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Abstract 

This paper presents a technical incremental speaker adaptation method called 

FCMAP, which incorporated an appropriate fuzzy controller into maximum a 

posteriori (MAP) to adapt the hidden Markov model parameters. The recognition 

performance of MAP is consistently improved and stabilized by an appropriate fuzzy 

controller. The recognition results obtained in unsupervised adaptation experiments 

showed that FCMAP estimation was effective even when only few utterances from a 

new speaker were used for adaptation. 
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1. Introduction 

Many techniques compensating the degradation caused by mismatches between 

the training and test condition have been developed. They are roughly grouped into 

two categories, namely 1) feature compensation (Lee, 1998), in which the process of 

feature extraction is modified and 2) model adaptation (Gauvain and Lee, 1994; 

Leggetter and Woodland, 1995), in which the parameters of recognition models are 

adjusted. Although combining these two techniques has been shown effective (Sankar 

and Lee, 1996), we focus our discussion in the present study on model adaptation. 

Model adaptation techniques are an efficient way to reduce the mismatch that 

typically occurs between the training and test condition of any speech recognizer. 

Adaptation techniques can usually be divided into two families of approaches. On one 

hand, direct model adaptation attempts to directly reestimate the model parameters, 

for example using Maximum a posteriori (MAP) adaptation (Gauvain and Lee, 1994; 

Zavagliogkos et al., 1995). Since direct adaptation only reestimates model parameters 

of the corresponding units appearing in the adaptation data, a large amount of such 

data is needed to observe any significant improvement in performance. However, nice 

asymptotic properties are usually observed, meaning that the performance improves 

as the amount of adaptation data increases. On the other hand, indirect model 

adaptation (Maximum Likelihood linear Regress, MLLR) (Leggetter and Woodland, 

1995) applies a general transformation on some clusters of model parameters. 
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Because each individual model is transformed, the approach is quite effective when a 

small amount of adaptation data is available. However, as the amount of adaptation 

data increases, the performance improvement quickly saturates. 

MAP estimate has been successfully applied to speaker adaptation in speech 

recognition system using hidden Markov models. When the amount of data is 

sufficiently large, MAP estimation yields recognition performance as good as that 

obtained using maximum-likelihood estimation. This paper describes a fuzzy 

controller application to maximum a posteriori approach to improve the MAP 

estimates obtained when the amount of adaptation data is small. The adaptation 

scheme is described in more detail in the following section, and is shown to be 

capable if giving reasonable improvements in performance with a very little amount 

of adaptation data. In section 2, the theoretical formulation of the MAP estimation is 

briefly described. Next, we introduce a fuzzy controller algorithm for adjusting the 

parameter of the MAP estimation (FCMAP) in section 3. The effectiveness of the 

FCMAP algorithm was demonstrated in a set of unsupervised adaptation experiments. 

We report on experimental results with different adaptation scenarios in section 4. 

Finally, we summarize our findings in section 5. 

 

2. Overview of MAP estimation 
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A Bayesian adaptation training procedure has been applied with good success for 

model-based recognizers using continuous density hidden Markov model (CDHMM). 

Speaker adaptation of the CDHMM parameters can usually be formulated as a 

Bayesian learning procedure. Besides, a Bayesian learning procedure (Lee et al., 1991) 

is easily integrated into the segmental k-means training procedure (Juang, 1990) for 

obtaining adaptive estimates of the CDHMM parameters (Rabiner et al., 1986; Lee et 

al., 1991). 

The segmental k-means algorithm with embedded Bayesian adaptation consists 

of the following two steps: 

1) Obtain the optimal state segmentation of a given observation sequence Y, based on 

a given model , i.e., λ̂

)ˆ()ˆ| ,( maxargˆ 0 λλ PsYPs
s

=                                          (1) 

where  is the prior distribution of the parameter  )ˆ(0 λP λ̂

2) Based on the optimal state sequence , find the MAP estimate ŝ

)()|ˆ,( argmaxˆ
0 λλλ

λ
PsYP= .                                         (2) 

These two steps are iterated until some fixed-point solution is reached. 

As usual, when adapting parameters of CDHMMs, it is more effective and 

simplificative to adapt the mean vectors of Gaussian distributions only than other 

parameters such as the variance, transition probability, and so on. Thus, in this paper, 
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only Bayesian adaptation of the mean of Gaussian mixture is utilized. Let µ and  

be the mean and the variance parameters of one component of a state observation 

distribution. Assume the mean 

2σ

µ  is random with a priori distribution )(0 µP , and 

the variance  is known and fixed. The conjugate priori for 2σ µ  is also Gaussian 

with mean ν  and variance . If the conjugate priori for the mean is utilized to 

perform the Bayesian adaptation, then the MAP estimate for the parameter is solved 

by (Duda and Hart, 1973) 
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which could be alternatively expressed as follows by (Tonomura et al., 1995) 
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where  is the sample mean of the pm p -th Gaussian distribution,  is theI
pµ p -th 

mean vector of the Gaussian distribution of the initial model, pµ̂  is the p -th mean 

vector of the Gaussian distribution of the adapted model,  is the total number of 

training samples observed for the corresponding Gaussian mixture component , and 

n

τ  is the relative balance between the a priori knowledge and empirical data. 

 

3. A fuzzy controller application (FCMAP) 

In Eq. (4), the parameter τ  is regarded as the control parameter for the 

adaptation speed (Takahashi and Sagayama, 1995). When τ  is large, the priori 
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density is sharply peaked around the values of the seed HMM parameters which will 

be only slightly modified by the adaptation process. Conversely, if τ  is small the 

adaptation will be very fast. The parameter τ  is a priori density parameter that 

controls the balance between prior information and the new training data. Eq. (4) 

shows in such a way that the estimated mean vector is obtained as the interpolated one 

using the initial mean weight by τ  and the sample mean weighted by the effective 

sample counts n. In the literature (e.g. Lee and Gauvain, 1993), they used a common 

value τ  for all the Gaussians of a given state, or for all states of an HMM, or even 

for all HMMs. In our motivation, to further increase the robustness, the τ  value can 

be modified according to the amount of adaptation data. Therefore, a fuzzy controller 

was utilized to determine the appropriate τ , and it is described as follows. The input 

of the fuzzy controller is N , which is the total number of the training samples 

observed for all Gaussian mixture components. 

  Rule 1: If N  is small,  

        Then τ  is large. 

  Rule 2: If N  is medium,  

        Then τ  is medium. 

  Rule 3: If N  is large,  

        Then τ  is small. 
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Now, let three respective functions and be suitably 

designed functions corresponding to 

 ),( ),( 21 NfNf )(3 Nf

Lτ , Mτ , and Sτ , and , and 

be the corresponding membership functions of 

 )(1 NM  )(2 NM

 )(3 NM N  for small, medium, and 

large training samples, respectively. The above-mentioned inference rules then 

become: 

  Rule 1: If N  is ,  )(NM1

1L        Then )(Nf=τ . 

  Rule 2: If N  is ,  )(NM 2

2M        Then )(Nf=τ . 

  Rule 3: If N  is ,  )(3 NM

        Then )(3 NfS =τ . 

Given an input N , the final output τ  of the fuzzy system is inferred and 

defuzzified as follows 
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4. Experiments and results 

4.1 Database and System Description 

This section summarizes the results of various experiments that were conducted 

to evaluate the proposed FCMAP algorithm. New adaptation and testing data from 
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five nonnative male speakers (labeled as A, B, C, D, and E) were recorded 

simultaneously under a close-talking microphone. The data for adaptation consisted of 

30 utterances from each speaker. For testing, we collected from each speaker 60 

utterances uttered twice for 30 city names. The speech signal was sampled 8kHz and 

the analysis frames were 30-ms wide with a 20-ms overlap. For each frame a 24 

dimensional feature vector was extracted. The feature vector for each frame consisted 

of a 12-dimensional (12-D) mel-cepstral, a 12-D delta-mel-cepstral vector. 

Speaker-independent HMMs were trained using the MAT400 (Wang, 1997) training 

set consisting of 4800 utterances from native Mandarin talker (184 females and 216 

males), each providing 12 utterances. For recognition, we used a set of 146 

context-dependent sub-syllable HMMs. All units had three states (for initial part) or 

six states (for final part). 

Experiments were focused on investigating how the performance improvement 

and adaptation speed are changed by the value of the parameterτ in word-by-word 

incremental speaker adaptation. The value of 30 for τ  was used in the conventional 

MAP. The appropriate value of τ  was chosen according to the amount of adaptation 

data in the proposed FCMAP approach.  

  The membership functions of the designed fuzzy controller are detail described as 

follows (Fig. 1): 
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where a, b and c are some suitably chosen integers. 

4.2 Results 

Fig. 2 shows adaptive learning curves of the proposed FCMAP and conventional 

MAP. The average recognition rates are plotting along the adaptive word counts from 

2 to 30. The performance of FCMAP and MAP (in the case of 30=τ ) is compared in 

Table 1 for isolated word recognition. The performance of FCMAP increased rapidly 

for all sizes of adaptation data and for all the speakers. Nevertheless, in conventional 
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MAP, the word recognition performance tended to degrade slowly to beneath the 

baseline of the initial models from about 2 words to 22 words and was nearly equal to 

the baseline form about 26 words. The FCMAP method showed better recognition 

accuracy than that obtained with the conventional MAP not only when the amount if 

data was large but also when the amount data was small. This is probably because 

parameter estimation was more robust than that in MAP, since a fuzzy controller was 

used. The results show that not only did an appropriate fuzzy controller accelerate the 

adaptation speed of the MAP but also improve and stabilize performance by the 

proposed FCMAP. 

 

5. Conclusion 

   The FCMAP method for adaptation of hidden Markov model parameters enhances 

the performance of the conventional MAP method when the amount of data is small 

by utilizing an appropriate fuzzy controller. Its effectiveness was confirmed in a set of 

recognition experiments. The fuzzy controller improves and stabilizes the recognition 

performance of the conventional MAP. The proposed FCMAP method is simple to 

process and requires no pooling of the adaptation data. 
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Fig. 2. Adaptive learning curves in word recognition. 
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Table 1 
Recognition rates (%) of each speaker obtained by using conventional MAP (τ was set 
30) and FCMAP. 
 

Recognition rate (%) 

Number of utterance for adaptation Speaker 
Adaptation 

Method 
0 2 6 10 14 18 22 26 30 

FCMAP 90 90 90 90 93.33 95 96.67 98.33
A 

MAP 
90 

53.33 38.33 48.33 68.33 81.67 86.67 90 93.33

FCMAP 90 90 90 90 90 91.67 95 100
B 

MAP 
90 

75 73.33 75 81.67 88.33 93.33 91.67 96.67

FCMAP 91.67 91.67 91.67 91.67 93.33 91.67 93.33 95 
C 

MAP 
91.67 

83.33 75 70 71.67 83.33 88.33 90 96.67

FCMAP 93.33 95 95 95 93.33 95 96.67 100
D 

MAP 
93.33 

81.67 85 81.67 80 88.33 88.33 91.67 95 

FCMAP 90 91.67 91.67 91.67 93.33 91.67 93.33 96.67
E 

MAP 
90 

86.67 85 86.67 86.67 93.33 88.33 93.33 98.33

FCMAP 91 91.67 91.67 91.67 92.66 93 95 98 
Average 

MAP 
91 

76 71.33 72.33 77.67 87 89 91.33 96 

 

  


