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Abstract

We report a data ‡ow [1] design for the multilayer network. Both back-propagation(BP) [2]
learning and feedforward computing are constructed with a single basic module where each
neuron is regarded as a module. This design can be extended to various networks [3][4] .
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1 Introduction

Many data ‡ow designs for neural networks have been developed for various purposes with
varied successes, such as that for the committee machine [5]. We report our design in this
paper and omit a full review of them. A back-propagation algorithm trains network layer by
layer doing forward and backward computations. According to the algorithm the updation
formulas [3] are
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Figure 1: Single neuron diagram.

In the above equations w denotes the weight between two neurons. d is the desired response.
x is the input. y denotes the neuron’s output. σ is the active function. η is a tunable learning
rate. l denotes the number of layer, where 1 denotes the …rst hidden layer and L is the output
layer. i or j denote the number of neuron in each layer. So, yl

j is the output of the j0th neuron
in the l0th hidden layer, wl

ji is the weight between the j0th neuron in the l0th layer and the
i0th neuron in the (l ¡ 1)0th layer. bl

j is the j0th neuron’s bias. dl
j is the desired response

of the j0th neuron in the l0th layer. δl
j is the j0th neuron’s delta value for weight correction.

m0 is the number of neurons in input layer, ml¡ 1 is the number of neurons in the (l ¡ 1)0 th
layer . All neurons use these equations to improve their weights. Each neuron use the outputs
of all neurons in the next precedent layer as inputs. We will isolate each neuron with all its
weights, inputs, desired response, and output. This allows us to implement the BP algorithm
on distribute parallel machine. In the next section, we present the basic module for a single
neuron. Then we show a data ‡ow [1] structure for multilayer networks constructed with such
basic module.

2 The basic module

Fig. 1 shows the diagram of a single neuron. The forward equation is:
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where t denotes time and the active function is temporarily set to the bipolar sigmoid function
σ(u) = 2

1+e¡ u ¡ 1. According to the delta learning rule [2][6], the error-correction function is
de…ned by:

¢ wt = η
1
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And the weight is updated according to:

wt+1 = wt + ¢ wt. (8)

Combining Eq. 6,7 and setting F be the updation function for this neuron, we obtain:

(¢ wt, yt) = F(wt, xt, dt), (9)



Figure 2: One module neuron data structure

where F uses w(weight), x(input), and d(desire response) as its inputs and ¢ wt and yt as it’s
outputs. The data structure for this neuron is plotted in Fig. 2. This structure is well known
among the engineering society.

3 The modular design for multilayer networks

We can use this basic module to construct various kinds of neural networks, such as multilayer
network [3], multilayer network with jump connection [3], recurrent network [8][9] and self-
organized map [4]. In this section we show how to construct a multilayer network and recurrent
network.

3.1 Multilayer network

A multilayer network can be transformed into its modular form in O(n) time, where n is the
number of total neurons. With a pointer supporting language, such as C [7], we can allocate a
memory space for each neuron and maintain a pointer pointing to it. The algorithm is:

algorithm Modular Transform
for L=1 to number of layers

for N=1 to the number of neurons in layer L
Neu Ã allocate a memory space for each neuron.
Store all data of this neuron(L,N) in Neu.
Set Neu!forward destination point to neurons in next layer.
Set Neu!backward destination to neurons in precedent layer.
Look up table(N, L) Ã Neu’s location.

end.
end.

end.

Table 1: Modular Transform Algorithm.

It is a little cost of memory doing this modular transform. Usually the BP algorithm is
implemented using a matrix (or an array) to store weights, input vector and output vector.
Each entry in the matrix corresponds to a neuron’s relative position in the network. Instead



of this matrix, we maintain a pointer for each neuron which contains the synapses to all linked
neurons. The key part of the module is that the desired response for each neuron must be
given in advance, not only for the neuron in the output layer. Therefore, the BP algorithm
(equation 1 to 5) must be reformed in such a way that every hidden neuron can be treated
like an independent neuron as long as we can calculate its desired response. For this response,
observe the two equations;
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Equation 10 and 11 are the backward delta equation in the BP algorithm using the bipolar
sigmoid function. Symbols are de…ned same as preceding section. Equation 10 is for the the
neurons in the output layer and equation 11 is for hidden layer. Simplify these two equations,
where we regard yL

j and yl
j as the same role, we obtain the desired response for each neuron in

the hidden layer,
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Substitute equation 13 into 12 the desired response for the j0th hidden neuron is:
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With equation 14 we obtain all neurons’ desired responses no matter what layer it belonging
to. Therefore each neuron can be treated separately. To our knowledge this equation has not
been discussed before.

In …gure 3, we illustrate a ‡ow chart of the modular design for the BP algorithm. The
main di¤erence between the formal BP algorithm [2] is that we calculate each neuron’s desired
response before adjust its weights. Figure 4 shows an example of a 1-3-2 modular design network.

Similar to the multilayer feed forward network, a multilayer network can have jump con-
nection (see …gure 5) from lower level to higher level. It’s forward and backward equations are
similar to the BP equations 1 to 5. Its modular design is similar to that for the the multilayer
feed forward network.

3.2 Recurrent Network

A recurrent network [8][9] uses its outputs as its inputs. We show the modular design for
training a recurrent network in Figure 6. The training procedure starts by feeding an input
vector x into the modular network. The desired response is set to a target sequence. The output
of the network is feedback to itself as the next input in each iteration. The procedure will be



Get pattern X
and feed
forward

Compute cycle
error E

Adjust we ights
for output

layer using
F(w,x,d)

More hidden
layers?

Adjust we ights
for hidden
layer using

F(w,x,d)

Initialize
we ights W  for

al l  neurons

Get desire
using Eq(14)

More
patterns?

E<Emax?

E=0
yes

no

yes

no

STOP
no yes

Figure 3: Modi…ed BP training ‡ow of modular design network



Figure 4: Training procedure of modular design network. The values in step 1 are randomly
generated. Succeeding steps change its values accroding to initial step.



Figure 5: An example of a multilayer network with jump connection

Figure 6: The training procedure of recurrent network using modular design. The values in
step 1 are randomly generated. Succeeding steps change its values accroding to initial step.



continued until the error reduced to a satis…able range. We treat recurrent network as a normal
feed forward network, where we connect it’s output destination back to itself.

The modular design is particularly useful for the data ‡ow machine. It is believed to achieve
high degree of parallel computation. The main achievement is that we can decompose neural
networks into small modules which enable us to feed each module into multi-speed processors
that can conform the spirit of data ‡ow machine. The self-organization neural network can cope
with the data ‡ow machine structure with less modi…cations and we omit its discussion.
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