
 

Multidisk File Design for Concurrently Answering  
Partial Match Queries 

 

C. Y. Chen* and H. F. Lin** 

* C. Y. Chen is with the Department of Communications, Feng Chia University, Taichung, Taiwan 

40724, Republic of China.  E-mail: chihchen@fcu.edu.tw. 

** H. F. Lin is with the Institude of Information Engineering, Feng Chia University, Taichung, 

Taiwan 40724, Republic of China.  E-mail: hflin@fcu.edu.tw. 

 
 
 

Abstract 
       Since more and more queries may occur at the same time for a large file system, in order to 
increase query throughput per unit of time and further reduce average query response time, Lin and 
Chen have proposed in 1988 an MKH file design scheme which guarantees certain partial match 
queries of different types to be answered concurrently.  In this paper, based upon the representation 
of an integer in a residue number system (RNS), we present a new bucket allocation method, called 
the RNS allocation method.  It is shown that a multidisk file designed through the used of the RNS 
allocation method can guarantee various partial match queries of the same type to be answered 
concurrently. 
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1. Introduction 
       Since files are getting more and more large in real applications, more and more queries 
may occur at the same time for the same file.  Accordingly, the design of a large multiattribute file 
in a multidisk system such that the average query response time is minimized while the query 
throughput per unit of time is maximized is one of the most concerned information retrieval 
research issues in recent years [1-29, 31-33]. 
       In an information retrieval system, a file is a collection of records, a multiattribute file is a 
file whose records are characterized by more than one attribute, and a query is a specification of 
values of the attributes which is used to retrieve the specified records from the file. 
       The partial match query ( PMQ ) is the most commonly used query type for multiattribute 
files.  By a partial match query (PMQ), we mean an access specification of the form 

)a,,a,a(q N21 L= , where each ia , Ni1 ≤≤ , is either a specified value belonging to the domain 

Di of the i-th attribute or is “*” which denotes a don’t care condition (i.e., it can be any value in Di) 
[20].  For instance, q=(a, *, b) denotes a PMQ to retrieve the records with the first attribute a, the 
third attribute b, and the second attribute arbitrarily from some set of 3-attribute records. 
       The multidisk file design problem generally consists of first organizing a given set of 
records into a fixed number of buckets in such a way that the average number of buckets need to be 
examined, over all possible queries, is minimized; and then allocating the buckets onto a fixed 
number of independently accessible disks in such a way that the disk access concurrence is 
maximized and therefore the average response time over all possible queries is minimized.  It 
should be pointed out that both the record organization problem and the bucket allocation problem 
for PMQs have been shown to be NP-complete problems [13,32-33].  Hence all design schemes 
that have been proposed so far are all heuristics [1-29,31-33], meaning that they guarantee some 
optimalities under some particular conditions while give near optomal or good performances in the 
general case. 
       However, among the so far proposed heuristic record organization schemes 
[2,24,26-27,29,31], the multiple key hashing ( MKH ) file concept suggested by Rothnie and 
Lozano [31] has been shown to be very effective for PMQs [3,7,11,12,26,31]. Hence, almost all 
researches concerning the bucket allocation problem were focused on MKH files 
[1,5,6,9-10,14-23,25,32].  By an N-attribute MKH file with attributes N21 ,,, ΑΑΑ L  and 
corresponding domains N21 D,,D,D L , we mean an N-attribute file in which each record 
( N21 a,,a,a L ), ia iD∈ for 1 Ni ≤≤ , is assigned into a bucket denoted as [ )a(h),a(h),a(h N21 L ], 

where ih  is a hashing function from iD  to the set {0,1,⋯, 1m i − } for 1 Ni ≤≤  and ∏
=

N

1i
im  

equals the total number of available buckets.  An MKH file constructed above is often denoted as 
< N21 m,,m,m L >.  For instance, consider a simple case where N=2, D1=D2={a,b,c,d}, h1(x)=0 if 

x=a,b; 1 if x=c,d, h2(y)=0 if y= a,b; 1 if y=c; and 2 if y=d.  Then we have a 2-attribute MKH file 
<2, 3> consisting of the following six buckets: [0, 0]={(a, a), (a, b), (b, a), (b, b)}, [0, 1]={(a, c), 
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(b,c)}, [0, 2]={(a, d), (b, d) }, [1, 0]={(c, a), (c, b), (d, a), (d, b)}, [1, 1]={(c, c), (d, c)}, and [1, 
2]={(c, d), (d, d)}.  Assume that both overflow and underflow problems are ignored.  Then the 
buckets to be examined by the PMQ q=(c, *) are [1, 0], [1, 1], and [1, 2]. 
       Although there has been a great progress on the design of multidisk files for facilitating 
partial match queries in the past years[1-29, 31-33]; however, in almost all the previously suggested 
design schemes, queries can be answered only in a sequential way: i.e., only one query can be 
answered at one time.  Hence, the query performance won’t be satisfied when, in real applications, 
more and more queries may occur at the same time for the same file.  Accordingly, it is significant 
to concern the problem of concurrent control of answering multiple queries at the same time to 
increase query throughput per unit of time and further reduce average query response time for a 
multidisk file. 
       In [14], Lin and Chen investigated the above problem of designing multidisk files for 
facilitating concurrent control of answering partial match queries.  Based upon the observation that 
different queries often have significantly different clustering requirements and the use of 
MMI(minimal marginal increase) record clustering technique and the DM(disk modulo) bucket 
allocation technique, they proposed a multidisk file design scheme.  Although it has been pointed 
out that their proposed method does guarantee efficiently concurrent control of answering partial 
match queries of different types (meaning those queries using different query keys); unfortunately, 
the concurrency of answering partial match queries of the same type (meaning those queries that 
use the same key but with distinct key values) is not remarkable. 
       Accordingly, in this paper, we are further concerned the important research issue of 
designing a multidisk file to further facilitate concurrent control of answering partial match queries.  
Based upon the representation of an integer in a residue number system (RNS) [30], we shall 
present a new bucket allocation method, called the RNS allocation method.  It is shown 
theoretically and experimentally that a multidisk file designed through the used of the RNS 
allocation method can guarantee various partial match queries of the same type to be answered 
concurrently. 
 
2. The RNS allocation method 
       Let there be an N-attribute MKH file  F=< N21 m,,m,m L >={ ]b,,b,b[ N21 L ∣

1mb0 ii −≤≤  for Ni1 ≤≤ }, where N21 m,,m,m L  are pairwise relatively prime integers.  Let 

NB= ∏
=

N

1i
im  denote the total number of buckets, and m≥ 2 denote the total number of available 

disks.  Consider a bucket ]b,,b,b[ N21 L  in F.  Since N21 m,,m,m L  are pairwise relatively 
prime and 0 ≤ ib ≤ im -1 for 1 ≤ i ≤ N, [ N21 b,,b,b L ] can be served as the unique RNS 

representation [30, Section 4.7] of some integer, denoted as 
N21 bbbx L , in the range [0,NB] by 

using the set of moduli { N21 m,,m,m L }.  That is ib ≡
N21 bbbx L  (mod im ) for 1≤ i ≤ N.  And 
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in this way all records in F are aligned into a linearly ordered list according to the order of their 
integer correspondences in [0,NB-1].  Consider, for illustration, a small case where N=3, m1=3, 
m2=5 and m3=8.  Table 2.1 depicts the one-to-one correspondence between each bucket [ 321 b,b,b ] 

in F and the corresponding integer 
321 bbbx  in [0,119]. 

         ------------------------- 
 Table 2.1 here 

         ------------------------- 
       It is interesting to observe, from Table 2.1, that the integer correspondences of all 
qualifying buckets of any PMQ for F show up periodically in the range [0,119].  For instance, 
consider a PMQ, q=(0,0,*).  Then the buckets qualified by q consist of [0,0,0], [0,0,7], [0,0,6], 
[0,0,5], [0,0,4], [0,0,3], [0,0,2], [0,0,1].  The integer correspondences are 0, 15, 30, 45, 60, 75, 90 
and 105, respectively,  which show up periodically with period p = 3×5 = 15.  Similarly, the 
integer correspondences of all buckets qualified by the query q′ = (*,*,0) show up periodically with 
period p′ = 8.  The above periodicity is in fact true in general and can be formally stated and 

demonstrated as the following theorem. 
 
Theorem 2.1 
       For any PMQ, the RNS integer correspondences of all qualifying buckets show up 
periodically. 

Proof: Let 
n21 iiiq L  be a PMQ for which the ji -th key, nj1 ≤≤ , are specified and other keys are 

unspecified.  Suppose [ N21 b,,b,b L ] and [ N21 b,,b,b ′′′ L ] are two distinct buckets qualified by 

n21 iiiq L .  Then 
jib =

jib′  for 1 ≤ j ≤ n, or equivalently, 
N21 bbbx L ≡

N21 bbbx ′′′ L  (mod 
ji

m ) for 

1 ≤ j ≤ n.  Since 
1i

m , 
2i

m , … , 
ni

m  are pairwise relatively prime, we have 
N21 bbbx L ≡

N21 bbbx ′′′ L  (mod 
n21 iiip L ), where 

n21 iiip L = ∏
=

n

1j
i j

m .  This says that the integer correspondences of 

the bucket s qualified by 
n21 iiiq L  show up periodically in the range [0,NB-1] with period 

n21 iiip L . 

                                                               Q.E.D. 
 
       Another intriguing observation from Table 2.1 is that the components of two consecutive 

buckets [ 321 b,b,b ] and [ 321 b,b,b ′′′ ] for which 
321 bbbx ′′′ =

321 bbbx + 1 satisfy ib′ ≡ ib + 1 (mod im ) for 

1≤ i≤ 3.  This property is also true in general, we formally state and prove it as the following 
theorem. 
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Theorem 2.2 

       Let ( N21 b,b,b L ) and ( N21 b,b,b ′′′ L ) be two records such that 
N21 bbbx ′′′ L =

N21 bbbx L + 1.  

Then ib′ ≡ ib + 1 (mod im ) for 1≤ i≤ N. 

Proof: Since 
N21 bbbi xb ′′′≡′ L  (mod im ) and 

N21 bbbi xb L≡  (mod im ) for 1 ≤ i ≤ N, 

N21 bbbx ′′′ L =
N21 bbbx L + 1 implies that 

N21 bbbi xb ′′′≡′ L ≡
N21 bbbx L + 1 ≡ 1b i +  (mod im ) for 

1≤ i≤ N.                                                  
                                                           Q.E.D. 
 
       Based upon the correspondence properties stated in Theorem 2.1 and Theorem 2.2, in the 
following we shall propose a new bucket allocation scheme, called the RNS bucket allocation 
scheme. 
 
Algorithm 2.1 The RNS Bucket Allocation Scheme 
Input: An MKH file F={ ]b,,b,b[ N21 L ∣ 1mb0 ii −≤≤  for Ni1 ≤≤ }, where N21 m,,m,m L  

are pairwise relatively prime; and m disks, m≥ 2. 
Output: The allocation of the bucket s in F onto m disks. 

Steps: 1. Assign each bucket ]b,,b,b[ N21 L  in F to disk 
N21 bbbx L  mod m    

                     (2.1) 
 

       Consider, for instance, the case for which m=6.  Table 2.2 depicts the assignment of all 
buckets in F=<3, 5, 8> among 6 disks by using the RNS allocation scheme.  
      ------------------------------ 

( Table 2.2 here )   
      ------------------------------ 
. 
 
3. Concurrent answering property of the RNS allocation method 

       Let F be an MKH file with N attributes N21 ,,, ΑΑΑ L . Let ,A{Q
1i

= 1ii i1 A,,A
n2

≤L   

21n2 A,A{}Nii ⊆≤<<< L },, NΑL .  We say that a PMQ is of type Q , denoted as Qq  or 

,q
n21 i,,i,i L  if the set of attributes specified in the query is equal to Q .  Accordingly, two PMQs are 
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said to be of the same type if the set of attributes specified, respectively, in the two queries is 
identical.  Otherwise, they are said to be of different types. In this section, we shall show that an 
MKH file designed through the use of the RNS allocation method does guarantee various PMQs of 
the same type to be answered concurrently.  Without loss of generality, we assume that 

Q={
niii A,,A,A L

21
} ={ n21 ,,, ΑΑΑ L }.   

        
Theorem 3.1 
       Let F=< N21 m,,m,m L > and Q={ n21 ,,, ΑΑΑ L } where n≤ N.  Let m be the number of 

available disks and P= ∏
=

n

1j
jm .  Let q=( ,a,,a,a n21 L *, *, ,*)L  be a PMQ of type Q and D(q) 

denote the set of disks where the buckets qualified by q reside under the use of the RNS allocation 
method.  Suppose (m, P)=d, m=ad and P=bd where (a,b)=1.  
(1) If 0aaa n21 ==== L  then D(q) ⊆ {0, d, 2d, ,L (a-1)d}.  The equality holds when 

∏
+=

≤
N

nj
jma

1

. 

(2) In general, D(q) ⊆ {r+d, r+2d, ,L  r+(a-1)d}, where r = 000aaa n21
x LL  mod d and 000aaa n21

x LL  

is the integer correspondence of the bucket [ ,a,,a,a n21 L 0,0, ,L 0]. 
Proof: (1) Since 0000x LL =0, the set of integer correspondences of all buckets qualified by q is {kP 

∣ ∏
+=

<≤
N

1nj
jmk0 }.  Accordingly, we have D(q)={ kP mod m ∣ ∏

+=

<≤
N

1nj
jmk0 }. 

       Since m=ad, P=bd and (a,b)=1, we have {kb mod a ∣ ∏
+=

<≤
N

1nj
jmk0 } ⊆ {0,1, ,L a-1}, 

where the equality holds when ∏
+=

≤
N

nj
jma

1

.  This implies that D(q)={ kP mod m ∣

∏
+=

<≤
N

1nj
jmk0 }={kbd mod ad ∣ ∏

+=

<≤
N

1nj
jmk0 }⊆ {0,d, ,L (a-1)d} and the equality holds when 

∏
+=

≤
N

nj
jma

1

. 

(2) Let 000aaa n21
x LL =cd+r where dr0 <≤ .  That is, r = 000aaa n21

x LL  mod d.  Then we have, in 

general, that D(q)= {( 000aaa n21
x LL + kP) mod m ∣ ∏

+=

<≤
N

1nj
jmk0 } ⊆ {((cd+r)+jd) mod m ∣

aj0 <≤ }={r+cd+jd mod ad ∣ aj0 <≤ }={r+jd ∣ aj0 <≤ }={r+d, r+2d, ,L r+(a-1)d}, where 

the equality holds when ∏
+=

≤
N

nj
jma

1

. 

Q.E.D. 
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       Since for dr,r0 21 <≤  and 21 rr ≠ , { 1r +d, 1r +2d, ,L 1r +(a-1)d} and{ 2r +d, 2r +2d, 

,L 2r +(a-1)d} are disjoint.  Consequently, we have the following corollaries. 

 
Corollary 3.1 
       Let q=( ,a,,a,a n21 L *, *, ,*)L  and q′ =( ,a,,a,a n21 ′′′ L *, *, ,*)L  be two PMQs of the 

same type Q.  Suppose 000aaa n21
x LL  mod d = 1r  and 000aaa n21

x LL ′′′  mod d = 2r .   

(1) If 21 rr ≠  then q and q′  can be answered concurrently.  

(2) The maximum degree of concurrent answering queries of type Q is d.   
(3) If d=1 then any two queries of type Q can’t be answered concurrently.  
 
       Since { kP mod m ∣ mk <≤0 } is no more than a permutation of {0, 1, ,L  m-1} if (m, 

P)=d=1, we have the following conclusion. 
 
Corollary 3.2 
       If (m, P)=d=1, then all qualifying buckets of each PMQ of type Q are distributed uniformly 
among m disks.  That is, the RNS allocation method id strictly optimal for each PMQ of type Q. 
 
Example 3.1 
       Consider F=<3, 5, 8>, m=6 and the RNS allocation as shown in Table 2.2.  Let q=(1, *, *) 
and q′ =(2, *, *). Then P=3, d=(m, P)=3, 100x =40, 200x =80.  Since 1r = 100x  mod d=1, 2r = 200x  

mod d=2, and 21 rr ≠ , q and q′  can be answered concurrently.  Similarly, let q=(*, 2, 4) and 
q′ =(*, 2, 7).  Then P=5× 8=40, d=(m, P)=2, 024x =12 and 027x =87.  Since 1r = 024x  mod d=0, 

2r = 027x  mod d=1, and 21 rr ≠ , q  and q′  can also be answered concurrently.  On the other 

hand, let q̂ =(*, 1, *) and q̂′=(*, 4, *).  Then P=5 and d=(m, P)=1. Thus the qualifying buckets of 
q̂ and q̂′ , respectively, are distributed uniformly among m=6 disks.  Consequently, they can’t be 

answered concurrently. 
 
       Corollary 3.1 and 3.2 can be further illustrated by Table 3.1 below which depicts, for each 
query type, all queries of the same type and the set of disks where the qualifying buckets of each 
query reside.  
 
      ------------------------------ 

( Table 3.1 here )   
      ------------------------------ 
. 
4. Conclusions 
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       In this report, we have concerned the important research issue of designing a multidisk file 
to facilitate concurrent answering of PMQs.  Based upon the RNS (residue number system), we 
have first presented a new bucket allocation method, called the RNS allocation method.  It has 
been shown that a multidisk MKH file obtained through the use of the RNS allocation method does 
guarantee various PMQs of the same type to be answered concurrently. 
       By combining the results of this paper with that of [14], we can obtain a multidisk MKH 
file which allows concurrent answering of various PMQs, either of the same type or different types.  
This will significantly increase the query throughput per unit of time and further reduce the average 
response time over all possible PMQs as well. 
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 Table 2.1 The 1-1 Correspondence between Integers in [0,119] and Buckets in F 

Integer   

321 sssx  
Bucket 

]s,s,s[ 321  
Integer 

321 sssx  
Bucket 

]s,s,s[ 321  
Integer 

321 sssx  
Bucket 

]s,s,s[ 321  
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

[0,0,0] 
[1,1,1] 
[2,2,2] 
[0,3,3] 
[1,4,4] 
[2,0,5] 
[0,1,6] 
[1,2,7] 
[2,3,0] 
[0,4,1] 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

[1,0,0] 
[2,1,1] 
[0,2,2] 
[1,3,3] 
[2,4,4] 
[0,0,5] 
[1,1,6] 
[2,2,7] 
[0,3,0] 
[1,4,1] 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

[2,0,0] 
[0,1,1] 
[1,2,2] 
[2,3,3] 
[0,4,4] 
[1,0,5] 
[2,1,6] 
[0,2,7] 
[1,3,0] 
[2,4,1] 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

[1,0,2] 
[2,1,3] 
[0,2,4] 
[1,3,5] 
[2,4,6] 
[0,0,7] 
[1,1,0] 
[2,2,1] 
[0,3,2] 
[1,4,3] 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

[2,0,2] 
[0,1,3] 
[1,2,4] 
[2,3,5] 
[0,4,6] 
[1,0,7] 
[2,1,0] 
[0,2,1] 
[1,3,2] 
[2,4,3] 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

[0,0,2] 
[1,1,3] 
[2,2,4] 
[0,3,5] 
[1,4,6] 
[2,0,7] 
[0,1,0] 
[1,2,1] 
[2,3,2] 
[0,4,3] 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

[2,0,4] 
[2,1,5] 
[1,2,6] 
[2,3,7] 
[0,4,0] 
[1,0,1] 
[2,1,2] 
[0,2,3] 
[1,3,4] 
[2,4,5] 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

[0,0,4] 
[1,1,5] 
[2,2,6] 
[0,3,7] 
[1,4,0] 
[2,0,1] 
[0,1,2] 
[1,2,3] 
[2,3,4] 
[0,4,5] 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 

[1,0,4] 
[2,1,5] 
[0,2,6] 
[1,3,7] 
[2,4,0] 
[0,0,1] 
[1,1,2] 
[2,2,3] 
[0,3,4] 
[1,4,5] 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

[0,0,6] 
[1,1,7] 
[2,2,0] 
[0,3,1] 
[1,4,2] 
[2,0,3] 
[0,1,4] 
[1,2,5] 
[2,3,6] 
[0,4,7] 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

[1,0,6] 
[2,1,7] 
[0,2,0] 
[1,3,1] 
[2,4,2] 
[0,0,3] 
[1,1,4] 
[2,2,5] 
[0,3,6] 
[1,4,7] 

110 
111 
112 
113 
114 
115 
116 
117 
118 
119 

[2,0,6] 
[0,1,7] 
[1,2,0] 
[2,3,1] 
[0,4,2] 
[1,0,3] 
[2,1,4] 
[0,2,5] 
[1,3,6] 
[2,4,7] 
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Table 2.2 The Allocation of 120 Buckets among 6 Disks  
by Using the RNS Allocation Scheme 

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 
[0,0,0] 
[0,1,6] 
[0,2,4] 
[0,3,2] 
[0,4,0] 
[0,0,6] 
[0,1,4] 
[0,2,2] 
[0,3,0] 
[0,4,6] 
[0,0,4] 
[0,1,2] 
[0,2,0] 
[0,3,6] 
[0,4,4] 
[0,0,2] 
[0,1,0] 
[0,2,6] 
[0,3,4] 
[0,4,2] 

[1,1,1] 
[1,2,7] 
[1,3,5] 
[1,4,3] 
[1,0,1] 
[1,1,7] 
[1,2,5] 
[1,3,3] 
[1,4,1] 
[1,0,7] 
[1,1,5] 
[1,2,3] 
[1,3,1] 
[1,4,7] 
[1,0,5] 
[1,1,3] 
[1,2,1] 
[1,3,7] 
[1,4,5] 
[1,0,3] 

[2,2,2] 
[2,3,0] 
[2,4,6] 
[2,0,4] 
[2,1,2] 
[2,2,0] 
[2,3,6] 
[2,4,4] 
[2,0,2] 
[2,1,0] 
[2,2,6] 
[2,3,4] 
[2,4,2] 
[2,0,0] 
[2,1,6] 
[2,2,4] 
[2,3,2] 
[2,4,0] 
[2,0,6] 
[2,1,4] 

[0,3,3] 
[0,4,1] 
[0,0,7] 
[0,1,5] 
[0,2,3] 
[0,3,1] 
[0,4,7] 
[0,0,5] 
[0,1,3] 
[0,2,1] 
[0,3,7] 
[0,4,5] 
[0,0,3] 
[0,1,1] 
[0,2,7] 
[0,3,5] 
[0,4,3] 
[0,0,1] 
[0,1,7] 
[0,2,5] 

[1,4,4] 
[1,0,2] 
[1,1,0] 
[1,2,6] 
[1,3,4] 
[1,4,2] 
[1,0,0] 
[1,1,6] 
[1,2,4] 
[1,3,2] 
[1,4,0] 
[1,0,6] 
[1,1,4] 
[1,2,2] 
[1,3,0] 
[1,4,6] 
[1,0,4] 
[1,1,2] 
[1,2,0] 
[1,3,6] 

[2,0,5] 
[2,1,3] 
[2,2,1] 
[2,3,7] 
[2,4,5] 
[2,0,3] 
[2,1,1] 
[2,2,7] 
[2,3,5] 
[2,4,3] 
[2,0,1] 
[2,1,7] 
[2,2,5] 
[2,3,3] 
[2,4,1] 
[2,0,7] 
[2,1,5] 
[2,2,3] 
[2,3,1] 
[2,4,7] 

 

 

 

 



 12 
 

    
 Table 3.1The Set of Disks Where All Qualifying Buckets of Each Query Reside  

Query type Query Stored disks 

),,0( ∗∗   0D , 3D  
),,1( ∗∗  

1D , 4D  ),,A( 1 ∗∗  
),,2( ∗∗  2D , 5D  

),A,( 2 ∗∗  
),a,( 2 ∗∗  

=2a 0,1,2,3,4 0D , 1D , 2D , 3D , 4D , 5D  

)a,,( 3∗∗  

=3a 0,2,4,6 0D , 2D , 4D  
)A,,( 3∗∗  

)a,,( 3∗∗  

=3a 1,3,5,7 1D , 3D , 5D  

),a,0( 2 ∗  
=2a 0,1,2,3,4 0D , 3D  

),a,1( 2 ∗  
=2a 0,1,2,3,4 1D , 4D  ),A,A( 21 ∗  

),a,2( 2 ∗  
=2a 0,1,2,3,4 2D , 5D  

)a,,0( 3∗  

=3a 0,2,4,6 0D  

)a,,0( 3∗  

=3a 1,3,5,7 3D  

)a,,1( 3∗  

=3a 0,2,4,6 4D  

)a,,1( 3∗  

=3a 1,3,5,7 1D  

)a,,2( 3∗  

=3a 0,2,4,6 2D  

)A,,A( 31 ∗  

)a,,2( 3∗  

=3a 1,3,5,7 5D  

)a,a,( 32∗  

=2a 0,1,2,3,4 
=3a 0,2,4,6 

0D , 2D , 4D  

)A,A,( 32∗  
)a,a,( 32∗  

=2a 0,1,2,3,4 
=3a 1,3,5,7 

1D , 3D , 5D  

 


