
2002 International Computer Symposium (ICS2002)

Workshop on Artificial Intelligence

Building a DNS Ontology using METHONTOLOGY and Protégé-2000

Chang-Sheng Chen, *Shian-Shyong Tseng, Chien-Liang Liu, Chia-Hao Ou

Department of Computer and Information Science

National Chiao-Tung University

1001, Ta Hsueh Rd., HsinChu, Taiwan 300

E-mail: sstseng@cis.nctu.edu.tw

Tel: +886-3-5712121 Ext.56605

Fax: +886-3-5721490

Abstract

The Domain Name System (DNS) is an essential part of the Internet software infrastructure. Unfortunately,

although DNS is so important to network operation today, rather few DNS administrators have the expertise to

do the jobs well. Due to the complex and distributed nature of the DNS systems, we could often find lots of

poorly performed DNS servers on lots of Internet sites. In this paper, we study the problem of building a DNS

ontology from scratch using the METHONTOLOGY methodology and the Protégé-2000 system. Ontologies are

becoming an important mechanism to build information systems. The advantages include the sharing of

knowledge, the re-use of knowledge, and the better engineering of knowledge-based systems with respect to

acquisition, verification and maintenance. To help extract knowledge from experts and construct the DNS

ontology, we propose an efficient knowledge acquisition algorithm, DNS Ontology Construction Algorithm, to

fast conceptualize DNS domain knowledge. This DNS ontology can then be used as a basis for some applications

to enhance the operation, planning and management of the DNS systems.

Keywords: DNS, knowledge-based system, METHONTOLOGY, ontology, Protégé-2002

* The corresponding author
☨ This work was supported in part by the MOE Program of Excellence Research of the Republic of China under

Grant No. MOE89-E-FA-04-1-4.

 1

mailto:sstseng@cis.nctu.edu.tw

1. Introduction

The Domain Name System (DNS)[1,2] is an essential part of the Internet infrastructure. Although DNS is

so important to network operation today, some research results showed that over 70% of the DNS servers of

commercial sites (e.g., “.COM” Zones) have some configuration errors [3,4]. In principle, the hierarchical and

distributed properties of the DNS system make the administration duties to be distributed among different

organizations and departments, and these make the whole system more scalable and robust. However, they also

make the whole system more difficult on debugging and tracing some network system issues.

There are many operational, planning and management issues that need expertise to improve the DNS

system [4,5,6]. Unfortunately, new administrators or administrators that manage a small scale of network usually

do not know the theoretical and practical knowledge of DNS system very well. It takes a long time for them to

gain the related knowledge without the assistance of the experts. Currently, most DNS assistant software

packages are built by using conventional methodology to solve problems [4]. These programs are developed to

solve domain zone management, find domain zone configuration errors, provide friendly user interface, and

provide network tools. No one uses the expert system methodology to solve DNS problems and deals with the

complex DNS management problems.

Table 1. Simple Classification of Common DNS Problems [4,5,6,7]

Category Examples

1. Configuration errors Lame Server, etc.

2. Inappropriate planning and management

(e.g., Improper defaults, etc)

Inappropriate dynamic update, WINS/DNS

forwarding, etc

3. Inappropriate software implementation

(e.g., not immune to cache poisoning, etc.)

DNS-spoofing, server root vulnerability exploited, etc.

4. Attacks to the DNS systems DDoS, forwarding attacks, etc

Table 1 shows a simple classification of DNS problems that most DNS administrators might encounter.

Due to the complex and distributed nature of the DNS system, we could often find lots of poorly performed DNS

servers (i.e. by mis-configuration, inappropriate planning, etc.) on lots of Internet sites. Moreover, given the

importance of DNS servers, direct or indirect attacks on the DNS systems are common [7,8].

Knowledge sharing and reuse have become one of the primary goals of Knowledge Representation Systems

 2

[9,10]. To achieve the goal of knowledge sharing and reuse, we need to have a common language, ontology.

Ontologies are becoming an important mechanism to build information system. Ontology defines the concepts,

the attributes of the concepts, and the relationships among concepts. With the help of ontology, the knowledge is

not only human-readable but also machine-readable [11,12].

In this paper, we study the problem of building a DNS ontology from scratch using METHONTOLOGY

[13,14] and the Protégé-2000 system [15]. This DNS ontology can then be used as a basis for some applications

to enhance the operation, planning and management of the DNS systems. To help extract knowledge from

experts and construct the DNS ontology hierarchy, we propose an efficient knowledge acquisition algorithm,

DNS Ontology Construction Algorithm, to fast conceptualize DNS domain knowledge. The DNS ontology has

been verified by the experts and been shown to be useful. The DNS ontology could be used for facilitating

inexperienced administrators in DNS planning and management issues: (1) to re-organize the resources of the

DNS systems in the organization to make them become more efficient, (2) to upgrade with the scale of the DNS

systems when the environment is changed, (3) to make sure that each DNS server is configured correctly and

properly to avoid those common problems that come from configuration errors, (4) and most importantly to

provide expertise to those administrators whenever they need it.

2. Preliminaries

DNS problems (e.g., planning and management, etc.) are very complex and not easy to solve. Furthermore,

the shortage of DNS domain expert makes the situation worse.

2.1 Basic of the DNS System

The Domain Name System [1,2] is responsible for translating between hostnames and the corresponding IP

addresses needed by software. The mapping of data is stored in a tree-structured distributed database where each

name server is authoritative (responsible) for a portion of the naming hierarchy tree. The client side query

process typically starts with an application program on the end user’s workstation, which contacts a local name

server via a resolver library. That client side name server queries the root servers for the name in question and

gets back a referral to a name server who should know the answer. The client’s name server will recursively

follow referrals re-asking the query until it gets an answer or is told there is none. Caching of that answer should

 3

happen at all name servers except those at the root or top-level domains (.com for example). The working

paradigm could be illustrated as shown in Figs.1a. and 1b.

Arpa

in-addr

0 255140

113

23

122

hk, jp,... tw

com
edu

org

ntu
nctu

ncku

cc
cis

am

www

gov

com gov

root

www.cis.nctu.edu.tw = 140.113.23.122

Fig. 1a. The operation of DNS Fig. 1b. The hierarchical DNS structure

2.2 The needs of ontologies

Ontologies are useful in a range of applications, where they provide a source of precisely defined terms that

can be communicated across people and applications. An information system cannot be written without a

commitment to a model of the relevant world – commitments to entities, properties, and relations in that world

[11]. The role of ontologies is to capture domain knowledge and provide a commonly agreed upon understanding

of a domain. The common vocabulary of an ontology, defining the meaning of terms and their relations, is

usually organized in a taxonomy and contains modeling primitives such as concepts, relations, and axioms [12].

With the help of ontology, the knowledge is not only human-readable but also machine-readable. Having

developed a formal specification for a domain ontology, it is possible for database and software developers to

agree on its use.

2.3 Overview of the METHONTOLOGY [13,14] methodology

Up till now, the ontology building process is still a craft rather than an engineering activity [12,14]. Each

development team usually follows its own set of principles, design criteria and phases on the ontology

development process. Fig. 2 shows the METHONLOGY methodology for ontology building. In [14], the authors

 4

explain that the life of an ontology moves on through the following states: specification, conceptualization,

formalization, integration, implementation, and maintenance. The evolving prototype life cycle allows the

ontologist to go back from any state to other if some definition is missed or wrong. So, this life cycle permits the

inclusion, removal or modification of definitions anytime of the ontology life cycle. Knowledge acquisition,

documentation and evaluation are support activities that are carried out during the majority of these states.

Fig. 2. States and activities in the ontology life cycle [14]

2.4 The tool for ontology construction

Tools are helpful to aid ontologists in constructing ontologies, and merging multiple ontologies since such

conceptual models are often complex, multi-dimensional graphs that are difficult to manage. These tools also

usually contain mechanisms for visualizing and checking the resulting models – over and above the logical

means for checking the satisfiability of the specified models.

Protégé-2000 is an easy-to-use knowledge acquisition tool that could construct the domain ontology and

achieve the interoperability with other knowledge-representation systems. In this paper, we build a DNS

ontology using Protégé-2000. The operation details will be described later.

3 Motivating Scenarios for building the DNS ontology

 DNS problem domain is very complex and varies greatly on different sites because too many things,

like management strategies and resources, need to be considered [4,5,6]. For example, the DNS system

architecture of a site can be a very simple one (e.g., with only two standard type DNS servers); or, it could be a

 5

much complex one, with a few standard type DNS servers and lots of caching-only servers for special

considerations. Due to many factors such as the cost-performance issue or security issue, sometimes it is

necessary for a site to change its DNS system architecture from a simple type into a more complex one. However,

this is not an easy job for most inexperienced administrators. On many occasions, it needs the guidance of the

DNS domain experts. But, it is a pity that domain experts are so hard to find and cannot always standby for those

inexperienced administrators under emergency conditions. This section describes sample scenarios about the

requirements for applying DNS ontology to achieve one or more purposes.

3.1 Scenario: Diagnosing DNS-related Problems

When inexperienced administrators find there is something wrong with their DNS servers, the traditional

way to solve the problem is trying to find a domain expert that can offer expertise, or find some documents that

describe similar situations, and then try to modify the solutions to satisfy their own situation. Fig. 3a shows the

process when an inexperienced administrator asks a domain expert for help. The domain expert will try to make a

tentative diagnosis according to the facts that the inexperienced administrator provides, and try to verify the

guess. Once the tentative diagnosis can be verified to be correct, solutions are proposed to fix the problem(s). If

the tentative diagnosis is shown to be wrong, another tentative diagnosis will be proposed and it will be verified

again. This cycle will be repeated until a final diagnosis can be made or confirmed.

 W h a t k in d o f

p ro b le m it m ig h t b e ?

D o a ll r e la te d
e v id e n c e s s u p p o r t

th e g u e s s ?

S u g g e s ts s o lu t io n s
fo r th e p ro b le m

In e x p e r ie n c e d
a d m in is t r a to r s

E x p e r t

C o m m u n ic a t io n

N o t M a tc h
M a tc h th e g u e s s

A s k s r e la te d
e v id e n c e s

Inexperienced
administrators

Expert

Communication

The resources that
I have.

The requirements
that I want.

Conditions that meet the
requirements and resources

Conditions that can help to
planning the system

Condition
1

Condition
nSolutions for the

user

Refine the solutions

Fig. 3a Diagnosing DNS-related problems Fig.3b DNS Planning and management

3.2 Scenario: DNS Planning or Management Problems

 6

When inexperienced administrators need to re-organize the resources of their DNS systems or design new

DNS systems, they might want the experts to help design the DNS systems and teach them some management

skills. Fig. 3b shows the traditional way when an administrator asks an expert for help. The expert needs to

consider a lot of conditions; each of them depends upon the resources and requirements. The expert will solve the

planning or management problems by reusing domain knowledge. Usually, the first model comes into the

expert’s mind is the basic DNS model. The expert will ask the inexperienced administrator what kind of

resources she/he has and what requirements she/he wants in order to extend the basic model to a more complex

one. After a thoroughly brainstorming, the expert makes decisions according to the resources and the importance

of the requirements. Finally, a suitable DNS system plan is made for the administrator and the process is finished.

4. Building a DNS ontology using METHONTOLOGY

In this paper, we build a DNS ontology from scratch using METHONTOLOGY [14] and the Protégé-2000

system [15]. As specified in [14], the life of an ontology moves on through the following states: specification,

conceptualization, formalization, integration, implementation, and maintenance. Next, we will give short

descriptions about the phases required for building the DNS ontology in the following subsections.

4.1 Specification

As shown in Table 2, in the specification process, we describe the goal of the DNS ontology, the scope of

the ontology, and the source of the knowledge. The goal of the specification phase is to produce an informal

specification document written in natural language using competency questions [14]. It is difficult for us to

design a complete ontology for a specific domain at the first time. Hence, we may design a subsection of the

ontology first, and refine it later when necessary. One of the ways to determine the scope of the ontology is to

sketch a list of competency questions that a knowledge base based on the ontology should be able to answer. The

questions will serve as the litmus test later. In the future, that could help us to know which section we have

completed and if someone wants to reuse our ontology, she/he could know whether the ontology is appropriate

for her/him from the scope description. The source of knowledge is used to denote the source where we get our

knowledge.

 7

Table 2. Requirements specification document for the DNS ontology

•Domain: DNS
•Date: 2002/07/08
•Developed by C.S.Chen, C.L.Liu, C.H.Ou
•Purpose:

–Ontology about DNS to be used when information about DNS is required in debugging/analysis, planning,
configuration, etc.

•Level of formality: informal
•Scope:

–List of 5 type of servers: master, slave, caching-only, …
–List of concepts: DNS registration, DNS security, caching, …
–Information about at least the following properties: caching, authority, forwarding, access control, ….

•Source of knowledge:
–Interviews with the experts
–DNS FAQ from the ISC, http://www.isc.org/
–Books:

•P. Albitz and C. Liu, DNS and BIND 4th, O’Reilly & Associates, Inc., Sebastopol, CA, 2001
•The Domain Name Handbook, R&D Books an imprint of Miller Freeman, Inc., Lawrence, KS, 1998

� Informal Competence questions

Table 3 shows a list of competency questions in the DNS domain. Judging from this list of questions, the

ontology will include the information on various DNS characteristics and configuration types that could be used

for DNS planning and management suggestions, fixing DNS operation problems, etc.

Table 3. Informal competency questions for building a DNS ontology

Issue Description

� Management of

DNS space

What activities must a particular system administrator perform to accomplish the registration jobs

for a specialized domain zone?

� DNS server

software

What is the appropriate server software to choose for implementing the DNS system of an

organization? Which version and on what platform?

� Available issue While deploying a DNS system, what are the design principles to avoid single point of failure?

� Performance

issues

When deploying DNS systems, what are the design principles to improve the system performance

on the following aspects: CPU, memory, Network, etc.

� Security issues When deploying DNS systems, what are the design principles to take care of the security

considerations on the following aspects: Protection of servers, protection of data, DNS anomaly

detection, etc.

� Resource

considerations

Manpower & Hosts maintenance

4.2 Knowledge Acquisition

It is important to bear in mind that knowledge acquisition is an independent activity in the ontology

 8

http://www.isc.org/

 9

development process [14]. However, it is coincident with other activities. Most of the acquisition is done

simultaneously with the requirement specification phase, and decreases as the ontology development process

moves forward. In this section, we will describe the ways in which the DNS knowledge acquisition process can

support the ontological engineering process.

Expert, books, Internet experimental results, etc. are sources of knowledge from which knowledge can be

elucidated using conjunction techniques such as: brainstorming, interviews, formal and informal analysis of texts,

and knowledge acquisition tools. One important role for ontologies is that they can be used by knowledge

acquisition tools to direct the acquisition of domain knowledge [12]. This is because ontologies specify which

constraints domain knowledge should satisfy. In this paper, we study the problem of developing a knowledge

acquisition method for constructing the DNS ontology systematically to help conceptualize the DNS problem

domain. However, there is still one thing to be addressed first. In DNS domain, experts are used to describe their

domain knowledge by enumerating cases (e.g., including both positive and negative cases). We must decide on

how many cases they should give at each time.

Personal Construct Psychology (PCP), developed by George Kelly in the early 1950s, has wide application

in modeling human knowledge processes. PCP gives an account of how people experience the world and makes

sense of that experience [16]. The repertory grid was an instrument designed by Kelly to bypass cognitive

defenses and give access to a person’s underlying construction system by asking the person to compare and

contrast relevant examples. The repertory grid methodology has evolved in the light of application experiences

and a lot of related research applications have been development [16,17]. However, as different from the

repertory grid methodology, we propose another approach by extracting the concepts and attributes from the

input cases.

The power of a few critical cases described in terms of relevant attributes to build domain ontology is

remarkable [16]. This is because it is often easier and more accurate for the experts to provide critical cases

rather than domain ontology. Hence, three cases seem adequate for our DNS knowledge acquisition algorithm

because it is usually not hard for experts to enumerate three cases and will not take too much time from them.

Besides, three cases usually contain enough and not too much information, so the knowledge engineers can

modify the ontology hierarchy easily. After the extraction, we would then decompose these concepts into a lot of

sub-components by class abstraction and inheritance. Some examples and the operation details will be described

in Sections 4.3, 4.4 and 4.5 later. A simplified procedure is outlined as shown in Fig. 4. The detail of the

algorithm is shown as follows:

G et T hree T yp ica l Ca ses

Ca se Ana lyzing

Ca se De com positon

O nto lo gy C ons truction

O nto lo gy V erif ication an d
Refine

Com p lete
In com plete

D N S O nto lo gy

Experts
v.s.

 Knowledge Engineers

Experts
v.s.

 Knowledge Engineers

Fig. 4. Our proposed knowledge acquisition algorithm

� Knowledge acquisition algorithm for facilitating DNS ontology construction

Input: Every kind of DNS cases.

Output: DNS Ontology.

Step 1: Get three typical cases from experts whenever possible.

Step 2: Analyze and decompose the cases.

Step 2.1: Ask experts about how to describe these cases in the following issues: hardware, software,

management, and configuration.

Step 2.2: Decompose these cases into small components (e.g. availability, security, performance, etc.)

Step 3: Build or Refine the DNS ontology.

Step 3.1: If two or more components can be conceptually covered by another component, then put them in

the lower level of ontology hierarchy and link them to that component.

Step 3.2: If it cannot naturally form an ontology hierarchy, create new components to conceptually cover the

original components and link the ontology sub-trees. Finally it will form an complete ontology

hierarchy.

Step 4: Experts verify the hierarchical ontology.

Step 4.1: Verify the correctness of the skeletal ontology, including those new created components and the

hierarchical structure.

Step 4.2: If the experts find any ontological components not covered by the constructed skeletal ontology,

then they will repeat and try enumerating three more cases that might contain other ontology

 10

components. The construction process will go back to Step 2.

Step 5: After experts’ verification, DNS ontology is constructed to cover DNS domain knowledge and it is

helpful when we build knowledge objects.

4.3 Conceptualization - taxonomy of concepts, relations, etc.

An ontology is an explicit, knowledge level specification of a conceptualization [12]. In principle, the

organization of concepts could provide for at least two purposes: (1) identification (2) specialization and

generalization. In the DNS domain, knowledge objects can be built up based on the representation of knowledge,

but this cannot be done without the domain knowledge of DNS. By using the brainstorming and trimming

approach, we could produce a list of potentially relevant concepts and delete irrelevant entries and synonyms as

shown in Tables 4a, 4b, 4c and 4d.

Table 4a. Concept table for the DNS ontology

Concept

Domain

Name

Space

(1). Domain Entries: A, PTR, NS, CNAME,

MX, etc

(2). Type-of-server: Master/Slave server,

authoritative-only server, caching-only

server, DNS forwarder

(3). Type-of-zone: root hint files, forward

vs. reverse zone, public vs. private

zone, etc.

(4). Misc: Domain Zone Delegation, Zone

Authority, etc
DNS

server

programs

� Software packages: BIND, Windows

DNS, etc.

� Version issues

DNS client

program

Resolver library routines

Table 4b. Relation table for the DNS ontology

Relations

(1). DNS query request

 Clnt Æ Srv

(2). DNS query response

 Srv Æ Clnt

(3). DNS forwarding (a special case, indirect query)

(Clnt Æ) Srv1 Æ Srv2;

(4). Zone transfer request:

Slave_Srv Æ Master_Srv

(5). Zone transfer response:

Master_srv Æ Slave_Srv

(6). Dynamic update request

Clnt Æ Srv (authoritative server)

(7). …

We could view the concepts as the classes of the Object-Oriented Programming paradigms. From the

concept table (Table 4a), we can get the kind of the classes for constructing the DNS ontology. For example, we

know that an authoritative-only DNS server could be classified into being a master server, or a slave server. Since

 11

a concept could be mapped into a class, so we could define a DNS server class. The master servers, slave servers,

or the authoritative-only servers all belong to the DNS server class. Moreover, that means we could construct the

master server class or the slave server class by following the inheritance relationship from the DNS server class.

In this way, after we conceptualize the domain problem, we could get the domain model as illustrated in Fig. 5.

Table 4c. Function table for the DNS ontology

Function

(1). DNS entry registration - add, delete, or modify DNS

entries (with the NS RR excluded) within a domain

zone

(2). Domain zone delegation - add, delete, or modify NS

RR’s within a domain zone

(3). Positive DNS caching - caching of a DNS answer

after a successful query and its response returned

(4). Negative DNS caching - caching of an invalid DNS

result after a successful query and its response

returned

(5). …

Table 4d. Axiom table for the DNS ontology

 Axioms

1. Any domain zone should have at least two

authoritative DNS servers for resolving DNS queries

from concerning the zone from Internet.

2. Any DNS server should have a primed root hint file to

operate properly (e.g., 13 root DNS server from

ICANN).

3. Any DNS server of a site should not forward queries

concerning private zones to other DNS server for

resolving. Instead, queries about these zones should be

resolved at local DNS servers (e.g., 127.in-addr.arpa,

10.in-addr.arpa, 168.192.in-addr.arpa, etc.)

4. …

Master DNS Class Slave DNS Class

Management Class Security Class

DNS Class

Performance ClassAvailability Class

1

*

1

*

1

*

1

*

DNS abstract class

Exert

UseCase1

UseCase2

UseCase3

Object1

Object2 Object3

Class X

Class Y Class Z

Case Classificaton

Domain Model

Class Diagram

Fig. 5. The abstraction of DNS class Fig. 6. DNS modeling and DNS ontology construction

 12

Relation element is a type of interaction between concepts of the domain. For example, as shown in Table

4b, the zone transfer request relation is used to denote that the zone data is transferred from some DNS server A

to another DNS server B. Functions element (as shown in Table 4c) is a special case of the relations, which

denotes some special operation defined on certain DNS servers themselves. Axioms elements (as shown in Table

4d) are used to model sentences that are always true. These could be used to guide our ontology design. After we

finish the ontology construction, the axioms could also be used to verify our design.

4.4 Formalization

For constructing the DNS ontology, we need to abstract our class design and build the class hierarchy. The

abstraction process would make the classes become high cohesion and low coupling. That could greatly simplify

the DNS ontology development process. However, in what ways should we do to perform the abstraction?

First of all, we might have to know the relationship from the domain expert’s input cases and collect the

common attributes among all the classes. If there is more than one class with the same (or almost the same)

attributes, we could abstract and create the class that contains these basic attributes, and we could generate a lot

of sub-classes, which have the common attributes, by inheriting from the class. For example, master servers and

slave servers are both DNS servers. In principle, we know that there are some basic attributes for all the DNS

servers. Hence, we could define the abstract DNS class (e.g., Domain Name Server class) to describe a DNS

server. By definition, an abstract class (like the DNS class mentioned) would not have an instance. Instead of

generating an instance of the DNS class, we would generate its sub-classes, namely, the master DNS server class,

the slave DNS server class, etc. Since they are concrete classes, they would inherit all the attributes of its parent

class (e.g., the abstract DNS class) as shown in Fig. 5.

In the formalization process, all we have to do next is try to use the case classification and domain modeling

to generate the entire class diagram. With the help of domain modeling, we could know the attributes and

behavior of the DNS problem domain, and with the help of case classification, we could build up the inheritance

and the composition relationship. In this way, we could generate a more accurate hierarchy of the problems. The

procedure could be illustrated as shown in Fig. 6.

4.5 Implementation

We adopt the METHONTOLOGY approach to build a DNS ontology using Protégé-2000 [15] from scratch.

 13

The knowledge model of Protégé-2000 is frame-based and the ontology built consists of classes, slots, facets,

instances. The class element is used to describe the concept, and we could build the class hierarchy of the

taxonomy. For example, Fig.7a shows a class diagram with the DNS class mentioned above. In DNS ontology,

since both master DNS server and slave DNS server are DNS servers, both of them belong to the subclasses of

the DNS server class and they both inherit the DNS property. From the class hierarchy, we could know the

relationship of these concepts.

DNS Class description

Properties

Class Name

Class Properties

Fig. 7a. A class diagram showing part of the DNS ontology using Protégé-2000

 Slots in Protégé-2000 describe the property of classes and instances, such as the configuration of the DNS

server, or the software version of the DNS server. The slot could be created without being attached to a specific

class. So a version slot could be used to denote the version of the BIND software or version of the Microsoft

DNS Server. When we could bind the slot to a specific class, it could have value, so if we attached the version to

the BIND software, it could have the value of 8.2.2 or 9.2.1.

Facets in Protégé-2000 are the constraint of the slot. We could set up the constraint of cardinality or the

value type of the slot. For example, the cardinality of the version attribute in DNS is single and its type is symbol.

We also could define the minimum and maximum value for the numeric slots.

 14

Fig. 7b. and Fig. 7c. showing the slots and facets of the DNS ontology respectively using Protégé-2000

5 Evaluation

In this paper, we build a DNS ontology using METHONTOLOGY and the Protégé-2000 system. The DNS

ontology has been verified by the experts and been shown to be useful. We will show two ways in which explicit

DNS ontology can be used during knowledge engineering: for knowledge elicitation and for computational

design. Because the DNS ontology specifies which constraints domain knowledge should satisfy, it can be used

to direct the knowledge elicitation process. During computational design application, the ontology can be used to

determine the suitability of problem solvers for the DNS application.

5.1 Skeletal model of the DNS ontology

Fig. 8 shows the skeletal model of the DNS Ontology. The DNS ontology is intended to bridge the gap

between the executable system and the real world it models. The root of DNS ontology is DNS Environment; it

covers four major sub trees: DNS group, Management strategies, Events, and Resources. Each of them is

described in the following:

(1) DNS group: The DNS_Server_Host class shows the related ontology structure concerning a DNS server. The

servers within some Related_DNS_hosts class might have some close interactions with one another, e.g.,

relationship between a master and its slave DNS servers. The Other_DNS_hosts class is referred to the other

 15

DNS systems all over the Internet. The Root_DNS_hosts class is a very special sub-class of the

Other_DNS_server class. It plays an important role in the hierarchical and distributed DNS systems. As

described in Sec. 2.1, all the DNS servers without DNS forwarding capability are supposed to consult some

server(s) in the Root_DNS_hosts class first whenever they have no idea about some DNS queries.

DNS_Server_Host

DNS Environment

DNS group ManagementResources

Budget

Firewall Manpower

Bandwidth

EncryptionDetect

Anomaly Hide

Traffic

Monitor

Performance

Inbound/
outbound

Public/

Private

Traffic

Balance Efficient

Redundant

Availability

Distributed

Related DNS
hosts

Other DNS
hosts

Security

Other
services

Proxy Mail

BIND Hardware Network

ConnectivityMEMNet card

CPU

VersionConfiguration
File

Zone
File

Caching Authority Forwarding

Filtering

Events

WINS

DoS attack

Malicious
Network

Activity

E-mail virus

DNS
software

Defects

Separate
traffic

Special/
Ordinary

Fig. 8. The skeletal model of the DNS Ontology

(2) Management strategies: Management strategies are very important when we plan and manage the DNS

systems. According to the different requirements of each DNS system’s management strategies, not only

configurations in each DNS host are different but also many tradeoffs need to be considered. Availability,

performance, and security are major issues in this field.

(3) Events: Events are those activities that can affect the DNS system, e.g. DoS attacks can overload the DNS

system.

(4) Resources: In DNS ontology hierarchy, there are some components that do not belong to DNS group or

management strategies. They can affect the management plans and some configurations; e.g., when budget is

sufficient, hardware can be upgraded to high level to improve the efficiency.

5.2DNS traffic distribution sample

 16

Fig. 9 gives a brief summary on DNS traffic for the 9 regional centers on TANet (i.e. Taiwan

Academic Network). It is generated from the monthly traffic statistical data, among some 3-month interval

(e.g. September, October, November in 2001), collected on Newsletter of MOECC [18], Taiwan. We could

find that the average values (e.g., 1st column of Fig.9) of the DNS traffic distributions (as compared to the

total traffic including WWW, SMTP, etc.) of the sites center around 5%. However, on some sites, the

monthly average values are more than 10% (or even bigger) and their traffic distributions obviously have

larger variation than the others during the summary interval. In short, there might be some DNS

configuration problems, some network abusing, or some DNS anomalous activities running on these sites.

Hence, it is highly expected that we should have some intelligent systems to help configure and maintain the

smooth operation of the DNS systems.

DNS Traffic Profiling, source data from TW-MOECC
Newletter, http://www.edu.tw/moecc/art/brief.htm

0

5

10

15

20

25

Percentage
(compared to the total)

Regional Centers on TANet

Sep. 5.62 7.23 3.51 4.35 9.51 5.85 4.31 3.1 5.5 13.84
Oct. 4.92 5.71 3.33 3.25 11.54 6.22 7.27 2.06 7.47 14.05
Nov. 5.69 6.54 6.36 3.34 18.92 5.21 4.12 1.63 5.39 20.42

Avg. RC-1 RC-2 RC-3 RC-4 RC-5 RC-6 RC-7 RC-8 RC-9

Application
Server

DNS

External
firewall

•Ipfw, ipchain, ipf

Internet

MRTG
Traffic
monitor

NIDS
(e.g. snort)

•Misuse Detection
--Port scan, CGI attacks, etc

•Statistic Analysis
•Aguri, Netflow, etc.

Two-phase
Anomaly
Detection

Internal
firewall

•SMTP, WWW, etc

•DNS Server Host

•client

LAN

Fig. 9. DNS traffic distributions Fig. 10. A typical configuration of a single DNS system.

5.3 Facilitating computational design - DNS-related Security Issues

Fig. 10 shows a typical configuration of a single DNS system. For protecting the DNS system from being

abused or attacked by malicious sites, some other security systems such as firewall and IDS are suggested for

securing the related DNS system. After analyzing the case, we find that if we want to consider the DNS security

issue, we should consider the DNS zone data protection, DNS anomalies detection and identification, DNS

dynamic update protection and DNS server host protection. In the ontology, we construct a simple composition

relationship such that security class would be composed of DNS zone data protection instance, DNS anomalies

detection and identification instance, DNS dynamic update protection instance and DNS server host protection

instance as shown in Fig.11a. Furthermore, we find that the Hinder_Illegal_Zone_Transfer class and

 17

DNS_Dynamic_Update both perform different actions according to the DNS server software.

Hinder_Illegal_Zone_Transfer class and DNS_Dynamic_Update class would have the same subclass,

DNS_BIND and DNS_Microsoft_Server. Based on the class abstraction, we would build up an abstract

DNS_BIND class and an abstract DNS_Microsoft_Server class as shown in Fig.11b since there would be no

DNS_BIND and DNS_Microsoft_Server instance. Next, we define 3 subclasses for DNS_BIND based on their

versions. Each version class would inherit the name, reason, and action attributes from DNS_BIND class. Name

attributed is used to identify the class, the reason attribute is used to describe the reason why we want to prevent

dynamic update or illegal zone transfer. The action attribute is used to describe the step we should follow to solve

the problem.

Fig. 11a. The composition relationship of security Fig.11b. DNS_BIND and DNS_Microsoft_Srv class

5.4 Extend the DNS ontology

In [14], the evolving prototype life cycle allows the ontologist to go back from any state to other if some

definition is missed or wrong. So, this life cycle permits the inclusion, removal or modification of definitions

anytime of the ontology life cycle. Since the DNS is still evolving, we will have to update the DNS ontology

whenever possible. For example, (1) the IPv6 and wireless communications (hence DHCP and Dynamic update

on DNS) start to become popular on many parts of the Internet. (2) Multilingual DNS environment is under

development. In the future, there might be some DNS server and client implementation issues that need to be

considered. Therefore, a lot of new concepts and relations have to be added or modified for the DNS ontology to

 18

address these topics.

6. Concluding Remarks and Future Work

It is now widely recognized that constructing a domain model, or ontology, is an important step in the

development of a knowledge-based system. The advantages include enabling the sharing of knowledge, the

re-use of knowledge, and the better engineering of knowledge-based systems with respect to acquisition,

verification and maintenance. In this paper, we apply the METHONTOLOGY approach to build a DNS ontology

using Protégé-2000 from scratch. We present the characteristics of the DNS and an efficient knowledge

acquisition algorithm, DNS Ontology Construction Algorithm, is proposed to help knowledge engineers

systematically extract knowledge from experts and construct the DNS ontology. This ontology can then be used

as a basis for some applications of DNS planning and management.

We have shown two ways in which explicit DNS ontology can be used during knowledge engineering: for

knowledge elicitation and for computational design. Because the DNS ontology specifies which constraints

domain knowledge should satisfy, it can be used to direct the knowledge elicitation process. During

computational design application, the ontology can be used to determine the suitability of problem solvers for the

DNS application.

For evaluating the potential of this ontology and for advanced research, an Intelligent DNS Planning and

Management System (iDNS-PMS), based upon expert system methodology and web-interface, is under

development to help inexperienced administrators find the DNS problems and solutions in their systems or

provide planning and management solutions for them. Future research will focus on several issues. First, we will

complete the iDNS-PMS prototype. Second, since the DNS system is still evolving, the corresponding DNS

ontology needs refining. For example, we will extend the ontology to integrate more topics about IPv6,

multilingual DNS, intrusion detection mechanisms concerning DNS, etc. That will be our future work.

REFERENCES

[1]. P. Mockapetris, "Domain Names - Concepts and Facilities," RFCs 1034, November 1987.

[2]. P. Mockapetris, ``Domain Names - Implementation and Specification'' RFC 1035, Nov. 1987

 19

[3]. Man-Mice Company, “Domain Health Survey for .COM - May 2002”, accessed on Jul 10,

http://www.menandmice.com/6000/61_recent_survey.html

[4]. C.H.Ou, “Design of An Intelligent DNS Planning and Management System”, Master Thesis, Dept. of

Computer and Information Science, National Chiao-Tung University, Taiwan, 2002.

[5]. BIND (Berkeley Internet Domain), URL:http://www.isc.org, Accessed 10 July 2002

[6]. C.S.Chen, S.S.Tseng, C.J.Liu, C.H.Ou, “Design and Implementation of an Intelligent DNS Configuration

System”, 4th International Conference on Advanced Communication Technology, Feb 5-7, 2002, Korea.

[7]. C.S.Chen, S.S.Tseng, C.J.Liu, “A Distributed Intrusion Detection Model for the Domain Name System”, to

appear in Journal of Information and Science Engineering, Nov. 2002.

[8]. Jay L. Koh, “Recent Developments and Emerging Defenses to D/DoS: The Microsoft Attacks and

Distributed Network Security” February 9, 2001, URL:

http://www.sans.org/infosecFAQ/DNS/developments.htm, Accessed 16 July 2002.

[9]. Musen, M.A., Dimensions of knowledge sharing and reuse, Computers and Biomedical Research. 25:

p.435-467,1992.

[10]. Studer, R., Benjamins, R., Fensel, D. Knowledge Engineering: Principles and Methods. IEEE Transactions

on Data and Knowledge Engineering 25(1-2).pp:161-197. 1998

[11]. Chandrasekaran, B. and Jorn R. Josephson, V. Richard Benjamins. 1999. What Are Ontologies, and Why

Do We Need Them? IEEE Intelligent Systems. 14 (1): pp. 20 - 26.

[12]. G Van Heijst, A.T. Schreiber and B.J. Wielinga, Using Explicit Ontologies in KBS Development,

International Journal of Human-Computer Studies, Vol. 46, No. 2/3, February-March, 1997, pp. 183-292.

[13]. Fernandez Lopez. Overview of methodologies for building ontologies. In Proceedings of the IJCAI-99

Workshop on Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends. CEUR

Publications, 1999.

[14]. Fernandez, M.; Gomez-Perez, A.; Juristo, N., “METHONTOLOGY: From Ontological Art Towards

Ontological Engineering”, Workshop on Ontological Engineering. Spring Symposium Series. AAAI97

Stanford, USA.

[15]. N. F. Noy, R. W. Fergerson, & M. A. Musen. The knowledge model of Protege-2000: Combining

interoperability and flexibility. 2th International Conference on Knowledge Engineering and Knowledge

Management (EKAW'2000), Juan-les-Pins, France, 2000.

[16]. Brian R Gaines and Mildred L G Shaw, Knowledge Acquisition Tools based on Personal Construct

Psychology. Special Issues on "Automated Knowledge Acquisition Tools" of the Knowledge Engineering

Review, 1992.

[17]. Brian R Gaines and Mildred L G Shaw, Eliciting Knowledge and Transferring it Effectively to a

Knowledge-Based System, IEEE Transactions on Data and Knowledge Engineering 5(1), pp.4-14. 1993.

[18]. MOECC Newsletter, http://www.edu.tw/moecc/art/brief.htm, Accessed 10 July 2002.

 20

http://www.menandmice.com/6000/61_recent_survey.html
http://www.isc.org/
http://www.sans.org/infosecFAQ/DNS/developments.htm
http://www.edu.tw/moecc/art/brief.htm

