
 1

A Hybrid Based Texture Synthesis Approach 

Workshop on Multimedia Technology 

 

Chang-Hsing Wu, Yueh-Yi Lai, and Wen-Kai Tai* 
Department of Computer Science and Information Engineering 

National Dong Hwa University 
  

wkdai@mail.ndhu.edu.tw 
 

+886-3-8662500 ext.22118 
Fax: +886-3-8662781  

1, Sec. 2,Da Hsueh Rd., Shou-Feng, Hualien,  
974 Taiwan, Republic of China 

Abstract 

 We present a texture synthesis approach that works well for a wide variety of tex-

tures without any knowledge of their physical information processes, especially well-suited 

for natural textures. Our approach starts from extending a sample texture and then pastes 

patches into the output texture, forming an inverted U-shaped for initialization. Finally, we 

generate synthetic texture of arbitrary size. Also, we accelerate the synthesizing process us-

ing the Approximate Nearest Neighbor technique. As the experimental results shown, so the 

proposed approach is effective and efficient. 

Keywords: Computer Graphics, texturing, texture synthesis 



 2

1. Introduction 

Texture is a ubiquitous visual experience. It describes a wide variety of surface charac-

teristics such as terrain, plants, minerals, fur, skin, and so forth. Since reproducing detailed 

surface appearance is important to achieve visual realism in rendered-images, textures are 

commonly employed when we render synthetic images. A texture can be used to modulate 

various surface properties, including color, reflection, transparency, or displacements. Tex-

tures can be obtained from a variety of sources such as hand-draw pictures, scanned photo-

graphs, and procedural texture synthesis. Texture synthesis is an alternative way to create 

textures. Because synthetic textures can be made any size, visual repetition is avoided. Tex-

ture synthesis can also produce tileable images by the way we properly handling the 

boundary conditions. 

A texture synthesis approach that we proposed can effectively synthesize a wide vari-

ety of textures. First, our approach extends the input sample texture, then adopt Liang’s al-

gorithm [6] to past patches into the output texture, forming an inverted U-Shape for initiali-

zation. Finally, the output texture is filled using L-Shape method of Ashikhmin’s algorithm 

[2]. 

The major contributions of our approach are summarized as follows: 1) We combine 

the advantages of Ashikhmin’s algorithm [2] and Liang’s algorithm [6] to generate textures 

with better perceived quality. 2) Our approach eliminates the short horizontal edges ap-

peared in the output texture of Ashikhmin’s algorithm [2] by extending the input texture. 3) 

Pasting an inverted U-shape into the output texture as elementary synthesizing basis, our 

approach is even more suitable for synthesize Photographic pseudo-periodic textures, be-

cause of reserving the global information of the input texture. 

The rest of this paper is organized as follows. In Section 2, we review previous related 

works. In Section3, we present our approach and acceleration technique. We show and dis-



 3

cuss the results of our works in Section 4. Finally, in Section 5, we conclude and give some 

possible extensions of this work. 

2. Previous Works 

Numerous approaches have been proposed for texture analysis and synthesis. In this 

section, we briefly review some recent and representative works. There are two mainly 

strategies used by the current texture synthesis algorithm. The first strategy is to compute 

global statistics in feature space and thereby sample images from the texture ensemble di-

rectly on a large image lattice. The second strategy is to compute local conditional Gibbs 

distributions and thus synthesize pixels incrementally. 

Algorithms using first sampling strategy include De Bonet [3] and Heeger [4]. When 

using this strategy one samples texture from an ensemble, and usually one may sacrifice the 

effectiveness for speedy synthesis or for ease of sampling. Algorithms using the second 

sampling strategy include Wei [9], Ashikhmin [2], Xu [10], and Liang [6]. These methods 

used L2 distance to determine the similarity of two neighborhoods N(p1) and N(p2). The L2 

distance is a sum over all pixels in the neighborhood of squared differences of pixel values 

at a particular position. 

Wei and Levoy [9] proposed an algorithm, which starts with an input texture sample Ia 

and a white random noise Is. Pixels in the output image are assigned in a raster scan order. 

The value of each output pixel p is determined by comparing its spatial neighborhood N(p) 



 4

with all neighborhoods in the input texture. The pixel with the most similar neighborhood 

will be assigned to the corresponding output pixel. Unfortunately, this approach inevitably 

produces seams between individual texture patches and the technique either uses a fallback 

algorithm to fill in transition regions or simply blurs the seams.  

Ashikhmin [2] proposed a simple texture synthesis algorithm that is well suited for a 

specific class of naturally occurring textures. The key observation is that at a given step 

during the [9] synthesis process, pixels in the input sample with neighborhoods similar to 

shifted current neighborhood in the output image. This algorithms assume that pixels from 

the input sample that are appropriately “forward-shifted” with respect to pixels already used 

in synthesis are well-suited to fill in the current pixel. This technique is simple, easy to im-

plement, and efficient and produces good visual results, but is not well-suited for temporal 

texture synthesis in most cases. 

Liang [6] proposed a patch-based method. The patch-based sampling algorithm uses 

texture patches of the input sample texture Iin as the building blocks for constructing the 

synthesized texture Iout. The patch-based sampling algorithm is fast and it makes 

high-quality texture synthesis a real-time process. And it works well for a wide variety of 

textures ranging from regular to stochastic. But this method could not synthesize the texture 

have the interrupted object boundaries or any other high-frequency features. 



 5

3. Hybrid Based Texture Synthesis Approach 

Our hybrid based texture synthesis approach combines the algorithm of Ashikhmin [2] 

and Liang [6]. First, we extend the input image to eliminate the problem of short horizontal 

edges. Second, we paste patches into the output texture for initialization, forming an in-

verted U-Shape. Third, the pixels in the output texture are then filled according to 

Ashikhmin’s algorithm [2]. Moreover we use the ANN technique to accelerate the search of 

nearest boundary zones. 

3.1 EXTENDING THE INPUT IMAGE 

Ashikhmin’s algorithm [2] makes some short edges obviously appear in the output 

texture Io. Because it tends to grow patches starting from some position in the input sample 

texture Ii and continuing to drop down to the bottom of the input sample texture, as shown 

in Figure 1, and patches them reconnect to the top of the input sample texture, as shown in 

Figure 2(a). For that, we propose a method to eliminate this obviously boundary edge by 

connecting the bottom and left ends of the input sample texture to someplace in itself seam-

lessly, as shown in Figure 2(b). Following steps are performed before we synthesize an 

output image. 

(a) As shown in Figure 3(a), we use the boundary zones [6] of the input sample tex-

ture to find the best match patch Bi(x,y) from the input sample texture.  

(b) Paste the best match patch Bi(x,y) in such a way that overlays the boundary zones 



 6

of the input sample texture, as shown in Figure 3(b). 

(c) Update the array of original position in the input sample texture in accordance 

with coordinates of pixels of the patch Bi(x,y). 

(d) Repeat steps (a), (b) and (c) until the input sample texture is extending com-

pletely, as shown in Figure 3(c).  

The patch-size of extended sample texture, Sw , must be larger than the size of 

L-Shape, Lw , because L-Shape maybe slide into the bottom of the input sample texture Ii at 

the synthesis phase. The patch-size of extended sample texture, Sw , affects how well the 

synthesized texture keeps the local characteristics of the input sample texture Ii without 

fracture. For an input texture of size ii hw × , the patch size, Sw , should be ),min( iiS hww λ= , 

where 10 << λ . We always set Sw  is the scale of the texture feature. Unless stated other-

wise, all examples are generated with λ  values between 0.25 and 0.5. 

 

 

Figure 1. Region-growing: boundaries of texture pieces are marked white. 

 



 7

 

          (a)                        (b) 

Figure 2. (a) The L-Shape wraps to the top of the input sample texture. 
(b) The L-Shape reconnects to some where in the input sample texture. 

 

3.2 SYNTHESIZING PROCESS 

Generally, as Wei [9] and Ashikhmin [2], the first step is to initialize the output image 

to random noise with a histogram which is equal to the input image. However, random noise 

leads output image to lose more global information. Because the patches can provide more 

correct global information for growing pieces, we instead use [6] to paste patches into the 

(a)                      (b)                         (c) 
Figure 3. (a) Find the best patch which search from the input sample texture to connect 
the input image. (b) Continue finding the best match patch to paste. (c)The extended input 
sample texture. 



 8

output texture Io. The initialization steps of our algorithm proceeds as follows. 

a) Randomly choose a BB ww ×  texture patch Bi(x,y) from the input sample texture 

Ii, and paste Bi(x,y) at the top left corner position (0,0) of the output texture Io. 

Patch Bi(x,y) becomes the patch Bo(0,0) in the output texture.  

b) As shown in Figure 4(a), Bo(0,0) has a boundary zone E{Bo(0,0)}. We use 

E{Bo(0,0)} to find the best match in the input sample texture Ii. 

c) The best match Bi(x,y) has a boundary zone E{Bi(x,y)} that has the minimum dis-

tance from E{Bo(0,0)}. We paste patch Bi(x,y) into the output texture Io. 

d) Repeat steps (b) and (c) until the top row of the output texture is fully covered, as 

shown in Figure 4(b). 

e) As shown in Figure 4(c) and (d), we paste the left and right columns using the 

same process like steps (b) and (c). 

The patch-size, Bw , must be larger than the size of L-Shape, Lw  to ensure that the 

L-Shape is fully inside the inverted U-Shape. The width of boundary zone should be suffi-

ciently large to avoid mismatching features across patch boundaries. The width of the 

boundary zone is typically four pixels wide in our experiment. 

When the initialization process is done, we have an instance of output textures as 

shown in Figure 5. We also update the array of original position in accordance with the 

output texture Io. After pasting an inverted U-Shape in the output texture Io for initialization, 



 9

we will fill the output texture according to Ashikhmin [2] which slides an L-Shape 

neighborhood of a specific (fixed) size pixel by pixel in the raster scan order. The synthe-

sizing process proceeds as follows. 

 

            
(a)                              (b) 

            
                   (c)                             (d) 
Figure 4. synthesizing an inverted U-Shape. The grey area is already synthesized. 
(a)Randomly choose a patch, and pastes it into Io at the top left corner. Then, find a patch 
Bi(x,y)such that the boundary zones E{Bi(x,y)} is the best match E{Bo(0,0)},and the best 
match patch Bo(x,y) is pasted and overlapped boundary zone E{Bo(0,0)} of the patch 
Bo(0,0). (b)The best patch Bi(x,y) is chosen from the input sample texture. The patch 
Bi(x,y) pastes into the output texture until the top row of the output texture is fully pasted. 
(c)(d) The best patch Bi(x,y) is chosen from the input sample texture, and pastes into the 
output texture for left most column. 



 10

 
 
 
 
 
 
 
 
 

 

(a) For the pixel that centers on the L-Shape to be filled, we use each pixel of the 

L-Shaped neighborhood in the output texture Io to find the candidate L-Shapes in 

the input sample texture Ii using the array of original position. Location of the 

candidate pixel is appropriately shifted. All candidate L-Shapes generate the can-

didate pixels as shown in Figure 6.  

(b) Remove duplicate candidates if candidate pixels are the same pixel in the input 

sample texture.  

(c) Compute the L2 distance for every candidate L-Shape with respect to the current 

L-Shape in the output texture Io, and choose the best candidate L-Shape that has 

the minimum distance.  

(d) Copy the best candidate pixel that centers on the best candidate L-Shape into the 

current pixel in the output texture Io.  

(e) Finally, save original coordinate of the best candidate pixel in input sample tex-

ture to the array of original position. 

 

Figure 5. An instance of inverted U-Shape in the output image. 



 11

(f) Repeat this process, (a) - (f), until all pixels of the output texture are fully filled.  

The size of L-Shape, Lw , affects how well the synthesized texture. It is set according 

to the feature of the input sample texture. In this article, all the experimental results are 

generated with Bw = 1111× . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 ACCELERATION 

Searching for nearest boundary zones is the major computation in our synthesis algo-

rithm. We treat the boundary zone of a patch as high-dimensional points, and the boundary 

 

Figure 6. Creating candidate pixels. Each pixel of the current L-Shaped 
neighborhood generates candidate L-Shapes of the input sample texture Ii 
according its original position (hatched). Most pixels of the current 
L-Shaped neighborhood always point to the same candidate L-Shaped of the 
input sample texture Ii. We create candidate list and compute distance be-
tween current L-Shape and candidate L-Shape. Choosing a candidate pixel 
which has the minimum distance between two L-Shapes, and copy it into the 
current pixel. 



 12

zone matching process is considered as a nearest-point searching problem. So we can accel-

erate the search by using the Approximate Nearest Neighbor (ANN [7]) technique. We build 

a kd-tree for each one of the two boundary zone configurations in the input texture. In order 

to find approximate nearest neighbors, we search the kd-tree, and obtain some candidates. 

We choose the best match of high-dimensional point from the candidates, and paste it into 

the output texture. 

3.4  DISCUSSIONS 

We use Liang [6] to find the starting growing point of every piece without shift. Our 

algorithm created output texture by merging irregular pieces, and it merges every one of ir-

regular pieces seamlessly. Therefore, our algorithm is especially well-suited for naturally 

occurring textures and can be applied to synthesize a wide variety of textures effectively. 

We will classify sample textures and demonstrate results by our algorithm in next section. 

However, because Liang’s [6] is unable to find the best patches while extending the input 

sample texture, our method in few cases may appear seams at obvious feature in the output 

texture. 



 13

4. Experimental Results 

We have tested our approach using many kinds of images from standard texture sets 

(web site http://www.cns.nyu.edu/~eero/texture/). All the experimental results are computed 

on a 667MHz Pentium III with 256 MB SDRAM. To compare quality with current repre-

sentative texture synthesis methods, we have implemented Wei and Levoy’s method [9] , 

Ashikhmin’s method [2] and Liang’s Method [6]. Two synthesis results are shown in Figure 

7. These figures show the input texture (first row), the synthesized results of our hybrid 

method (second row), Liang’s method (third row), Ashikhmin’s method (fourth row), and 

Wei and Levoy’s method (fifth row). In these figures, input textures are 192192 × , and all 

results are 250250× .  

As shown in Figure 7, Ashikhmin’s algorithm is a special-purpose algorithm designed 

for natural textures. It performs poorly for other textures, such as those that are relatively 

smooth or have more or less regular structures. Wei and Levoy’s method have a tendency to 

blur out the finer details. As shown in the left column of Figure 7, Liang’s algorithm has no 

explicit model for these objects. And these objects in the synthesis texture always do not 

resemble those in sample texture. Some boundary edges of the patch appear in this result. In 

the right column, Liang’s algorithm appears some blades of plants.  

From these figures, we notice that our algorithm achieves good results, at least as good 

as those from the Liang’s method, and these result are better than those from Ashikhmin’s 



 14

method and Wei and Levoy’s method. 

Table 1 and Table 2 summarize the performance of our method. Table 1 lists timings of 

our algorithm in seconds. The pre-process time includes the time of building kd-tree and the 

time of extending the input sample texture. This table also provides the timing for synthe-

sizing textures of various sizes from an 128128×  input texture sample. For each input 

texture, we test 5 times and take the average of them. 

Table 2 compares the speed of our algorithm with Liang’s algorithm [6] which is one 

of the fast general-purpose texture synthesis algorithms. It shows the timing for synthesiz-

ing 200200×  textures from 128128×  samples in seconds. The spending time of our 

method is slower than Liang’s. 

 

 (a) (b) (c) (d) 

Input Texture 

  
KD-Tree 3.514085 1.654426 1.713418 1.808752 Pre-process 

Time Texture Extended 3.306193 3.331661 3.320084 3.305694 
Synthesis Time ( 200200× ) 1.244877 1.184464 1.145471 1.522517 
Synthesis Time ( 250250× ) 1.854303 1.847851 1.756317 2.252837 
Synthesis Time ( 400400× ) 4.648415 4.434351 4.280608 5.508948 

Table 1. The pre-process time and synthesis time of our algorithm in seconds 



 15

 

 
input texture 

 
input 

 
Hybrid Method 

 
Hybrid Method 

 
Patch-Based Method 

 
Patch-Based Method 

 
Synthesis Natural Texture 

 
Synthesis Natural Texture 

 
W & L Method 

 
W & L Method 

Figure 7. The result of texture synthesis of different synthesis algorithms 



 16

 

Method Analysis Time Synthesis Time 

Our Method 5.389 1.303 
Exhaustive* 0.0 1.415 
QTP** 0.017 0.256 
QTP + KD-Tree** 0.338 0.044 

Patch-Based 

Algorithm 

QTP + KD-Tree + PCA** 0.678 0.020 
Table 2. Timing comparison: Our method and Patch-Based Sampling 
*Exhaustive means no acceleration in used. 
**QTP, KD-Tree, and PCA are the methods of acceleration [6] 

 

Furthermore, we synthesize many textures to prove that our method worked very well. 

Figure 8 to Figure 12 are results of our experiments. These figures show that our method 

performs on various textures very well. All the synthesized results are of 250250 ×  textures 

corresponding 128128×  samples with parameterλ =0.25. 

 

      
Figure 8: Experimental results for typeⅠ textures, artificial periodic texture 

 

      
Figure 9. Experimental results for typeⅡ textures, artificial non-periodic textures 



 17

 

      
Figure 10. Experimental results for typeⅢ textures, photographic pseudo-periodic textures 
 

      
Figure 11. Experimental results for typeⅣ textures, photographic random textures 
 

      
Figure 12. Experimental results for typeⅤ textures, photographic structured textures 

5. Conclusions and Future Works 

Textures are important for a wide variety of applications in computer graphics and 

image processing. Texture synthesis has been an active research area for many years. We 

propose an approach that can effectively synthesize a wide variety of textures and especially 

well-suited for naturally occurring textures. Our hybrid method extends the input sample 

texture in the first step, and then we adopt Liang’s algorithm [6] to paste patches formed an 



 18

inverted U-Shape for initialization. Finally, our approach fills the output texture using 

L-shape method of Ashikhmin’s algorithm [2] to synthesize texture. 

In few cases our approach may appear seams at obvious feature in the output texture. 

Since [6] is unable to find the best patches while extending the input sample texture without 

seam, it is necessary that we should further propose an optimal method that can produce the 

best patches. In addition, we are interested in extending the ideas presented here for texture 

synthesis on surfaces of 3D objects, texture mixtures, and temporal texture synthesis. 

References 
[1] V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Benjamin, 1968. 
[2] Michael Ashikhmin. Synthesizing Natural Textures. ACM Symposium on Interactive 

3D Graphics, March 2001. 
[3] J. S. De Bonet. Multiresolution Sampling Procedure for Analysis and Synthesis of 

Texture Image. Computer Graphics Proceedings, Annual Conference Series, pages 
361-368, August 1997. 

[4] D. J. Heeger and J. R. Bergen. Pyramid-Based Texture Analysis/Synthesis. Computer 
Graphics Proceedings, Annual Conference Series, pages 229-238, July 1995. 

[5] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Sale-
sin. Image Analogies. ACM SIGGRAPH 2001, 12-17, August 2001. 

[6] L. Liang, C. Liu, Y. Q. Xu, B. Guo, and H. Y. Shum. Real-Time Texture Synthesis by 
Patch-Based Sampling. Microsoft Research Technical Report MSR-TR-2001-40, April 
2001. 

[7] D. M. Mount. ANN Programming Manual. Department of Computer Science, Univer-
sity of Maryland, College Park, Maryland, 1998. 

[8] R. Szeliski and H. Y. Shum. Creating Full View Panoramic Mosaics and Environment 
Maps. Proceedings of SIGGRAPH, pages 251-258, August 1997. 

[9] L. Y. Wei and M. Levoy. Fast Texture Synthesis Using Tree-Structured Vector Quanti-
zation. Computer Graphics Proceedings, Annual Conference Series, pages 479-488, 
July 2000. 

[10] Y. Q. Xu, B. Guo, and H.Y. Shum. Chaos Mosaic: Fast and Memory Efficient Texture 
Synthesis. Microsoft Research Technical Report MSR-TR-2000-32, April 2000. 


