
SMS – A Share Memory Service for Web Service Oriented
Applications

Jui-Meng Chen, Jia-Wei Lee, Bo-Fu Shen, and Jung-Sing Jwo
Department of Computer Science and Information Engineering

Tunghai University
Taichung, Taiwan

E-mail: jwo@mail.thu.edu.tw

ABSTRACT

Software as services, or web service oriented application can be treated as the

next evolution technology for implementing dynamic e-Business solutions. The major

advantage of using web services is that they can be considered as loosely coupled

dynamically bound components with great interoperability. However, it becomes

complicated to implement a web service when its states or data are required either to

be passed or to be shared by the other services. In this paper a new service called

Share Memory Service (SMS) is proposed. It provides a mechanism for the services

in a web service oriented application to pass session context and share their data or

objects transparently. Web service oriented applications built upon SMS are called

SMS applications. A set of API for developing SMS applications is also provided. In

this research, we use Java technology to verify our proposed solution. Furthermore, in

order to simplify the coding effort, five new Java pseudo- instructions are introduced.

With these new instructions, developers need not use the API directly when

developing an SMS application. Also the concept of the capability of using global

data and objects in a web service oriented application can simplify the system design

process.

Keywords: web services, SOAP, web service oriented applications, share memory

service, SMS applications

1. INTRODUCTION

The previous major distributed computing technologies adopted in the Internet

e-Business solution, such as CORBA and Java RMI, are considered to be tightly

coupled between the cooperating components. The shared context among these

components should have strong agreement. The drawback with this is that a change to

any component can cause breakage in a variety of dependent applications. This is in

part responsible for the limitations of system development and the high cost of system

maintenance. Therefore, the current trend in the enterprise application space is

moving away from tightly coupled monolithic systems [8-11]. Web services, also

recognized as loosely coupled dynamically bound components, are more likely to

dominate the next generation e-Business applications [1, 3, 5, 8-11].

The concept of web service is an application identified by a URI. Its interfaces

and binding are defined, described and discovered by XML artifacts. It supports direct

interactions with other services using XML based messages via Simple Object Access

Protocol (SOAP) [4]. The advantage of using web services is that they make an

application’s functionality available over the Internet in a standardized and

programmatic manner. Applications that could not be accessed except by following

rigid proprietary protocols are now accessible over the Internet using the same

infrastructure. Furthermore, applications can talk to each other regardless of the

language that they were developed in, the platform they were developed for or the

object models and internal protocols they use.

Software as services, or Web Service oriented Application (WSoA) is a set of

cooperating web services to perform a particular task. The sequence of the service

invocations in a web service oriented application is called a service flow. When

developing a web service oriented application, unlike traditional application, with the

universally agreed specification developers can dynamically integrate the web

services they want and deploy the related web services together to form the

application. In fact, we can treat WSoA as a conceptual architecture for implementing

dynamic e-Business solutions. Undoubtedly, WSoA is the next evolution of the

software architecture.

As we have mentioned in the above paragraph, the major advantage of using

web services is that they can be considered as loosely coupled dynamically bound

components with great interoperability. However, this advantage could create

implementation difficulty when considering the following two issues. The first issue

is related to the state or session context passing across different services in a web

service flow. The second issue is the requirement of sharing global data and objects

among all the services in a web service oriented application. In fact, it becomes

complicated to implement a web service when its objects are required either to be

passed or to be shared by the other services. Also the more objects are shared, the

more parameters in a SOAP message are created. Usually, a large SOAP message is

inconvenient to be handled when implementing a service.

In addition to the above two implementation issues, from the design point of

view, the concept of the capability of using global data or objects in a web service

oriented application indeed can simplify the system design process. Therefore, in this

paper we propose a new service called Share Memory Service (SMS) such that it

provides a mechanism for the services of a web service oriented application to pass

session context and share their data or objects transparently. The web service oriented

applications built upon SMS are called SMS applications. A set of API for developing

the web services in a SMS application is also provided. In this research, we use Java

technology to verify our proposed solution. Furthermore, in order to simplify the

coding effort, five new Java pseudo-instructions are introduced. With these new

instructions, developers need not use the API directly.

This paper is organized as follows. In Section 2, the concept of web services is

discussed. Section 3 introduces the architecture for an SMS application. The

implementation of the solution is given Section 4. We explain the usage of our

solution by an example in Section 5. Section 6 is the conclusion remark of this

research.

2. WEB SERVICES AND SOAP

Web service technology is based on the existing and emerging standards such as

HTTP, XML (Extensible Markup Language), SOAP (Simple Object Access Protocol),

WSDL (Web Services Description Language) and UDDI (Universal Description,

Discovery and integration) [2, 4, 5-7]. For better understanding of the following

sections, we briefly describe the concept of web services in the rest of this section.

A web service can be considered as an interface that describes a collection of

operations that are network-accessible. The service description of a web service is in

standard formal XML notion. It covers the details required for a client or another

service to interact with the service. A service description basically includes the

message format, transport protocol and the location of the service. The architecture of

web services is based on the interactions between three roles – service provider,

service registry and service requestor. Figure 2.1 illustrates how web service works.

We briefly explain them in the following:

?? Service Provider: A service provider hosts its web service and publishes the

service’s definition and binding information to the UDDI registry in

WSDL.

?? Service Requestor: A service requestor is a client program. It first looks up

the service via UDDI and then binds to the service that is hosted by the

corresponding service provider.

?? Service Registry: A service registry is responsible for putting all the service

definition and binding information available to service requestors. It also

requires to manage all the interaction between service providers and service

requestors. SOAP is now the standard for communication between service

requestors and service registry.

?? Publish: This operation helps service provider publishing its service

description to the service registry so that the service requestor can find the

Bind
SOAP

 Publish
 WSDL, UDDI

 Find
WSDL, UDDI

Service
Registry

Service
Requestor

Service
Provider

Service
Description

Service
Description

Service

Figure 2.1 Roles and operations in web service architecture.

service.

?? Find: A service requestor can query the service registry for the type of the

required service by the find operation.

?? Bind: A service requestor can use bind operation to locate, contact and

invoke the requested service.

With the above brief introduction of web services, one more important issue

related to our work that is required to be explained is SOAP. SOAP is a lightweight

protocol for exchanging structured and typed information between peers in a

decentralized and distributed environment. It is an XML based protocol that consists

of three parts:

?? SOAP Envelope: It defines an overall framework for expressing what is

in a message, who should deal with it, and whether it is optional or

mandatory.

?? SOAP Encoding Rule: It defines a serialization mechanism that can be used

to exchange instances of application-defined datatypes.

?? SOAP PRC Representation: It defines a convention that can be used to

represent remote procedure calls and responses.

With the understanding of web services and SOAP, we start to explain our solution

from next section.

3. SMS APPLICATION FRAMEWORK

The basic idea behind SMS application framework is that it can let web services

define shared objects and let other alliance web services transparently access these

objects. SMS application framework consists of three main parts as showed in Figure

3.1. They are SMS, SMS web services and SMS-SOAP. We describe them in the

following:

?? Shared Memory Service

The shared objects of SMS services are actually stored in the SMS memory

space and therefore SMS is responsible for handling the requests of accessing

these shared objects from SMS web services. In order to maintain the correctness

of each request, SMS needs to manage the memory space correctly and

effectively. Also to ensure that the SMS web services always access the right

states of the shared objects, SMS provides a mechanism to maintain the

synchronization of the concurrent operations working upon these shared objects.

Since an SMS application can serve different clients simultaneously, the shared

object stored in SMS should have its own instance for each client. Shared objects

stored in SMS are further divided into two categories. The shared objects that

can be access only by the client that invokes the application is called local

shared objects while the shared objects that can be shared across different clients

are called global shared objects. We will discuss how SMS is implemented in the

coming section.

?? SMS web services:

…
SMS Application

WS1

WS2

WS3

WSn

SMS

client1 client2 clientm

Global shared objects

… …

Local shared objects

…

SMS-SOAP

SOAP

…
SMS Application

WS1

WS2

WS3

WSn

SMS

client1 client2 clientm

Global shared objects

… …

Local shared objects

…

SMS-SOAP

SOAP

WS1, WS2, … , WSn are SMS web services.

Communication links with solid ends are SMS-SOAP.

Figure 3.1. An SMS application framework.

SMS web services are the web services that can share their states and objects to

the other services with the support from SMS. A shared object is declared first by

the web service that owns the object and then it is stored into SMS. The other

services that want to access this shared object also need to declare it for reference.

In order to simplify the invocation of an SMS web service to another SMS web

service such that they interact with each other through shared states or objects,

the invocations between these two SMS web services are in SMS-SOAP which

will be explained next.

?? SMS-SOAP:

An SMS-SOAP is a SOAP protocol that enables states and objects shared by the

two parties of the communication. Also in SMS framework, when web services

invoke each other, the session information is wrapped into the SMS-SOAP

request or response message. This information is required to help SMS

distinguishing the service that triggers it. Clients of an SMS application can

invoke the application simply through standard SOAP message. We will further

illustrate the design of SMS-SOAP in the next section.

SMS provides three different modes to manage the life cycle of the shared states

or objects. They are:

?? NEVER_TIME_OUT: When a shared object is declared as

NERVER_TIME_OUT, its space will not be reclaimed until the SMS web

service invokes the release() method.

?? DEFAULT_TIME_OUT: When a shared object is declared as

DEFAULT_TIME_OUT, it will not be released automatically until the garbage

collector – the default memory manager in SMS reclaims the space. Garbage

collector will not reclaim the space until the write-time or the lease-time of the

shared object are expired.

?? LRU_TIME_OUT: When a shared object is declared as LRU_TIME_OUT, it

will not be released by the garbage collector until the object is recognized as the

one that is least recently used.

4. IMPLEMENTATION

In this section, Java technology is selected to implement the solution. The

example and API are all in Java.

Figure 4.1 is the component diagram of SMS. They are Session Controller (SC),

Memory Binder (MB), Access Controller (AC), and Garbage Collector (GC). We

describe their functionality in the following:

?? SC:

SC is the interface to handle the requests from SMS web services. It verifies the

legality of web services and checks for the Session ID. When a web service

sends a request to SMS, Web Service Verifier will first verify if the web service is

a legal one to prevent web service from being imitated. The information of the

legal web service is stored in Web Service Registry. If SMS is invoked by a new

service in the first time, UID Generator will give the service a unique Session ID.

SMS web services can use SOAPMessageProcessor API listed in APPENDIX A

to retrieve the Session ID. Request Processor then cooperates with MB to get the

default shared virtual memory. SMS web services can use the unique Session ID

and the EntryInfo API listed in APPENDIX A to access the shared objects.

?? MB:

MB is responsible for initializing the shared virtual memory for the newly

declared shared objects. It also helps binding the shared objects to the services

according to the Session ID and EntryInfo.

?? AC (Access Controller):

Since shared objects can be accessed by various services at the same time,

Access Synchronizer should guarantee the concurrency control among shared

objects and the services are performed correctly.

?? GC (Garbage Collector):

GC is in charge of the reuse of the shared virtual memory. It releases the space
by following the life cycle mode of the shared objects.

When a client invokes an SMS application, the unique session ID which is

wrapped into SMS-SOAP message is passed through every web service that the client

has invoked. Since each SMS web service can retrieve the session ID from

SMS-SOAP message, the session tracking problem among SMS web services can be

easily handled. Figure 4.2 shows a fragment of an example SMS-SOAP message. In

this example, session tag is used to identify the session and its legal time.

WSoA

Shared Memory Service (SMS)

Local Shared
Object Repository

Access Controller

Session Controller

UID
Generator

Web Service
Verifier

Garbage Collector

Memory Binder
Access

Synchronizer

Web Service
Registry

Global Shared
Object Repository

Request
Processor

WSoA WSoA

Request / Response

. . .

shared virtual memory space

WS1

Shared Memory Service (SMS)

Local Shared
Object Repository

Access Controller

Session Controller

UID
Generator

Web Service
Verifier

Garbage Collector

Memory Binder

Access

Synchronizer

Web Service
Registry

Global Shared
Object Repository

Request
Processor

WS2 WSn . . .

Figure 4.1. SMS component diagram.

...
Content-type: multipart/mixed; boundary="simple boundary"

--simple boundary
Content-type: text/xml; charset="utf-8"
<session>

<id>WSSMS7810i98</id>
<created-time>January 1,2002,00:00:00 GMT</created-time>
<expired-time>January 1,2002,12:00:00 GMT</expired-time>

</session>
--simple boundary--
Content-type: text/xml; charset="utf-8"
//customer XML SOAP message
...

Figure 4.2 Fragment of an example SMS-SOAP message.

When developing SMS web services, a set of Java SMS API is provided by our

solution. This set of API is given in APPENDIX A. We briefly describe the API as

follows. SOAPSession is the API to help encapsulate and retrieve session information

into and from SMS-SOAP messages respectively. SOAPMessageProcessor is

responsible for creating and retrieving SMS-SOAP messages. SMSContextFactory is

used to produce SMSContext. SMS web services can use SMSContext to lookup the

corresponding SMS that is published in UDDI-compliant registry. EntryInfo is used to

record the description of the shared states and objects. It includes the information

about whether the object is a global shared object or a local shared object, the name of

the shared object, and the life cycle of the shared object. SMS web services can use

SharedMemoryService to bind, read and write to the shared objects described in

EntryInfo. In this API, three exceptions are provided. They are

SMSInternalException – to indicate SMS runtime exception, ReadException – to

indicate the shared object is unreadable, and WriteException – to indicate the shared

object cannot be updated currently.

In order to simply the coding effort, five new Java pseudo-instructions are

introduced. With these new instructions, developers need not use the API directly. The

first instruction is called GetSOAPSession. It is used to retrieve the session

information from SOAP messages. SetSOAPSession instruction is used to embed

session information into SOAP messages. ExternDef instruction is used to define the

global or the local shared objects. For a local shared object, the instruction is followed

by the type’s name and the variable’s name. If a global shared object is defined,

another web service name needs to be indicated. When a service wants to read a

shared object, it needs to use ExternRefR to declare the reference. To refer a local

shared object, type name and variable name should be included. When referring

global shared object, another service name in a square bracket should be included.

When using global shared objects, a sharp-sign (#) is required to be added in front of

the global variable name. The final instruction is called ExternRefW. It is used to

update a shared object. The syntax of this instruction is much similar to EnternRefR.

However, the implementation of ExternRefW needs to handle the possible

concurrency control problem.

5. SMS APPLICATION EXAMPLE

In this section, we use a simple online shopping example to illustrate how to use

SMS framework to build a web service oriented application. In the application, users

can invoke PaymentService, UserRegistryServcie, and UserShoppingService three

services to do online shopping. UserRegistryService is responsible for adding,

deleting, modifying, and presenting a user’s information. UserShoppingService is

responsible for recoding the items, the price, and the quantity a user has purchased.

PaymentService creates the bill for the user.

Figure 5.1 shows this example as a web service oriented application without

using SMS. In this scenario, PaymentService sends SOAP message to

UserRegistryService to request user’s information. PaymentService also sends SOAP

message to UserShoppingService to get the items in the user’s shopping cart. When

receiving the SOAP messages returned from UserRegistryService and

UserShoppingService, PaymentService creates the bill for user to confirm.

Figure 5.2 is the same story implemented as an SMS application.

UserRegistryService and UserShoppingService store the information into the shared

virtual memory via SMS. Instead of sending SOAP messages to UserRegistryService

and UserShoppingService to request the required information, PaymentService can

directly access the shared objects defined by UserRegistryService and

UserShoppingService. That is, PaymentService can transparently access these objects.

It is quite obvious that using SMS application framework to build this example is

much more trivial and easier than only using web services since more SOAP

messages required to be processed.

UserRegistryService

UserShoppingService

PaymentService

1. get the user ’ s information
2.get the user ’ s shopping - cart items.

checkout
client

checkout
send SOAP Message to
get user ’ s information.

send SOAP Message to
get user ’ s shopping - cart items.

UserRegistryService

PaymentService

1. ’
’ -

3.create the bill for user to confirm.

1. ’
’ -

client client

checkout
send SOAP Message to
get user ’ s information.

send SOAP Message to
get user ’ s shopping - cart items.

Figure 5.1. Example as a web service oriented application without using SMS.

The partial code of the SMS application implementation for Figure 5.2 is listed

in Figure 5.3. Figure 5.3 also displays the Java codes such that the pseudo- instructions

are translated.

6. CONCLUSION

In this paper a new web service application framework has been proposed. With

share memory service (SMS), web service oriented applications can be easily

designed and implemented. In fact, SMS application framework can dramatically

decrease the complexity of sharing the states and objects among web services. SMS

also can work with the current web services without too much modification. The

performance of our implementation requires further evaluation.

UserRegistryService UserShoppingService PaymentService

userInfo

userShoppingCart

share share

1. get the user ’ s information
2.get the user ’ s shopping - cart items.
3.create the bill for user to confirm.

Use transparently

Use transparently

checkout

client

UserRegistryService UserShoppingService PaymentService

userInfo userInfo 1. get the user ’ s information
2.get the user ’ s shopping - cart items.

checkout

1. get the user ’ s information
2.get the user ’ s shopping - cart items.

Use transparently

checkout

client client

shared virtual memory space
Figure 5.2. Example as an SMS application.

//web service lookup the SMS service
SharedMemoryService service=null;
SMSContext ctx=SMSContextFactory.getInstance().getContext();
service=ctx.lookup(“SharedMemoryService”);
service.bind(session.getSessionID());
try{

UserInfo info=null;
Cart cart=null;
EntryInfo i_info=new EntryInfo(“info”,”UserInfo”);
info=(UserInfo)service.read(i_info);
EntryInfo i_cart=new EntryInfo(“cart”,”Cart”);
cart=(Cart)service.read(i_cart);

System.out.println(info.getInfo());
System.out.println(cart.getItems());

}catch(Exception e)
{

if(e instanceof ReadException)
System.out.println(“Can’t Read!”);
elseif(e instanceof SMSInternalException)
System.out.println(“SMS Error”);

}

//Read local shared object
ExternRefR UserInfo info,Cart cart{

//programming block
System.out.println(info.getInfo());
System.out.println(cart.getItems());

}
catch(Exception e)
{

//exception block
if(e instanceof ReadException)
System.out.println(“Can’t Read!”);
elseif(e instanceof SMSInternalException)
System.out.println(“SMS Error”);

}

Transform

//web service lookup the SMS service
SharedMemoryService service=null;
SMSContext ctx=SMSContextFactory.getInstance().getContext();
service=ctx.lookup(“SharedMemoryService”);
service.bind(session.getSessionID());
try{

UserInfo info=null;
Cart cart=null;
EntryInfo i_info=new EntryInfo(“info”,”UserInfo”);
info=(UserInfo)service.read(i_info);
EntryInfo i_cart=new EntryInfo(“cart”,”Cart”);
cart=(Cart)service.read(i_cart);

System.out.println(info.getInfo());
System.out.println(cart.getItems());

}catch(Exception e)
{

if(e instanceof ReadException)
System.out.println(“Can’t Read!”);
elseif(e instanceof SMSInternalException)
System.out.println(“SMS Error”);

}

//Read local shared object
ExternRefR UserInfo info,Cart cart{

//programming block
System.out.println(info.getInfo());
System.out.println(cart.getItems());

}
catch(Exception e)
{

//exception block
if(e instanceof ReadException)
System.out.println(“Can’t Read!”);
elseif(e instanceof SMSInternalException)
System.out.println(“SMS Error”);

}

Transform

Figure 5.3. Pseudo- instruction and its translation.

REFERENCES

[1] C. Adam, “Why Web Services,”
URL:http://www.webservices.org/index.php/article/articlestatic/75, 2002.

[2] Ariba, IBM, Microsoft, “UDDI: White papers,”
URL:http://www.uddi.org/whitepapers.html, 2001.

[3] A. Bosworth, “Developing Web services,” Proceedings of 17th International
Conference on Data Engineering, 2001, pp.477-481.

[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1”,URL:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, 2000.

[5] E. Castro-Leon, “A perspective on Web Service,”
URL:http://www.webservices.org/index.php/article/articleprint/113/-1/3/, 2002.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services
Description Language (WSDL) 1.1,”
URL:http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
“Unraveling the Web services web: an introduction to SOAP, WSDL, and
UDDI,” IEEE INTERNET COMPUTING, Vol. 6, Issue 2, 2002, pp.86-93.

[8] D. Gisolfi, “Web services architect: Part 1 An introduction to dynamic
e-business,” URL:
http://www-106.ibm.com/developerworks/webservices/library/ws-arc1/, 2001.

[9] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to Web services
architecture,” IBM SYSTEMS JOURNAL, Vol. 41, NO 2, 2002, pp.170-177.

[10] IBM Web Services Architecture Team, “Web Service architecture overview The
next stage of evolution for e-business,”
URL:http://www-106.ibm.com/developerworks/webservices/library/w-ovr/,
2000.

[11] H. Kreger, “Web Services Conceptual Architecture (WSCA 1.0),”
URL:http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf,
2001.

APPENDIX A. SMS API

EntryInfo

+EntryInfo(String objName ,String class)
+EntryInfo(String objName ,String class,
Int memoryManagementType, long leaseTime)
+EntryInfo(String objName ,String class,
String webServiceName)
+EntryInfo(String objName ,String class,
String webServiceName,
Int memoryManagementType, long leaseTime)
+getObjectName():String
+getClassName():String
+getMemoryManagementType():int
+getLeaseTime():long
+isGlobal():boolean

SOAPSession

+getSessionID():String
+getCreatedTime():String
+getExpiredTime():String

SOAPMessageProcessor

+getSession(SOAPMessage): SOAPSession
+setSession(SOAPMessage,SOAPSession):void

SharedMemoryService

+bind(String sessionID):void
+read(EntryInfo):Object throws ReadException,
SMSInternalException
+write(EntryInfo,Object) throws WriteException,
SMSInternalException

SMSContext

#init(Hashtable env):void
+getEnvironment ():Hashtable
+lookup(String SMSName):
SharedMemoryService
+register(String webServiceName):void

SMSContextFactory

+getContext():SMSContext
+static getInstance():SMSContextFactory

SMSInternalException

ReadException

WriteException

EntryInfo

+EntryInfo(String objName ,String class)
+EntryInfo(String objName ,String class,
Int memoryManagementType, long leaseTime)
+EntryInfo(String objName ,String class,
String webServiceName)
+EntryInfo(String objName ,String class,
String webServiceName,
Int memoryManagementType, long leaseTime)
+getObjectName():String
+getClassName():String
+getMemoryManagementType():int
+getLeaseTime():long
+isGlobal():boolean

SOAPSession

+getSessionID():String
+getCreatedTime():String
+getExpiredTime():String

SOAPMessageProcessor

+getSession(SOAPMessage): SOAPSession
+setSession(SOAPMessage,SOAPSession):void

SharedMemoryService

+bind(String sessionID):void
+read(EntryInfo):Object throws ReadException,
SMSInternalException
+write(EntryInfo,Object) throws WriteException,
SMSInternalException

SMSContext

#init(Hashtable env):void
+getEnvironment ():Hashtable
+lookup(String SMSName):
SharedMemoryService
+register(String webServiceName):void

SMSContextFactory

+getContext():SMSContext
+static getInstance():SMSContextFactory

SMSInternalException

ReadException

WriteException

