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Abstract 
A new method to simulate physical cloth 

behavior is presented in this paper. Our approach 

provides a convincing modeling for the cloth 

visualization. The main contribution of this work 

is to use neuro-fuzzy method for simulating the 

physical cloth behavior and the model can 

simply add external force to any mass points. 

Experimental results demonstrate the sensible 

and efficiency of our proposed approach. 
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1. Introduction 
Commonly used model approaches are 

differential equations [6], finite element models 

[1] and neural networks [12].However, all 

existing approaches have special characteristic. 

Differential equations require the definition of 

the physical parameters of the real object, which 

are usually hard to determine. If measured data 

exist, e.g. time series data of the objects shape 

under influence of external forces, this leads to 

inverse, mostly ill-posed non-linear problems, 

which are still a field of mathematical research 

[1]. The design of finite element models is 

usually very time consuming, since an 

appropriate structure has to be defined [5]. The 

existing neural network based models on the 

other hand, need training data for learning, 

which is usually not available and has to be 

created, e.g. by use of a predefined 

finite-element model [12]. The learned networks 

are then used to replace the finite-element 

models and thus speed-up the real-time 

simulation. 
Fuzzy systems and neural networks are 

successfully used in the area of automatic 

control, data analysis, and knowledge based 

systems[12]. Fuzzy systems can be used to 

derive parameters of dynamic systems, if only 

vague data about the system is available. 

Artificial recurrent neural networks can be used 

to simulate the dynamic of time-dependent 

systems. Furthermore, neural networks can be 

trained to simulate the behavior of real dynamic 

systems. Therefore, we choose a hybrid 

approach for simulation of cloth. Cloth is one of 

flexible objects considered in the computer 

graphics community.  

The fuzzy-system is used for the 

derivation of the network parameters, which 

defines the behavior of the simulated cloth. The 

artificial recurrent neural network is used for the 

simulation process. Furthermore, it can be used 

to learn or adapt the parameters of the network, 

if measured data exist. So, the neural network 

and the fuzzy system can be described 

separately. 

Mass-spring systems have been used in 

Computer Graphics many years. The advantage 

of these systems is easy implemented and faster 

than that the finite element methods. They have 
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been applied to the animation of inanimate 

bodies such as cloth or soft material [1, 2, 3, 5]. 

Due to the mesh of points can only be 

bended along predefined horizontal , vertical, 

and diagonal lines between the points, the mesh 

is usually unable to plausible model the wrinkle 

which would occur in the cloth at the table’s 

edge. 

The remainder of this paper is organized as 

follows: related work is described in section 2. 

The concept of the neuro-fuzzy system is 

described in section 3. The experiment result and 

a simply conclusions are then shown in section 4 

and section 5, respectively. 

 

2. Related Work 
The most simple and intuitive way of 

designing a mechanical simulation system is to 

consider the object as being discretized into a set 

of vertices that interact with each other through 

elastic forces. A time discretization process then 

updates numerically the position and speed of 

each vertex and yields the evolution of the 

system. By opposition to continuous systems, 

particle systems work on explicit discretizations 

of the simulated objects. 

Based on this simple idea, a large of  

category of particle system based simulation 

techniques have been worked out, which mainly 

differ from one another by the way the forces 

between the particles are computed. 

The simplest models, called spring-mass 

models, consider a triangular mesh where the 

vertices are masses and the edges are springs 

with constant rigidity and optional viscosity. 

These models yield very simple computations, 

but are not very accurate for simulating 

deformable surfaces, as an array of springs 

cannot represent exactly the elastic behavior of a 

plain elastic surface.Physically based model 

applied in the dynamic simulation of cloth apply 

the force calculations between points.  

Terzopoulos et al [3] proposed a model 

applicable to many deformable bodies including 

cloth. The model of the body is deformable 

subject to the theories of elasticity and plasticity. 

Physical models of rigidity and tension are 

applied to the body to enforce static shape 

constraints, and physical properties of the body 

such as its mass and damping are used to 

simulate dynamics. Discretization of the body 

creates a system of linked Lagrangian ordinary 

differential equations. The motion and 

deformation resulting from these forces is 

calculated by integrating through time. 

Terzopoulos[3]have since extended the 

technique by adding a rigid reference component 

and a deformable component which are applied 

in the simulation of rigidity and inelastic 

deformations. 

The Thalmanns [8] proposed extensions to 

Terzopoulos’ employed a refinement process 

which represents the cloth as a B-spline surface 

where the control points of the surface 

correspond to the point masses of the original 

model. Where potential inaccuracies are detected, 

the B-spline surface is refined to better represent 

the discontinuity. Refinement slowed the 

simulation down, but did manage to produce 

more accurate results. The increased 

computation time needed for refinement was 

made worse by the tensor nature of B-splines, 

which enforced the requirement that entire bands 

of the surface be refined rather than just the area 

of the surface at the crease. 

Eberhardt et al[5] introduced techniques to 
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model cloth-specific properties such as 

hysteresis and anisotropic behavior. The system 

also attempts to model the effects of surface 

friction, air resistance, wind and moving bodies 

interacting with the cloth. Hutchinson et al [6] to 

define an adaptive refinement process which 

concentrates effort in refining the mesh, only 

where it is required. The technique employs a 

multi-level, hierarchical mesh to represent the 

varying level of granularity across the cloth’s 

surface. As well as resulting in more accurate 

simulation, computation times are less than 

simulations which use a conventional uniform 

mesh, because the simulation can commence 

with a coarse mesh and refine the coarse 

approximation in affected regions when required. 

Provot [7] observed that when simulating a 

hanging cloth using a mass-spring model, 

excessive deformation often occurs at the 

constraint points. To solve this problem, Provot 

introduced constraints based on the rate of 

deformation. When the rate of deformation 

exceeds a predefined threshold, the elongation of 

the springs is limited. Provot later extended the 

system to handle collisions and self-collisions 

enabling the simulation of draped cloth. 

 
3. The neuro-fuzzy model 

We use neuro-fuzzy model to describe the 

cloth behavior. The presented network uses a 

problem specific structure. The structure of the 

neural network was designed to speed up the 

simulation and learning process. The structure 

implements the system of differential equations, 

which defines the mass-spring model. Assume 

that a surface is discretized into a set of punctual 

masses and spring nodes. A 2D-mesh 

mass-spring model is shown in Figure 1. As the 

figure shown, the network is structured by 

alternating spring and mass layers. 
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Figure 1 Network representation of a 2D-mesh 

In the most common approach, the simulation 

loop may be divided into two steps: 

Step1: Use mechanical parameters and laws to 

compute the vertex accelerations from 

the current positions and velocities of the 

object.  

Step2: Do the integration of velocities and 

accelerations to compute the next vertex 

positions and velocities for one time step 

later. 

Each neuron interacts by two forces, 

internal and external force. The internal force is 

used to describe the mass dynamics of the mass 

point, and divided in three ‘sub-neurons’. These 

three sub-neurons are used to calculate the 

position, velocity, and acceleration of the mass 

point, respectively (see Figure 2). The applied 

external force is used to calculate the actual 

acceleration of the mass point. The velocity and 

position neurons are self-connected feedback 

nodes. 
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Figure 2 Description of the mass point 

Let s be the number of springs and the 

connection matrix with ni1 and ni2 be the node 

numbers connected to spring i ,The network 

input, output and activation functions for the 

neurons are defined as[11]: 

 
i

iijj Xwnet .                 

jjjj netnetAa  )(             

acceleration neuron:  

jj OX                       

velocity and position neurons: 

  jcjjj ataOX .            

Where tc is the time constant. 

Let k be the number of the node, then the 

weights are initialized with the following values: 

acceleration neuron: 

1

1
1 i

ij

nk
otherwise

if
w








      

velocity neuron: 

m
wij

1
                     

Where m is the mass of node. 

position neuron: 

1ijw                      

These nodes implement the following Netowian 

laws, which are used for the definition of the 

physical spring model: 

acceleration and velocity neuron 

 
i

i amFF .              

velocity neuron 

a
dt
dv

                     

position neuron 

v
dt
dp

                       

The neurons behavior have been determined 

by two forces in the physical based models. One 

is the spring dynamics that can calculate the 

actual spring force. The other is damping force 

that  used to simulate by the velocity vectors.  

 


2

1
.

i
iijj Xwnet    

The activation function and the initial weights of 

the sub-neurons are defined as following.. The 

position force neuron is defined by: 

1,1 21  jj ww             

The spring function 

 jjj netAa                 

where “spring function” defines the used spring 

function (for example, if a linear model is used a 

linear function which defines the spring forces). 

The velocity force neuron is defined by: 

       1,1 21  jj ww           

The damping function 

 jjj netAa               

where “viscosityfunction” defines the used 

viscosity function. In case of linear models, let c 

be the spring constant and d be the viscosity 

constant, otherwise let 121 bb . Then the 
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force neuron is defined by: 

 2211 , bwbw jj             

  )(1 jjjj netnetAa        

The surface behavior can be described using 

several mechanical properties, which are formal 

models of the real behaviors of the considered 

material and its reactions against external 

interactions. The main mechanical parameters 

are the elasticity parameters (such as Elongation 

elasticity, Poisson coefficient, Bending elasticity, 

the viscosity, the plasticity). The parameters 

describing external influences mainly are the 

gravitation acceleration, the friction forces with 

the air (such as wind, turbulence and the related 

viscosity forces). The contact forces with 

colliding external objects (such as reaction 

forces, friction forces). 

    mavpfvpfF ds  ,,  

where  vpf s ,  defines the spring force and 

 vpf d ,  the damping force ( viscosity). 

This propagation algorithm was separated 

in two steps. 

Step1: the network was propagated until a local 

energy minimum was reached. 

Step2: to calculate the activities ai of the 

sub-neurons for the next time step. 

However, the stability problems could occur 

during the propagation process. If the parameters 

of the network parameters (e.g. spring constants, 

force, time step, damping constants) are defined 

badly, the network tends to an chaotic behavior.  

We are currently working on learning 

methods, which are based on back propagation 

learning methods for recurrent neural networks. 

The learning stage use measured data or data 

generated by an exact physical model for 

learning. The learning algorithms use the 

position of every node at discrete time-steps as 

input. In learning stage, it tries to minimize the 

error (total cost) function of the network. The 

function is defined as: 

  













N

t K
K

N

t

tE

tEE

0

2

0

2
1

)(
           (18) 

Let t = 0, 1, ..., N be the time-step, yk(t) 

represents the position of node k and pk(t) 

represents the position of the node k in the exact 

physical model at the time-step t, then Ek(t) is 

defined as : 

if node k have desired output )(tpk  then 

 )()( typtE ktkK            (19) 

otherwise  0tEK  

The parameters (weights) of the network are 

adapted after each time-step by a gradient 

descent method. The learning process is finished 

if E is sufficient small. The fuzzy system can be 

used to describe the relations between existing 

(vague) expert knowledge of the solid behavior 

(for example ‘very hard’, ‘soft’, ‘elastic’) and 

the network parameters. 

To be able to use a-priori knowledge for the 

in1itialization of the network parameters we use 

a fuzzy system. A fuzzy system approximates an 

unknown function based on vague samples, 

which are described by linguistic rules, so-called 

fuzzy rules[11].The fuzzy rules make use of 

linguistic terms defined by fuzzy sets to describe 

vague data. A fuzzy system consists of r parallel 

rules. To calculate the output of this system, the 

outputs of every rule are computed first. Then, 

all outputs are combined into a single system 

output. To construct a fuzzy system, the fuzzy 
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rules as well as the membership functions 

describing the fuzzy sets have to be defined. The 

constructed fuzzy system describes the relations 

between the vague knowledge of the cloth (e.g. 

‘very hard’, ‘soft’, ‘elastic’) and the network 

parameters. As input values (domains) we 

currently use mass and forces. The fuzzy system 

can be easily extended to different domains. 

As output values the physical parameters of the 

network model are determined, those are spring 

constant, mass, viscosity and fraction force. 

Every domain was partitioned by fuzzy sets 

representing the linguistic terms used.  

Some sample fuzzy rules for the description 

of cloth materials are as following: 

 if material mass is big and elasticity is big, 

then spring constant is low. 

 if material mass is small, .then spring 

constant is very low and viscosity is high. 

 if force is small, .then spring constant is 

very low and viscosity is high 

The fuzzy rules were found out by inquiring of 

experts and they are optimized manually. 

Currently we are working on neuro-fuzzy 

methods to optimize the derived rule base. 

 

4. Experimental results 
Several simulation results are shown  in 

figure 4. Table 1 shows the pseudo code of the 

propagation algorithm. The program was run on 

a Pentium III-866 machine and written in C++. 

The parameters used in the simulation are 

friction=0.1, damping value=0.8, and the time 

step interval=0.04. In figure 5, the damping 

value was set to 0.05. Figure 6 shows the result 

for the time step=0.01. 

 

Table 1 Pseudo code of  the propagation algorithm 

0: tt  ; 

ttc : ; 

repeat 

propagate all springs at time t; 

propagate all nodes at time t; 

if |max if  | > |max 1 if | then 

tc := tc × 0.5; 

else 

t := t + tc; 

tc := tc × 2; 

end if 

until  ttt 0 ; 

/* 0t the start time 

/* if sum of the force vector values 

/* 1 if sum of the former force vector values 

/* t refresh rate 

 

5. Conclusions 

In this paper, we used neuro-fuzzy 

network system to describe cloth simulation. The 

weight of the network nodes can be initialized 

by the mass and spring parameters. It can simply 

add external force to any node of the model and 

change the object structure freely. The 

simulation result shows that the proposed model 

can obtain a better result for cloth behavior.  

However, the stability of propagation must be 

considered carefully. 
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Fig.3 Snapshots from cloth simulation 

Friction=0.1,damping=0.03,time 

intervals= 0.03 

 

 
 

Fig.4 Snapshots from cloth simulation 

Friction=0.1,damping=0.05,time 

intervals= 0.03 
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