

Multidisk File Design for Concurrently Answering
Partial Match Queries

C. Y. Chen* and H. F. Lin**

* C. Y. Chen is with the Department of Communications, Feng Chia University, Taichung, Taiwan

40724, Republic of China. E-mail: chihchen@fcu.edu.tw.

** H. F. Lin is with the Institude of Information Engineering, Feng Chia University, Taichung,

Taiwan 40724, Republic of China. E-mail: hflin@fcu.edu.tw.

Abstract
 Since more and more queries may occur at the same time for a large file system, in order to
increase query throughput per unit of time and further reduce average query response time, Lin and
Chen have proposed in 1988 an MKH file design scheme which guarantees certain partial match
queries of different types to be answered concurrently. In this paper, based upon the representation
of an integer in a residue number system (RNS), we present a new bucket allocation method, called
the RNS allocation method. It is shown that a multidisk file designed through the used of the RNS
allocation method can guarantee various partial match queries of the same type to be answered
concurrently.

Keywords: Mmultidisk-multiattribute file, partial match query, query response time, concurrent
control, query throughput, residue number system

* The corresponding author

 1

1. Introduction
 Since files are getting more and more large in real applications, more and more queries
may occur at the same time for the same file. Accordingly, the design of a large multiattribute file
in a multidisk system such that the average query response time is minimized while the query
throughput per unit of time is maximized is one of the most concerned information retrieval
research issues in recent years [1-29, 31-33].
 In an information retrieval system, a file is a collection of records, a multiattribute file is a
file whose records are characterized by more than one attribute, and a query is a specification of
values of the attributes which is used to retrieve the specified records from the file.
 The partial match query (PMQ) is the most commonly used query type for multiattribute
files. By a partial match query (PMQ), we mean an access specification of the form

)a,,a,a(q N21 L= , where each ia , Ni1 ≤≤ , is either a specified value belonging to the domain

Di of the i-th attribute or is “*” which denotes a don’t care condition (i.e., it can be any value in Di)
[20]. For instance, q=(a, *, b) denotes a PMQ to retrieve the records with the first attribute a, the
third attribute b, and the second attribute arbitrarily from some set of 3-attribute records.
 The multidisk file design problem generally consists of first organizing a given set of
records into a fixed number of buckets in such a way that the average number of buckets need to be
examined, over all possible queries, is minimized; and then allocating the buckets onto a fixed
number of independently accessible disks in such a way that the disk access concurrence is
maximized and therefore the average response time over all possible queries is minimized. It
should be pointed out that both the record organization problem and the bucket allocation problem
for PMQs have been shown to be NP-complete problems [13,32-33]. Hence all design schemes
that have been proposed so far are all heuristics [1-29,31-33], meaning that they guarantee some
optimalities under some particular conditions while give near optomal or good performances in the
general case.
 However, among the so far proposed heuristic record organization schemes
[2,24,26-27,29,31], the multiple key hashing (MKH) file concept suggested by Rothnie and
Lozano [31] has been shown to be very effective for PMQs [3,7,11,12,26,31]. Hence, almost all
researches concerning the bucket allocation problem were focused on MKH files
[1,5,6,9-10,14-23,25,32]. By an N-attribute MKH file with attributes N21 ,,, ΑΑΑ L and
corresponding domains N21 D,,D,D L , we mean an N-attribute file in which each record
(N21 a,,a,a L), ia iD∈ for 1 Ni ≤≤ , is assigned into a bucket denoted as [)a(h),a(h),a(h N21 L],

where ih is a hashing function from iD to the set {0,1,⋯, 1m i − } for 1 Ni ≤≤ and ∏
=

N

1i
im

equals the total number of available buckets. An MKH file constructed above is often denoted as
< N21 m,,m,m L >. For instance, consider a simple case where N=2, D1=D2={a,b,c,d}, h1(x)=0 if

x=a,b; 1 if x=c,d, h2(y)=0 if y= a,b; 1 if y=c; and 2 if y=d. Then we have a 2-attribute MKH file
<2, 3> consisting of the following six buckets: [0, 0]={(a, a), (a, b), (b, a), (b, b)}, [0, 1]={(a, c),

 2

(b,c)}, [0, 2]={(a, d), (b, d) }, [1, 0]={(c, a), (c, b), (d, a), (d, b)}, [1, 1]={(c, c), (d, c)}, and [1,
2]={(c, d), (d, d)}. Assume that both overflow and underflow problems are ignored. Then the
buckets to be examined by the PMQ q=(c, *) are [1, 0], [1, 1], and [1, 2].
 Although there has been a great progress on the design of multidisk files for facilitating
partial match queries in the past years[1-29, 31-33]; however, in almost all the previously suggested
design schemes, queries can be answered only in a sequential way: i.e., only one query can be
answered at one time. Hence, the query performance won’t be satisfied when, in real applications,
more and more queries may occur at the same time for the same file. Accordingly, it is significant
to concern the problem of concurrent control of answering multiple queries at the same time to
increase query throughput per unit of time and further reduce average query response time for a
multidisk file.
 In [14], Lin and Chen investigated the above problem of designing multidisk files for
facilitating concurrent control of answering partial match queries. Based upon the observation that
different queries often have significantly different clustering requirements and the use of
MMI(minimal marginal increase) record clustering technique and the DM(disk modulo) bucket
allocation technique, they proposed a multidisk file design scheme. Although it has been pointed
out that their proposed method does guarantee efficiently concurrent control of answering partial
match queries of different types (meaning those queries using different query keys); unfortunately,
the concurrency of answering partial match queries of the same type (meaning those queries that
use the same key but with distinct key values) is not remarkable.
 Accordingly, in this paper, we are further concerned the important research issue of
designing a multidisk file to further facilitate concurrent control of answering partial match queries.
Based upon the representation of an integer in a residue number system (RNS) [30], we shall
present a new bucket allocation method, called the RNS allocation method. It is shown
theoretically and experimentally that a multidisk file designed through the used of the RNS
allocation method can guarantee various partial match queries of the same type to be answered
concurrently.

2. The RNS allocation method
 Let there be an N-attribute MKH file F=< N21 m,,m,m L >={]b,,b,b[N21 L ∣

1mb0 ii −≤≤ for Ni1 ≤≤ }, where N21 m,,m,m L are pairwise relatively prime integers. Let

NB= ∏
=

N

1i
im denote the total number of buckets, and m≥ 2 denote the total number of available

disks. Consider a bucket]b,,b,b[N21 L in F. Since N21 m,,m,m L are pairwise relatively
prime and 0 ≤ ib ≤ im -1 for 1 ≤ i ≤ N, [N21 b,,b,b L] can be served as the unique RNS

representation [30, Section 4.7] of some integer, denoted as
N21 bbbx L , in the range [0,NB] by

using the set of moduli { N21 m,,m,m L }. That is ib ≡
N21 bbbx L (mod im) for 1≤ i ≤ N. And

 3

in this way all records in F are aligned into a linearly ordered list according to the order of their
integer correspondences in [0,NB-1]. Consider, for illustration, a small case where N=3, m1=3,
m2=5 and m3=8. Table 2.1 depicts the one-to-one correspondence between each bucket [321 b,b,b]

in F and the corresponding integer
321 bbbx in [0,119].

 Table 2.1 here

 It is interesting to observe, from Table 2.1, that the integer correspondences of all
qualifying buckets of any PMQ for F show up periodically in the range [0,119]. For instance,
consider a PMQ, q=(0,0,*). Then the buckets qualified by q consist of [0,0,0], [0,0,7], [0,0,6],
[0,0,5], [0,0,4], [0,0,3], [0,0,2], [0,0,1]. The integer correspondences are 0, 15, 30, 45, 60, 75, 90
and 105, respectively, which show up periodically with period p = 3×5 = 15. Similarly, the
integer correspondences of all buckets qualified by the query q′ = (*,*,0) show up periodically with
period p′ = 8. The above periodicity is in fact true in general and can be formally stated and

demonstrated as the following theorem.

Theorem 2.1
 For any PMQ, the RNS integer correspondences of all qualifying buckets show up
periodically.

Proof: Let
n21 iiiq L be a PMQ for which the ji -th key, nj1 ≤≤ , are specified and other keys are

unspecified. Suppose [N21 b,,b,b L] and [N21 b,,b,b ′′′ L] are two distinct buckets qualified by

n21 iiiq L . Then
jib =

jib′ for 1 ≤ j ≤ n, or equivalently,
N21 bbbx L ≡

N21 bbbx ′′′ L (mod
ji

m) for

1 ≤ j ≤ n. Since
1i

m ,
2i

m , … ,
ni

m are pairwise relatively prime, we have
N21 bbbx L ≡

N21 bbbx ′′′ L (mod
n21 iiip L), where

n21 iiip L = ∏
=

n

1j
i j

m . This says that the integer correspondences of

the bucket s qualified by
n21 iiiq L show up periodically in the range [0,NB-1] with period

n21 iiip L .

 Q.E.D.

 Another intriguing observation from Table 2.1 is that the components of two consecutive

buckets [321 b,b,b] and [321 b,b,b ′′′] for which
321 bbbx ′′′ =

321 bbbx + 1 satisfy ib′ ≡ ib + 1 (mod im) for

1≤ i≤ 3. This property is also true in general, we formally state and prove it as the following
theorem.

 4

Theorem 2.2

 Let (N21 b,b,b L) and (N21 b,b,b ′′′ L) be two records such that
N21 bbbx ′′′ L =

N21 bbbx L + 1.

Then ib′ ≡ ib + 1 (mod im) for 1≤ i≤ N.

Proof: Since
N21 bbbi xb ′′′≡′ L (mod im) and

N21 bbbi xb L≡ (mod im) for 1 ≤ i ≤ N,

N21 bbbx ′′′ L =
N21 bbbx L + 1 implies that

N21 bbbi xb ′′′≡′ L ≡
N21 bbbx L + 1 ≡ 1b i + (mod im) for

1≤ i≤ N.
 Q.E.D.

 Based upon the correspondence properties stated in Theorem 2.1 and Theorem 2.2, in the
following we shall propose a new bucket allocation scheme, called the RNS bucket allocation
scheme.

Algorithm 2.1 The RNS Bucket Allocation Scheme
Input: An MKH file F={]b,,b,b[N21 L ∣ 1mb0 ii −≤≤ for Ni1 ≤≤ }, where N21 m,,m,m L

are pairwise relatively prime; and m disks, m≥ 2.
Output: The allocation of the bucket s in F onto m disks.

Steps: 1. Assign each bucket]b,,b,b[N21 L in F to disk
N21 bbbx L mod m

 (2.1)

 Consider, for instance, the case for which m=6. Table 2.2 depicts the assignment of all
buckets in F=<3, 5, 8> among 6 disks by using the RNS allocation scheme.

(Table 2.2 here)

.

3. Concurrent answering property of the RNS allocation method

 Let F be an MKH file with N attributes N21 ,,, ΑΑΑ L . Let ,A{Q
1i

= 1ii i1 A,,A
n2

≤L

21n2 A,A{}Nii ⊆≤<<< L },, NΑL . We say that a PMQ is of type Q , denoted as Qq or

,q
n21 i,,i,i L if the set of attributes specified in the query is equal to Q . Accordingly, two PMQs are

 5

said to be of the same type if the set of attributes specified, respectively, in the two queries is
identical. Otherwise, they are said to be of different types. In this section, we shall show that an
MKH file designed through the use of the RNS allocation method does guarantee various PMQs of
the same type to be answered concurrently. Without loss of generality, we assume that

Q={
niii A,,A,A L

21
} ={ n21 ,,, ΑΑΑ L }.

Theorem 3.1
 Let F=< N21 m,,m,m L > and Q={ n21 ,,, ΑΑΑ L } where n≤ N. Let m be the number of

available disks and P= ∏
=

n

1j
jm . Let q=(,a,,a,a n21 L *, *, ,*)L be a PMQ of type Q and D(q)

denote the set of disks where the buckets qualified by q reside under the use of the RNS allocation
method. Suppose (m, P)=d, m=ad and P=bd where (a,b)=1.
(1) If 0aaa n21 ==== L then D(q) ⊆ {0, d, 2d, ,L (a-1)d}. The equality holds when

∏
+=

≤
N

nj
jma

1

.

(2) In general, D(q) ⊆ {r+d, r+2d, ,L r+(a-1)d}, where r = 000aaa n21
x LL mod d and 000aaa n21

x LL

is the integer correspondence of the bucket [,a,,a,a n21 L 0,0, ,L 0].
Proof: (1) Since 0000x LL =0, the set of integer correspondences of all buckets qualified by q is {kP

∣ ∏
+=

<≤
N

1nj
jmk0 }. Accordingly, we have D(q)={ kP mod m ∣ ∏

+=

<≤
N

1nj
jmk0 }.

 Since m=ad, P=bd and (a,b)=1, we have {kb mod a ∣ ∏
+=

<≤
N

1nj
jmk0 } ⊆ {0,1, ,L a-1},

where the equality holds when ∏
+=

≤
N

nj
jma

1

. This implies that D(q)={ kP mod m ∣

∏
+=

<≤
N

1nj
jmk0 }={kbd mod ad ∣ ∏

+=

<≤
N

1nj
jmk0 }⊆ {0,d, ,L (a-1)d} and the equality holds when

∏
+=

≤
N

nj
jma

1

.

(2) Let 000aaa n21
x LL =cd+r where dr0 <≤ . That is, r = 000aaa n21

x LL mod d. Then we have, in

general, that D(q)= {(000aaa n21
x LL + kP) mod m ∣ ∏

+=

<≤
N

1nj
jmk0 } ⊆ {((cd+r)+jd) mod m ∣

aj0 <≤ }={r+cd+jd mod ad ∣ aj0 <≤ }={r+jd ∣ aj0 <≤ }={r+d, r+2d, ,L r+(a-1)d}, where

the equality holds when ∏
+=

≤
N

nj
jma

1

.

Q.E.D.

 6

 Since for dr,r0 21 <≤ and 21 rr ≠ , { 1r +d, 1r +2d, ,L 1r +(a-1)d} and{ 2r +d, 2r +2d,

,L 2r +(a-1)d} are disjoint. Consequently, we have the following corollaries.

Corollary 3.1
 Let q=(,a,,a,a n21 L *, *, ,*)L and q′ =(,a,,a,a n21 ′′′ L *, *, ,*)L be two PMQs of the

same type Q. Suppose 000aaa n21
x LL mod d = 1r and 000aaa n21

x LL ′′′ mod d = 2r .

(1) If 21 rr ≠ then q and q′ can be answered concurrently.

(2) The maximum degree of concurrent answering queries of type Q is d.
(3) If d=1 then any two queries of type Q can’t be answered concurrently.

 Since { kP mod m ∣ mk <≤0 } is no more than a permutation of {0, 1, ,L m-1} if (m,

P)=d=1, we have the following conclusion.

Corollary 3.2
 If (m, P)=d=1, then all qualifying buckets of each PMQ of type Q are distributed uniformly
among m disks. That is, the RNS allocation method id strictly optimal for each PMQ of type Q.

Example 3.1
 Consider F=<3, 5, 8>, m=6 and the RNS allocation as shown in Table 2.2. Let q=(1, *, *)
and q′ =(2, *, *). Then P=3, d=(m, P)=3, 100x =40, 200x =80. Since 1r = 100x mod d=1, 2r = 200x

mod d=2, and 21 rr ≠ , q and q′ can be answered concurrently. Similarly, let q=(*, 2, 4) and
q′ =(*, 2, 7). Then P=5× 8=40, d=(m, P)=2, 024x =12 and 027x =87. Since 1r = 024x mod d=0,

2r = 027x mod d=1, and 21 rr ≠ , q and q′ can also be answered concurrently. On the other

hand, let q̂ =(*, 1, *) and q̂′=(*, 4, *). Then P=5 and d=(m, P)=1. Thus the qualifying buckets of
q̂ and q̂′ , respectively, are distributed uniformly among m=6 disks. Consequently, they can’t be

answered concurrently.

 Corollary 3.1 and 3.2 can be further illustrated by Table 3.1 below which depicts, for each
query type, all queries of the same type and the set of disks where the qualifying buckets of each
query reside.

(Table 3.1 here)

.
4. Conclusions

 7

 In this report, we have concerned the important research issue of designing a multidisk file
to facilitate concurrent answering of PMQs. Based upon the RNS (residue number system), we
have first presented a new bucket allocation method, called the RNS allocation method. It has
been shown that a multidisk MKH file obtained through the use of the RNS allocation method does
guarantee various PMQs of the same type to be answered concurrently.
 By combining the results of this paper with that of [14], we can obtain a multidisk MKH
file which allows concurrent answering of various PMQs, either of the same type or different types.
This will significantly increase the query throughput per unit of time and further reduce the average
response time over all possible PMQs as well.

References

[1] K. A. S. Abdel-Ghaffar and A. El. Abbadi, “Optimal Disk Allocation for Partial Match Queries,”
ACM Trans. Database Systems, vol. 18, no. 1, pp. 132-156, 1993.

[2] A. V. Aho and J. D. Ullman, “Optimal Partial-Match Retrieval When Fields Are Independently

Specified,” ACM Trans. Database Systems, vol. 4, no. 2, pp. 168-179, 1979.

[3] A. Bolour, “Optimality properties of Multiple Key Hashing Functions,” J. Assoc. Computing,

vol. 26, no. 2, pp. 196-210, 1979.

[4] W. A. Burkhard, “Partial Match Hash Coding: Benefits of Redundancy,” ACM Trans. Database

Systems, vol. 4, no. 2, pp. 228-239, 1979.

[5] M. Y. Chan, “Multidisk File Design: An Analysis of Folding Buckets to Disks,” BIT, vol. 24, pp.

262-268, 1984.

[6] M. Y. Chan, “A Note on Redundant Disk Allocation,” IPL, vol. 20, pp. 121-123, 1985.

[7] C. C. Chang, “Optimal Information Retrieval When Queries Are Not Random,” Information

Sciences, vol. 34, pp. 199-223, 1984.

[8] C. C. Chang, “Application of Principal Component Analysis to Multidisk Concurrent

Accessing,” BIT, vol. 28, pp. 205-214, 1988.

[9] C. C. Chang and C. Y. Chen, “Gray Code as a Declustering Scheme for Concurrent Disk

Retrieval,” Information Science and Eng., vol. 13, no. 2, pp. 177-188, 1987.

 8

[10] C. C. Chang and C. Y. Chen, “Symbolic Gray Code as a Data Allocation Scheme for Two-disk

Systems,” The Computer J., U. K., vol. 35, no. 3, pp. 299-305, 1992.

[11] C. C. Chang, M. W. Du, and R. C. T. Lee, “Performance Analysis of Cartesian Product Files

and Random Files,” IEEE Trans. Software Eng., vol. 10, no. 1, pp. 88-99, 1984.

[12] C. C. Chang, R. C. T. Lee, and H. C. Du, “Some Properties of Cartesian Product Files,” Proc.

ACM-SIGMOD Conf., pp. 157-168, 1980.

[13] C. C. Chang and J. C. Shieh, “On the Complexity of File Allocation Problem,” Proc. Int’l Conf.

Foundation of Data Organization, Kyoto, Japan, pp. 113-115, May 1985.

[14] H. F. Lin and C. Y. Chen, “Concurrent Control of Partial Match Queries for Multidisk MKH

Files,” Proc. ICS2000, Chiayi, Taiwan, Dec. 2000.

[15] C. Y. Chen and H. F. Lin, “Optimality Criteria of the Disk Modulo Allocation Method for

Cartesian Product Files,” BIT, vol. 31, pp. 566-575, 1991.

[16] C. Y. Chen, H. F. Lin, R. C. T. Lee and C. C. Chang, “Redundant MKH Files Design among

Multiple Disks for Concurrent Partial Match Retrieval,” J. Systems and software, vol. 35, pp.
199-207, 1996.

[17] C. Y. Chen, C. C. Chang and R.C.T. Lee, “Optimal MMI File Systems for Orthogonal Range

Retrieval,” Information Systems, vol. 18, No. 1, PP. 37-54, 1993.

[18] C. Y. Chen, H. F. Lin, C. C. Chang and R. C. T. Lee, “Optimal Bucket Allocation Design of

K-ary MKH Files for Partial Match Retrieval,” IEEE Trans. Knowledge and Data Engineering,
vol. 9, no. 1, pp. 148-159, 1997.

[19] H. C. Du, “Disk Allocation Methods for Binary Cartesian Product Files,” BIT, vol. 26, pp.

138-147, 1986.

[20] H. C. Du and J. S. Sobolewski, “Disk Allocation for Cartesian Product Files on Multiple Disk

Systems,” ACM Trans. Database Systems, vol. 7, no. 1, pp. 82-101, 1982.

[21] C. Faloutsos and D. Metaxas, “Disk Allocation Methods Using Error Correcting Codes,” IEEE

Trans. Computers, vol. 40, no. 8, pp. 907-914, 1991.

 9

[22] M. F. Fang, R. C. T. Lee, and C. C. Chang, “The Idea of Declustering and Its Applications,”

Proc. 12th Int’l Conf. VLDB, Kyoto, Japan, pp. 181-188, Aug. 1986.

[23] M. H. Kim and S. Pramanik, “Optimal File Distribution for partial Match Retrieval,” Proc.

ACM-SIGMOD Conf., pp. 173-182, 1988.

[24] R. C. T. Lee and S. H. Tseng, “Multikey Sorting,” Policy Analysis and Information Systems,

vol. 3, no. 2,pp.1-20, 1979.

[25] H. F. Lin and C. Y. Chen,”An RNS Based Perfectly Optimal Data Allocation and Declustering

Scheme,” in submission to JISE.

[26] W. C. Lin, R. C. T. Lee, and H. C. Du, “Common Properties of some Multi-Attribute File

Systems,” IEEE Trans. Software Eng., vol. 1, SE-5, no. 2, pp. 160-174, 1979.

[27] J. H. Liou and S.B. Yao, “Multi-Dimension Clustering for Database Organizations,”

Information Systems, vol. 2, no. 2,pp. 187-198, 1977.

[28] K. Ramamohanarao, J. Shepherd, and R. Sacks-Davis, “Multi-Attribute Hashing with Multiple

File Copies for High Performance Partial-Match Retrieval,” BIT, vol. 30, pp. 404-423, 1990.
[29] R. L. Rivest, “Partial-Match Retrieval Algorithms,” SIAM J. Computing, vol. 14, no. 1, pp.

19-50, 1976.

[30] K. H. Rosen, Elementary Number Theory and Its Applications, 3rd ed., Addison Wesley, 1993.

[31] J. B. Rothnie and T. Rozano, “Attribute Based File Origanization in a paged Memory

Environment,” CACM, vol. 17, no. 2, pp. 63-69, 1974.

[32] Y. Y. Sung, “Performance Analysis of Disk Allocation Method for Cartesian Product Files,”

IEEE Trans. Software Eng., vol. 13,no. 9, pp. 1,018-1,026, 1987.

[33] C. Y. Tang, D. J. Buehrer, and R. C. T. Lee, “On the Complexity of Some Multiattribute File

Design Problems,” Information Systems, vol.10, no. 1, pp.21-25, 1985.

 10

 Table 2.1 The 1-1 Correspondence between Integers in [0,119] and Buckets in F

Integer

321 sssx
Bucket

]s,s,s[321
Integer

321 sssx
Bucket

]s,s,s[321
Integer

321 sssx
Bucket

]s,s,s[321
0
1
2
3
4
5
6
7
8
9

[0,0,0]
[1,1,1]
[2,2,2]
[0,3,3]
[1,4,4]
[2,0,5]
[0,1,6]
[1,2,7]
[2,3,0]
[0,4,1]

40
41
42
43
44
45
46
47
48
49

[1,0,0]
[2,1,1]
[0,2,2]
[1,3,3]
[2,4,4]
[0,0,5]
[1,1,6]
[2,2,7]
[0,3,0]
[1,4,1]

80
81
82
83
84
85
86
87
88
89

[2,0,0]
[0,1,1]
[1,2,2]
[2,3,3]
[0,4,4]
[1,0,5]
[2,1,6]
[0,2,7]
[1,3,0]
[2,4,1]

10
11
12
13
14
15
16
17
18
19

[1,0,2]
[2,1,3]
[0,2,4]
[1,3,5]
[2,4,6]
[0,0,7]
[1,1,0]
[2,2,1]
[0,3,2]
[1,4,3]

50
51
52
53
54
55
56
57
58
59

[2,0,2]
[0,1,3]
[1,2,4]
[2,3,5]
[0,4,6]
[1,0,7]
[2,1,0]
[0,2,1]
[1,3,2]
[2,4,3]

90
91
92
93
94
95
96
97
98
99

[0,0,2]
[1,1,3]
[2,2,4]
[0,3,5]
[1,4,6]
[2,0,7]
[0,1,0]
[1,2,1]
[2,3,2]
[0,4,3]

20
21
22
23
24
25
26
27
28
29

[2,0,4]
[2,1,5]
[1,2,6]
[2,3,7]
[0,4,0]
[1,0,1]
[2,1,2]
[0,2,3]
[1,3,4]
[2,4,5]

60
61
62
63
64
65
66
67
68
69

[0,0,4]
[1,1,5]
[2,2,6]
[0,3,7]
[1,4,0]
[2,0,1]
[0,1,2]
[1,2,3]
[2,3,4]
[0,4,5]

100
101
102
103
104
105
106
107
108
109

[1,0,4]
[2,1,5]
[0,2,6]
[1,3,7]
[2,4,0]
[0,0,1]
[1,1,2]
[2,2,3]
[0,3,4]
[1,4,5]

30
31
32
33
34
35
36
37
38
39

[0,0,6]
[1,1,7]
[2,2,0]
[0,3,1]
[1,4,2]
[2,0,3]
[0,1,4]
[1,2,5]
[2,3,6]
[0,4,7]

70
71
72
73
74
75
76
77
78
79

[1,0,6]
[2,1,7]
[0,2,0]
[1,3,1]
[2,4,2]
[0,0,3]
[1,1,4]
[2,2,5]
[0,3,6]
[1,4,7]

110
111
112
113
114
115
116
117
118
119

[2,0,6]
[0,1,7]
[1,2,0]
[2,3,1]
[0,4,2]
[1,0,3]
[2,1,4]
[0,2,5]
[1,3,6]
[2,4,7]

 11

Table 2.2 The Allocation of 120 Buckets among 6 Disks
by Using the RNS Allocation Scheme

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
[0,0,0]
[0,1,6]
[0,2,4]
[0,3,2]
[0,4,0]
[0,0,6]
[0,1,4]
[0,2,2]
[0,3,0]
[0,4,6]
[0,0,4]
[0,1,2]
[0,2,0]
[0,3,6]
[0,4,4]
[0,0,2]
[0,1,0]
[0,2,6]
[0,3,4]
[0,4,2]

[1,1,1]
[1,2,7]
[1,3,5]
[1,4,3]
[1,0,1]
[1,1,7]
[1,2,5]
[1,3,3]
[1,4,1]
[1,0,7]
[1,1,5]
[1,2,3]
[1,3,1]
[1,4,7]
[1,0,5]
[1,1,3]
[1,2,1]
[1,3,7]
[1,4,5]
[1,0,3]

[2,2,2]
[2,3,0]
[2,4,6]
[2,0,4]
[2,1,2]
[2,2,0]
[2,3,6]
[2,4,4]
[2,0,2]
[2,1,0]
[2,2,6]
[2,3,4]
[2,4,2]
[2,0,0]
[2,1,6]
[2,2,4]
[2,3,2]
[2,4,0]
[2,0,6]
[2,1,4]

[0,3,3]
[0,4,1]
[0,0,7]
[0,1,5]
[0,2,3]
[0,3,1]
[0,4,7]
[0,0,5]
[0,1,3]
[0,2,1]
[0,3,7]
[0,4,5]
[0,0,3]
[0,1,1]
[0,2,7]
[0,3,5]
[0,4,3]
[0,0,1]
[0,1,7]
[0,2,5]

[1,4,4]
[1,0,2]
[1,1,0]
[1,2,6]
[1,3,4]
[1,4,2]
[1,0,0]
[1,1,6]
[1,2,4]
[1,3,2]
[1,4,0]
[1,0,6]
[1,1,4]
[1,2,2]
[1,3,0]
[1,4,6]
[1,0,4]
[1,1,2]
[1,2,0]
[1,3,6]

[2,0,5]
[2,1,3]
[2,2,1]
[2,3,7]
[2,4,5]
[2,0,3]
[2,1,1]
[2,2,7]
[2,3,5]
[2,4,3]
[2,0,1]
[2,1,7]
[2,2,5]
[2,3,3]
[2,4,1]
[2,0,7]
[2,1,5]
[2,2,3]
[2,3,1]
[2,4,7]

 12

 Table 3.1The Set of Disks Where All Qualifying Buckets of Each Query Reside

Query type Query Stored disks

),,0(∗∗ 0D , 3D
),,1(∗∗

1D , 4D),,A(1 ∗∗
),,2(∗∗ 2D , 5D

),A,(2 ∗∗
),a,(2 ∗∗

=2a 0,1,2,3,4 0D , 1D , 2D , 3D , 4D , 5D

)a,,(3∗∗

=3a 0,2,4,6 0D , 2D , 4D
)A,,(3∗∗

)a,,(3∗∗

=3a 1,3,5,7 1D , 3D , 5D

),a,0(2 ∗
=2a 0,1,2,3,4 0D , 3D

),a,1(2 ∗
=2a 0,1,2,3,4 1D , 4D),A,A(21 ∗

),a,2(2 ∗
=2a 0,1,2,3,4 2D , 5D

)a,,0(3∗

=3a 0,2,4,6 0D

)a,,0(3∗

=3a 1,3,5,7 3D

)a,,1(3∗

=3a 0,2,4,6 4D

)a,,1(3∗

=3a 1,3,5,7 1D

)a,,2(3∗

=3a 0,2,4,6 2D

)A,,A(31 ∗

)a,,2(3∗

=3a 1,3,5,7 5D

)a,a,(32∗

=2a 0,1,2,3,4
=3a 0,2,4,6

0D , 2D , 4D

)A,A,(32∗
)a,a,(32∗

=2a 0,1,2,3,4
=3a 1,3,5,7

1D , 3D , 5D

