



 

shown that the combination of several complementary classifiers will improve the accuracy. 

The voting approach exhibits better performance independent of the fault distribution [15]. 

Accordingly, a voting scheme based on majority-voting rule is applied to the above three 

classifiers.  

Denote a pattern space P containing M mutually exclusive sets: 

P=C1∪ C2∪ ….∪ CM 

And Λ={1,2,…,M}  

Given the events e1(x), e2(x),…, eK(x), we must generate a new event E(x). A common rule 

to resolve this kind of situation is voting by majority. 

The majority-voting rule can be expressed using the following formula: 
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and E(x)=M+1 denotes that E(x) has no idea about which class x belongs to. 

6. Experimental Results 

In this study, we investigated the influence of image resolution on the fractal dimension. 

As we can see in Fig. 3, fractal dimensions at resolutions lower than 200 dpi deviate from the 
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steady values. When comparing the segmented results, we find that results at resolutions from 

800 dpi to 225 dpi all appear to have the same quality. However, the segmented result at 

resolution 200 dpi shows a lot more noise than the other resolutions. Figure 5 illustrates a 

comparison of the results from different qualities. Therefore, 225 dpi would be recommended 

as the lower bound instead of 200 dpi. 

(a)     (b)  

Figure 5: (a) Segmented result for Fig. 1.(a) at 800 dpi; (b) Segmented result for Fig. 1.(a) at 

200 dpi. 

We also discovered that the fractal dimension of a severe diabetic patient’s retinal 

vascular distribution appears greater than that of a normal human’s. Figure 6.(b) shows the 

segmented image vascular distribution in Fig. 6.(a). using the same approach as implemented 

on Fig. 1.(a). The fractal dimension in Fig. 1.(b) is equal to 1.092 while that in Fig. 6.(b) is 

equal to 1.192. A greater fractal dimension indicates a more complicated structure. As we 

compare Fig. 1.(b) and Fig.6.(b), the vascular distribution of a diabetic patient’s retina appears 

more complicated than that of a normal individual’s. 



 

(a)     (b)  

Figure 6: (a) Original image of a diabetic patient’s retina; (b) Segmented result after 

image processing. 

To make further classification, we investigated the lacunarity of each retinal vascular 

distribution image. Because the degree of lacunarity decreases when the gap size increases, a 

smaller gap size is obviously a better choice. In this study, the gap size chosen was 1 pixel to 

make the most distinction of lacunarity.  

In this study, 92 image samples were analyzed and 75 of them were used as the training 

data set. Figure 7 illustrates the results of all study samples. As we can see in Fig. 7, diabetic 

patients are divides into four groups, “normal”, “slight”, “medium”, and “severe”.  
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Figure 7: The fractal dimension and corresponding lacunarity of study samples. 



 

BPN, RBF and GA classifiers converged after 100, 50 and 300 learning cycles respectively. 

In this case, the correctness remained stable when using different numbers of nodes, such as 

2,4,6,12 and 18, in the hidden layer for BPN. The comparison of the correctness for different 

classifiers is illustrated in Fig. 8. BPN provided the highest correctness when the number of 

the training data exceeded 35, but its correctness dramatically descended with fewer training 

data. The correctness of the RBF network deviated firstly when the number of the training 

data was smaller than 60. The genetic algorithm can provide the highest correctness with the 

least amount of training data. The voting scheme did not always provide the highest 

correctness as supposed to, because sometimes there might be a majority of classifiers 

obtained the wrong solution concurrently. The best classification result was 89.2% 

correctness. 
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Figure 8. The comparison of the correctness for different classifiers 

7. Conclusions 

A novel diagnostic scheme to develop quantitative indexes for diabetes was introduced in 

this paper. The fractal dimension of the vascular distribution was estimated because we 



 

discovered that the fractal dimension of a severe diabetic patient’s retinal vascular distribution 

appears greater than that of a normal human’s. The issue of how to yield an accurate fractal 

dimension is to use high quality of images.  

Another important fractal feature introduced in this paper was the measure of lacunarity, 

which describes the characteristics of fractals that have the same fractal dimension but 

different appearances. For those vascular distributions in the same fractal dimension, further 

classification can be made using the degree of lacunarity. 

In this paper, the influence of the image resolution on the fractal dimension was explored. 

We found that a low-resolution image cannot yield an accurate fractal dimension. The fractal 

dimensions of images at the resolution higher than the lower bound all appear steady in values. 

Using extraordinarily high-resolution images is simply a waste of disk space and computation 

time and cannot achieve higher accuracy of fractal dimension. 

As for the classification of diagnosis results, four different approaches, the 

back-propagation algorithm, the radial basis function network, the genetic algorithm and the 

voting scheme, were compared to achieve higher accuracy. In this study, the fractal dimension 

and the measure of lacunarity have shown to be so successful for the classification of diabetes 

that they are adequate for use as quantitative indexes. 
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