
Cover Page

1. Workshop on multimedia technologies

2. Efficient VLSI Architecture Designs for Shape-Adaptive DWT and Zero Tree Coding

3. Short abstract

In this paper, an efficient algorithm and its VLSI architecture design for a progressive still

image coding system are presented. The image transform is a shape adaptive discrete

wavelet transform (SA-DWT) using lifting scheme. The transformed image is then

compressed by a shape adaptive zero tree coding scheme (SA-ZTC) in a progressive manner.

The simulation results indicate the proposed SA-ZTC scheme enjoys a 4dB PSNR

performance edge over the SPHIT algorithm under given bit rates. Combining both

SA-DWT and SA-ZTC schemes, an efficient VLSI design was accomplished using the

TSMC 0.35um 1P4M process. The post layout simulation results show that the chip is

capable of working at above 60MHZ clock rate. The computing power implies a sustained

processing rate of 42 frames/sec for 1024×1024 images.

4. 黃穎聰 Yin-Tsung Hwang and 王旭昇 Shi-Shen Wang

雲林科技大學電子系 雲林縣斗六市大學路三段一二三號

Department of Electronic Engineering, national Yunlin University of Science & Technology

123 sec. 3, University Road, Touliu, Yunlin 640

e-mail: hwangyt@pine.yuntech.edu.tw

Fax: 05-5312063

5. contact author: 黃穎聰 Yin-Tsung Hwang

6. key words:

texture coding, discrete wavelet transform, zero tree coding, shape adaptive, MPEG-4, VLSI

design

Efficient VLSI Architecture Designs for Shape-Adaptive DWT and
Zero Tree Coding

Yin-Tsung Hwang, Shi-Shen Wang
Dept. of Electronic Engineering, National Yunlin University of Science and Technology

Toulin, Yunlin 640, Taiwan, ROC

ABSTRACT
In this paper, an efficient algorithm and its VLSI architecture design for a progressive still image

coding system are presented. The image transform is a shape adaptive discrete wavelet transform

(SA-DWT) using lifting scheme and Daubechies (9,7) bi-orthogonal filters. The transformed

image is then compressed by a shape adaptive zero tree coding scheme (SA-ZTC) in a

progressive manner. For the SA-DWT design, we have successfully incorporated the shape

information into the lifting DWT scheme so that redundant computations for the pixels outside of

the shape can be eliminated. The proposed design can perform 1-D forward and inverse length

adaptive DWT efficiently. The boundary extension problem, encountered in the lifting scheme

and further complicated by the shape adaptive processing, was also resolved with minimum

circuitry overhead. The 2-D SA-DWT is obtained by direct row-column operations of 1-D length

adaptive DWT. For the zero tree coding design, we adopt the same 4-symbol coding system as

suggested in the SPHIT algorithm. The coding scheme, however, is different and can support

both shape adaptive and progressive coding. The simulation results indicate the proposed

SA-ZTC scheme enjoys a 4dB PSNR performance edge over the SPHIT algorithm under given

bit rates. The proposed scheme also facilitates efficient hardware design while the SPHIT

algorithm is generally considered as too complicated to be implemented in hardware. Combining

both SA-DWT and SA-ZTC schemes, an efficient VLSI design was accomplished using the

TSMC 0.35um 1P4M process. The post layout simulation results show that the chip is capable of

working at above 60MHZ clock rate. The computing power implies a sustained processing rate

of 42 frames/sec for 1024×1024 images.

1. INTRODUCTION

Discrete Wavelet Transform (DWT) has been widely adopted in various visual coding

applications such as JPEG2000 and the still texture coding in MPEG-4. It can achieve better

compression performance at low bit-rate when compared with the block-based approach such as

discrete cosine transform (DCT). Since MPEG-4 uses an object based coding, a shape adaptive

DWT (SA-DWT), capable of processing only information within an arbitrarily shaped video

object, is required. The main distinction between an SA-DWT and a conventional-DWT lies in

the capability of handling continuous short line segments encountered in a video object and the

ability of resolving the complicated boundary extension problem efficiently. After SA-DWT, the

derived coefficients are then quantized and coded to achieve data compression. Among various

wavelet coefficients coding scheme such as vector quantization (VQ), trellis code quantization

(TCQ), zero tree coding (ZTC) is the most popular one. Similarly, a shape-adaptive ZTC

(SA-ZTC) is needed to process the outcomes of SA-DWT so that no information outside of the

video object’s shape boundary is encoded to obtain high coding efficiency. In this paper, we will

examine both SA-DWT and SA-ZTC modules from algorithmic and architectural aspects and

present an efficient VLSI design with high coding efficiency.

In the past few years, numerous studies [1-3] on the VLSI realizations of wavelet transforms

have been reported. The architectures, mostly non-shape-adaptive, range from convolution, lattice

structure to the latest lifting scheme structure. The lifting scheme was first proposed in [4], which

constructs bi-orthogonal wavelets in the space domain. Compared with the classical Fourier

based construction, the lifting scheme exhibits a much lower computing complexity and has been

adopted widely these days. Recently, few papers [5,6] have begun to work on SA-DWT design.

The designs emphasize on the shared 1-D structure for both forward and inverse transforms and

on the resolution to boundary extension problem. As for the zero tree coding, various schemes

using either scalar-based quantization or vector-based quantization have been developed.

Although the wavelet vector quantization (WVQ) based approaches are feasible for real time

processing, the corresponding hardware design complexity is prohibitively high. The scalar

quantization based approaches, such as the well-known embedded zerotree wavelet (EZW)

algorithm [7], and the set partitioning in hierarchical trees (SPIHT) algorithm [8], usually achieve

good coding efficiency. The reported hardware designs, such as [9] for EZW, are non-shape

adaptive. So far, no hardware realization for the shape-adaptive SPHIT algorithm has been

proposed.

The remaining of the paper is organized as follows. In Section 2, the lifting DWT algorithm

and the proposed scheme for solving boundary extension problem are described. Section 3

presents our shared architecture design of 1-D lifting SA-DWT for both forward and inverse

transforms. The proposed SA-ZTC algorithm is described in section 4. Section 5 describes the

hardware design of the SA-ZTC. The performance simulation results of the combined SA-DWT

and SA-ZTC are given in Section 6. Finally, the VLSI implementation results for the SA-DWT

are given in section 7.

2. THE SHAPE-ADAPTIVE LIFTING DWT SCHEME

In lifting scheme, the polyphase matrix of a wavelet filter is factorized into a sequence of

alternating upper and lower triangular matrices and a diagonal matrix with constants. Each

decomposed stage, called a lifting step, correspond to a simple filtering. In addition to the

reduction in computing complexity, the lifting scheme also eliminates the need of explicit

up-sampling and down sampling operations when compared with the traditional approach. Figure

1 shows the three major stages in the lifting scheme, i.e. splitting, lifting and scaling. In the

splitting stage, input samples)(nx are split into two disjoint sets, called polyphase components.

One correspond to the even indexed samples ex and the other correspond to the odd indexed

samples ox . The lifting stage consists of several lifting step each containing a predict operator iP

and an update operator iU . The predict operator iP estimates ox from ex and then produces a

wavelet coefficient id . The update operator iU combines ex and id to obtain the scaling

coefficient is which represents a coarse approximation of the original signal. In the scaling stage,

the wavelet coefficient id and the scaling coefficient is are multiplied by constants 1K and

0K respectively for normalization.

split

+

-P1

+

U1

K1

K0

Xi

splitting lifting scaling

+

-P2

+

U2

0
2 ii sx =

0
12 ii dx =+

1
is

1
id

2
is

2
id

id

is

Fig. 1. The three steps in a lifting DWT scheme:

For the widely used Daubechies (9,7) filtering example, the decomposition is shown as follows

0

0
1)1(
01

10
)1(1

1)1(
01

10
)1(1

)(
1

0
11

+

 +

+

 +
=

−−

K
K

z
z

z
z

zP
δ

γ
β

α where)(zP is called a polyphase matrix or

modulation matrix. There are two lifting steps and the corresponding predictor and updator are:

1),(z U),1(

1),(z U),1(
1-

22

-1
11

+×=+×=

+×=+×=

δγ
βα

zP
zP

The filter coefficients are:

.. , K. K
,. , δ. γ

,., β. α

86986445201496043981
4435068522088291107620

4052980118505861343421

10 ==
==

−=−=

In forward transform, the computations are summarized as follows

.sK, sdKd
, d dδs, s s sγdd
, d dβs, s s sαdd

,x, sxd

iiii

ii-iiiiii

ii-iiiiii

iiii

2
0

2
1

22
1

121
1

112

11
1

010
1

001
2

0
12

0

)()(

)()(

×=×=

+×+=+×+=

+×+=+×+=

==

+

+

+

Similarly, the inverse transform can be obtained by reversing the computations, that is

0
12

0
2

0
1

01011
1

10

1
1

12122
1

21

1
1

21
0

2

ˆˆ
)()(

)()(

iiii

iiiiii-ii

iiiiii-ii

iii
-

i

dx, sx
, s sαd, d d dβss
, s sγd, d d dδss

,dK, dsKs

==

+×−=+×−=

+×−=+×−=

×=×=

+

+

+

−

In this paper, we adopt the separable approach to implement a 2-D DWT via the row-column

operations of 1-D DWT. Note that a video object, after decomposition, may contain several line

segments of different lengths in each 1-D line slice. To incorporate shape adaptive feature, the

1-D DWT should be able to 1) keep track of the starting point (SP) and the length of each line

segment, and 2) perform length adaptive transform. The line segment information required in 1)

can be obtained from the shape mask associated with a video object. A dedicated address

generator is then employed to retrieve correct texture signals from a linear space memory as the

1-D SA-DWT input. One of the major challenges in DWT design is the boundary extension

problem at both the leading and trailing edges of a line segment. This problem is further

complicated under the shape adaptive scenario. There are two types of boundary extension. In

type A extension, the end point inclusive and the neighboring pixels are mirrored to form the

extension. In type B extension, the end point is excluded. In an odd symmetric convolution based

SA-DWT, the type B boundary extension is always used at both leading and trailing boundaries

in forward transform. As shown in Figure 2, The extension types used in inverse transform,

however, depend on the filter type (high pass or low pass), the starting point position (even or odd)

and the line segment length (even or odd). This leads to a very complicated design to handle the

boundary extension. The boundary extension problem is somewhat alleviated in the lifting

scheme. Table 1 shows the boundary extension scheme we derive for the lifting based SA-DWT

and SA-IDWT. The padding zeros in the trailing edge are used to flush the data to the final stage

and the padding length depends on the number of stages in the lifting scheme. The scheme

exception occurs when the line segment length equals to 1. In forward transform, the single point

data is multiplied by a constant of 2 and treated as either low pass or high pass filter output

depending on the point position. In other words, if the position is odd, it will be classified as high

pass filter output. In inverse transform, the single point data, coming from either low pass or high

pass data streams, is divided by 2 and stored by to the synthesis memory. Since the derived

scheme is very simple, the circuitry overhead is trivial and no speed penalty is paid. Table 2

summarizes the difference of design complexities for the four possible DWT schemes. When

compared with the non-SA lifting based DWT, the incurred overhead of the proposed scheme is

small, i.e. 1 additional multiplication.

Leading
Boundary

Trailing
Boundary

xy|zyx cba|bc :B Type
xyz|zyx cba|abc :A Type

Boundary sp=even sp=odd

lowpass input
xl[]length

even

Leading
Trailing

Leading
Trailing

highpass input
xh[]

Type B
Type A

Type A
Type B

Type A
Type B

Type B
Type A

lowpass input
xl[]length

odd

Leading
Trailing

Leading
Trailing

highpass input
xh[]

Type B
Type B

Type A
Type A

Type A
Type A

Type B
Type B

(a)

(b)
Figure 2. (a) boundary extension types. (b) the boundary extensions for the inverse transform of a

convolution-based SA-DWT.

Table 1. Boundary extension schemes for lifting based SA-DWT/SA-IDWT

SP position Leading edge Trailing edge

even Type B extension Type B extension + padding zeros

odd 1 padding zero + type B extension Type B extension + padding zeros

Table 2. Compare of various VLSI architectures for Daubechies (9,7) filter.

architecture boundary multiplier adder IDWT

DWT (convolution) complex 9 15 yes

SA-DWT (convolution) complex 10 15 yes

DWT (lifting) simple 4 8 yes

SA-DWT (lifting) simple 5 8 yes

3. ARCHITECTURE DESIGN OF 1-D LIFTING SA-DWT/IDWT

In this paper, we follow the popular DWT design using Daubechies (9,7) filters. The design

contains two lifting stages with each one containing a predict processor and an update processor.

The block diagram designs of the predict processor, the update processor and the shared

architecture design for both SA-DWT/IDWT are shown in Figure 3. Note that the splitting and

the scaling stage designs are not shown for simplicity. The circuitry for the length one line

segment is not shown, either. The add/sub operator performs addition in forward transform

(analysis phase) and subtraction in inverse transform (synthesis phase). To reduce the critical path

delay, pipelining registers are inserted to the outputs of both predict and update processors. For

2-D SA-DWT operation, a row-wise 1-D SA-DWT is performed first followed by a column-wise

1-D SA-DWT. Dedicated address generators are employed to access all the input data subject to

the shape analysis. The starting point position and the line segment length information are

calculated accordingly.

X

α , γ

D

 ±

+

.
D

di
nsi

n

D

+X

 ±

β ,δ .

.

Predictor 1
PE

Update 1
PE

Predictor 2
PE

Update 2
PE

MUX

DMUX

F I

FI
DMUX

FI

MUX
F I

DMUX
FI

DMUX
FI

MUX
F I

MUX
F I

{si
1

, di
1}{Xe, Xo} {si

2
, di

2}

{si
2

, di
2}{si

1
, di
1}

{Xe, Xo}

) s(sγdd
) s(sαdd

) s(sγdd
) s(sαdd

iiii

iiii

iiii

iiii

1
1

121

0
1

010

1
1

112

0
1

001

:Synthesis

:Analysis

+

+

+

+

+×−=

+×−=

+×+=

+×+=

) d(dβss
) d(dδss

) d(dδss
) d(dβss

ii-ii

ii-ii

ii-ii

ii-ii

11
1

10

22
1

21

22
1

12

11
1

01

:synthesis

:Analysis

+×−=

+×−=

+×+=

+×+=

.

di
n+1si

n
di

nsi
n

di
nSi

n+1

Forward input

Inverse input

(a) (b)

(c)

Forward ouput

Inverse output

Figure 3. (a) the predict processor, (b) the update processor (c) the lifting stage designs for

forward and inverse SA-DWT

4. SA-ZTC SCHEME BASED ON MODIFIED SPIHT

To preserve the coding efficiency obtained from SA-DWT, the zero tree coding scheme must

be shape adaptive as well. Among various non-SA ZTC algorithm, SPHIT algorithm has been

recognized as the one with highest compression efficiency. The SPHIT algorithm also supports

progressive coding, which is a favorable feature for data transmission under limited channel

bandwidth. Despite of its coding efficiency, the algorithm is far too complicated to be realized in

hardware. It also needs to maintain a set of lists, e.g. LIS (list of insignificant set: for LL subband

to record the zero tree roots that are not yet significant), LIP (list of insignificant pixels) and

LSP (list of significant pixels). These require a large memory overhead to store the values. In this

paper, we propose a new SA-ZTC scheme, which employs the same 4-coding-symbol set as that

used in SPHIT but adopts a totally different coding algorithm. The algorithm features a

bottom-up and depth first scanning order in zero tree traversal. Figure 4 gives the details of the

algorithm.

1) Initialization:

1.1) set)}c{max(log ji,2=n as the number of texture bit-planes required in progressive

coding.

1.2) for HL, LH, HH subbands, use DM(i,j) to identify if pixel (i,j) is within the decomposed

shape mask.

1.3) for each subband in intermediate level k, use a size-4 buffer_k to record the significance

information Sn(i,j) of wavelet coefficient cij.

1.4) for the top level, the refinement information SAQ(i,j) for the sequential approximation

quantization is recorded in the buffer

2) Sorting Pass:

2.1) For the lowest pyramid level (k = 0):

2.1.1) for each wavelet coefficient cij,

if DM(i,j) = 1,

output
anceinsignific
cesignifican

"0"
"1"

j)(i,Sn

=

and store the values of Sn(i,j) into corresponding entries of buffer_k

else store “10” into buffer_k

2.1.2) if Sn(i,j)=1 then output the sign of ci,j. and record SAQ(i,j)=1.

2.2) For the intermediate pyramid level (0 < k < N):

2.2.1) same as step 2.1.1;

2.2.2) same as step 2.1.2

2.2.3) output

=
 significan is descendent no "0"

ntsiginifica are sdescendent some "1"
),(jiSD

2.3) For the top pyramid level (k = N):

2.3.1) if DM(i,j)=1, output Sn(i,j), else skip to step 2.4;

2.3.2) same as step 2.2.2

2.3.3) same as step 2.2.3

2.4) For the root pyramid level (i.e. LL3), the coding is same as step 2.3.

3) Refinement Pass:

for each SAQ(i,j)=1, output the nth most significant bit of |ci,j|;

4) Quantization-Step Update:

decrement n by 1 and go to Step 2.

Figure 4. The proposed SA-ZTC algorithm

5. ARCHITECTURE DESIGN OF THE SA-ZTC ALGORITHM

Unlike SA-DWT, the SA-ZTC scheme requires separate encoder and decoder designs. Figure

5 shows the encoding processing element (EPE) design for each subband.

0

SHAPE

TEXTURE.
.SAQ_IN

SIGN

. .

Sn(i,j) &
DM(i,j)

calculator
2_bits

Fill-in
Buffer

8_bits DSC

1_bit

1_bit

SCP 1_bit

1_bit

MUX

1_bit

3_bits
Symbol
Coding

Refinement
Coding

SAQ_OUT

Symbol Bitstream

Refine. Bitstream

3_bits

RSP 3_bits

5_
bi

ts

Subband Coefficient
Seletct

3_
bi

ts

..

Figure 5. The EPE block diagram of the SA-SPIHT.

Concurrent processing of different subbands is possible by employing one EPE for each

subband. The EPE first receives wavelet coefficients as well as the shape mask from the external

memory. Note that the coefficients are decomposed into sign bit and magnitude (texture) parts.

The “Sn(i,j) & DM(i,j) calculator” generates two-bit information Sn(i,j) and DM(i,j) subject to

inputs. The values are also stored to the buffer_k in the “fill-in buffer” block to facilitate the

descendent significance check performed by the upper level. For intermediate and top level

processing, a one bit information SD(i,j) to indicate the significance of the descendents must be

generated. This is accomplished in the “descendent significance check” (DSC) block. If all the

descendent nodes of the current pixel turn out to be insignificant, the corresponding Sn(i,j)

generated previously, however, must be removed from the output list. Since those descendent

nodes with DM(i,j) = 0 are not coded at all, the number of Sn(i,j) to be removed varies from 0 to 4.

This count is calculated in the “redundant symbol process” (RSP) block. Note that Sn(i,j) bits are

not output directly. They are combined with the sign bit and the SD(i,j) to form the output symbol

stream. This is performed in the “symbol coding” block. The output bit stream is pushed into a

stack memory first. After all the wavelet coefficients in a pyramid are coded, it will be popped out

for transmission. The “refinement coding” block is in charge of bit stream generation after the

coding entering the refinement mode.

Figure 6 shows the decoding processing element (DPE) for all subbands. Since the length of

each receiving symbol varies, ranging from 1 to 3, a variable length decoding (VLD) process is

needed to decode the symbol bit-stream. The VLD contains the two latches (as the decoding

buffer), a 10-bit barrel shifter (BS), a 3-bit accumulator and a programmable logic array (PLA).

The two latches form a 10-bit wide decoding buffer and the barrel shifter retrieves a 3-bit wide

segment as the decoding frame. The barrel shifter acts like a 3-bit wide sliding window of the

input data stream. The accumulator keeps track of the boundary of the last decoded symbol in the

input latches and controls the displacement of the barrel shifter. The symbol decoding process is

hardwired into an PLA, which generates both the value and the length of the decoded symbol.

Additional inputs to the PLA are the SAQ_in signal and the refinement bit stream. Depending on

whether the decoding is in the refinement mode, an appropriate symbol value is selected from the

two multiplexers. The adder is employed for the refinement process.

Coeff.

T/2

-T/2

1

-1

0

-1.5 T

0

Accumulator

8_
bi

ts

3_bits

3_
bi

ts

wavelet coeff. decode select

2_
bi

ts 2_
bi

ts

8_
bi

ts

8_bits
Lower
Latch

8_bits

Symbol (8_bits)
Upper
Latch

2_bits
1.5 T

Mux 11_bits

Mux refine. amount

Adder 11_bits

Mux

11
_b

its

Texture (11_bits)Barrel
Shift

(10_bits) 3_bits Programmable
Logic Arrays

(PLA)

8_
bi

ts

8_bits

3_
bi

ts

Refinement coeff. select 3_
bi

ts

Reconstruction coeff. select

SAQ_IN

Refinement bitstream

SAQ_OUT

Figure 6. The DPE block diagram of the SA-SPIHT.

Figure 7 illustrates the overall architecture design of a progressive image coding based on the

lifting SA-DWT. It contains a 1-D lifting SA-DWT core, a shape analysis block, external memory

address generators, a coding engine and a controller. The design also requires two single port

off-chip memory modules working at twice the SA-DWT processing rate. We do not favor a

two-port memory module in that the total pin count of the chip design will be increased

dramatically. In addition, current memory technology does support a data rate up to 133MHz. For

the largest possible frame size, i.e. 1024×1024, each external memory module is of size 1M

words. The flow begins with the shape analysis block which first receives shape mask

information, performs shape decomposition and comes out with the length (Line_SZ) and the

starting point address (SP_ADDR) of each line segment for the 1-D SA-DWT processing. The

address generator, subject to the boundary extension scheme, generates appropriate read/write

address to the external memory modules. Both the original image data and the computed wavelet

coefficients are stored in external memory. The 1-D SA-DWT core processes the row-wise data

first, and then the column-wise intermediate data next to accomplish the 2-D SA-DWT

computations. This is followed by the SA-ZTC processing. The final adaptive arithmetic coding

(AAC) block is not shown.

Shape Analysis

Off-Chip
Memory

Address Generator
(Read Gen/Write Gen)

M
U
X

texture input

R
A

W
A

SAQ Register

Input
Preprocessing

st
ar

t

T

refine. bit

symbol bit

request

Shared 1D
Lifting SA-DWT

L
in

e_
SZ

SP
_A

D
D

R

shape input

SA-SPIHT
Controller

SA-SPIHT
Coding

RA

m
ag

.

si
gn

Sh
ap

e
in

pu
t

start

Off-Chip
Memory

WA

fi
ni

sh

Figure 7. The overall architecture of the proposed progressive image coding system

6. EXPERIMENTAL RESULTS AND PERFORMANCE CCOMPARISONS

To demonstrate the coding efficiency of the proposed lifting SA-DWT and SA-SPIHT

scheme, we conducted several performance experiments using several QCIF format sequences in

monochrome 8-bit pixel format. The DWT filter is of type Daubechies (9,7) and a 3-level

decomposition is performed. The comparison is against the non-SA SPHIT algorithm and the

results are compiled into Table 3. Note that the SA version SPHIT is not available so far and the

data bits for the shape mask information are counted in this comparison. In most benchmarks

(except for the grandma case), the proposed scheme has a significant performance edge over the

SPHIT algorithm. For a fixed bit rate coding, the PSNR difference can be as large as 15dB. In

average, the gain is about 4dB. Figure 8 shows the Sean and Akiyo cases under different bit rate.

The curves clearly exhibit a 4dB gap between the two schemes. Figure 9 shows the decoded

illustration of Sean-QCIF image under 0.5b/pixel and 1b/pixel bit rates.

Table 3 the performance compare our proposed approach and SPIHT.

Sequences
Proposed SA-SPIHT with lifing SA-DWT SPIHT [9]

Akiyo

Bitrate
(bits/pixel)

0.5

no. of shape
(CAE) PSNR (dB) PSNR(dB)

1.0
920

39.4 35.1

47 43.2

Coastgua
rd

0.3

0.6
837

43.6 32.8

59.2 43.8

Foreman
0.5

1.0
1017

37.8 34.3

45.9 44.2

Grandma
0.5

1.0
1108

35.2 35.9

43.7 44.1

News
0.5

1.0
1073

31.5 31.5

41.2 39.4

Sean
0.5

1.0
922

36.9 34.3

47 43.4

(a) Sean-QCIF (b) Akiyo-QCIF

Fig. 8 Performance comparison between the proposed schemes, SPHIT.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Original and decoded Sean-QCIF (a) Original image. (b) Original Shape mask. (c)

Three-level decomposition by lifting SA-DWT. (d) Three-level decomposition of the shape mask.

(e) decoded result for bitrate=0.5 b/pixel (f) decoded result for bitrate=1.0 b/pixel

7. VLSI IMPLEMENTATION RESULTS AND DESIGN SUMMARY

To verify the hardwired performance, the proposed design is realized in VLSI using TSMC

0.35um 1P4M process. Since SA-DWT is the more computation intensive module and the

memory access schemes between the SA-DWT and SA-ZTC need further investigation for

minimum communication overhead, only SA-DWT is incorporated into the design. The

implementation results are shown in Table 4. The core size is around 1800 ×1800 um2 and the

gate count is around 18,600. To reduce the critical path delay formed by the MAC path in the

predict and the update processors, a 10-bit CSD data format is employed in multiplication scheme.

This cuts the critical path delay to about 16.6ns and an approximately 60MHz clock rate can be

achieved. The computing power implies a sustained processing rate of 42 frames/sec for size

1024×1024 images.

Table 4. VLSI implementation results of SA-DWT

Technology TSMC 0.35um CMOS 1P4M

Core Size 1867.3x1859.7um2

Gate Count 18632

Max Clock Rate 60.09MHZ

PIN Count 111

Wavelet Filter Bank (9,7) Biorthogonal

Decomposition Level 3

176x144 (2681.2frames/sec)

256x256 (670.3frames/sec)

512x512 (167.6frames/sec)

Frame Size/Rate

(worst case)

1024x1024 (41.9frames/sec)

Off-Chip SDRAM 1MBx14bits

Figure 10. Chip layout view of the SA-DWT design

In conclusion, this paper presents an efficient algorithm and its VLSI architecture design for

forward and inverse lifting SA-DWT. We have successfully incorporated the SA feature into the

lifting DWT scheme and resolve the boundary extension problem with minimum overheads. In

addition, a high performance SA-ZTC scheme based on modified SA-SPIHT algorithm is also

presented. Experimental results show that the proposed scheme can achieve better coding

efficiency than the original SPHIT algorithm. The proposed architecture design is also the first

one reported capable of realizing such complicated ZTC algorithm in hardware.

REFERENCES

 [1] Chu Yu; Sao-Jie Chen, “Design of an efficient VLSI architecture for 2-D discrete

wavelet transforms, ” IEEE Consumer Electronics, Volume: 45 Issue: 1, Feb. 1999

Page(s): 135 -140.

[2] Jer Min Jou; Yeu-Horng Shiau; Chin-Chi Liu, “Efficient VLSI architectures for the

biorthogonal wavelet transform by filter bank and lifting scheme, ” IEEE Circuits and

Systems. ISCAS 2001, Volume: 2 , 2001 Page(s): 529 -532 vol. 2

[3] Chung-Jr Lian; Kuan-Fu Chen; Hong-Hui Chen; Liang-Gee Chen, “Lifting based

discrete wavelet transform architecture for JPEG2000, “IEEE Circuits and Systems.

ISCAS 2001, Volume: 2 , 2001 Page(s): 445 -448 vol. 2

[4] W. Sweldens, “The lifting scheme: A custom design construction of biorthogonal

wavelets,” Applied Comput. Harmon. Analysis, pp. 186-200, 1996

[5] Shipeng Li; Weiping Li, “Shape-adaptive discrete wavelet transforms for arbitrarily

shaped visual object coding,” IEEE Circuits and Systems for Video Technology, Volume:

10 5, Aug. 2000, Page(s): 725 –743

[6] C.-T. Huang, P.-C. Tseng and L.-G. Chen, “VLSI implementation of shape-adaptive

discrete wavelet transform,” 12th VLSI/CAD Symp., C1-1, Hsinchu, Taiwan, Aug. 2001

[7] Shapiro, J.M., “Embedded image coding using zerotrees of wavelet coefficients,” IEEE

Signal Processing, Volume: 41 12, Dec. 1993, Page(s): 3445 –3462

[8] Said, A.; Pearlman, W.A., “A new, fast, and efficient image codec based on set

partitioning in hierarchical trees,” IEEE Circuits and Systems for Video Technology,

Volume: 6 3, June 1996, Page(s): 243 –25

[9] Shen-Fu Hsiao; Yor-Chin Tai; Kai-Hsiang Chang, “VLSI Design of an efficient

embedded zerotree wavelet coder with function of digital watermarking,“ IEEE

Consumer Electr., Volume: 46 3 , Aug. 2000 , Page(s): 628 –636

