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Abstract
A new method to simulate physical cloth
behavior is presented in this paper. Our approach
provides a convincing modeling for the cloth
visualization. The main contribution of thiswork
is to use neuro-fuzzy method for simulating the
physical cloth behavior and the model can
simply add external force to any mass points.
Experimental results demonstrate the sensible

and efficiency of our proposed approach.
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1. Introduction

Commonly used model ‘appr eﬁ are
differential equations [6}/f1n|te:§gvt mode[s o

[1] and neural networ\4(\12] However all

existing approaches have special characterlstlc.
Differentia equét\i‘ s\Xuire the defieition of
the physical parameters of the real object, which
are usually \ard to determine. If measured data
\/eﬁist, eg. Vtime series data of the objects shape
under/in/ﬂuence of external forces, this leads to
inverse, mostly ill-posed non-linear problems,
which are still a field of mathematical research
[1]. The design of finite element models is
usualy very time consuming, since an
appropriate structure has to be defined [5]. The
existing neura network based models on the
other hand, need training data for learning,

which is usually not available and has to be

created, eg. by use of
finite-element modd [12]. The learned net
are then used to replace the/fmlteel%en
models and thus speed- up/ theal-’ume

N

Fuzzy systems and neural networks are
N

simulation.

successfully  used - in the area of automatic
control, data an: \skand knowledge based
wstems[lZf gwstems can be used to

der|v ameters of dynamm systems, if only
xat abour\the system is available.

¢ Artn‘lcg recurr@“bﬁeural networks can be used
\o/smulate ‘the dynamic of time-dependent

wstems Furthermore neural networks can be

tram&l to simulate the behavior of real dynamic

é/stems Therefore, we choose a hybrid
/approach for smulation of cloth. Cloth is one of
flexible objects considered in the computer
graphics community.

The fuzzy-system is used for the
derivation of the network parameters, which
defines the behavior of the simulated cloth. The
artificial recurrent neural network is used for the
simulation process. Furthermore, it can be used
to learn or adapt the parameters of the network,
if measured data exist. So, the neura network

and the fuzzy system can be described

Separately.

Mass-spring systems have been used in
Computer Graphics many years. The advantage
of these systems is easy implemented and faster
than that the finite el ement methods. They have



been applied to the animation of inanimate
bodies such as cloth or soft material [1, 2, 3, 5].

Due to the mesh of points can only be
bended aong predefined horizontal , vertical,
and diagonal lines between the points, the mesh
is usually unable to plausible modd the wrinkle
which would occur in the cloth at the table’s
edge.

The remainder of this paper is organized as
follows: related work is described in section 2.
The concept of the neuro-fuzzy system is
described in section 3. The experiment result and
a amply conclusions are then shown in section 4

and section 5, respectively.

2. Related Work
The most smple and intuitive way of

designing a mechanical smulation system is to
i

consider the object as being discretized into aset
of vertices that interact with each other through

elagtic forces. A time discretization pr/ C hen
updates numerically the position-and speed. of

system. By opposition @(p/ntinuou{ w@erﬁs,/</

particle systems work on
of the simul ated ij’ect&\
\ .

Based on ;his\gimple idea, a large of
category of . particle system based simulation
ﬁhnings?ﬁavebeen worked out, which mainly
\/iffer f\r‘ m one another by the way the forces

licit discretizations
/

v

bet the particles are computed.

‘/The simplest models, called spring-mass
models, consider a triangular mesh where the
vertices are masses and the edges are springs
with constant rigidity and optiona viscosity.
These models yield very simple computations,
but are not very accurate for simulating

deformable surfaces, as an array of springs

cannot represent exactly the elastic behavior of a
plain elastic surface.Physically based model
applied in the dynamic simulation of cloth apply
the force cal cul ations between points.
Terzopoulos et al [3] proposed a mode
applicable to many deformable bodies including
cloth. The model of the body is deformable

subject to the theories of easticity and pl/ icity.
Physical models of rigidity and tm:&
applied to the body to enforce ati‘c'frs,hap\e
congtraints, and physical prppefiﬁ(hﬁe body
such as its mass and damping are used to
simulate dynamics. ‘,Qiscretizat'rén of the body
differential _equations
deformation  resulting from these forces is
cal/(;uj/é% by /\i/ntegrgting through  time,

creates a system O?N(ed Lagrangian ordinary

The motion and

quiep\Qu|oé[3]r;a\/é/\y 'since  extended  the

technique by aqtimg arigid reference component
¥: d a delfbrméble component which are applied
in ;th\é_%i'mmation of rigidity and indastic

‘;,ygéf(\)r‘r\r/\ations

each vertex and yields the evolution of th/e//"

The Thalmanns [8] proposed extensions to
Terzopoulos’ employed a refinement process
which represents the cloth as a B-spline surface
where the control points of the surface
correspond to the point masses of the original
model. Where potential inaccuracies are detected,
the B-spline surface is refined to better represent
the discontinuity. Refinement dowed the
simulation down, but did manage to produce
more accurate results. The increased
computation time needed for refinement was
made worse by the tensor nature of B-splines,
which enforced the requirement that entire bands
of the surface be refined rather than just the area
of the surface at the crease.

Eberhardt et al[5] introduced techniques to



model  cloth-specific  properties such as figure shown, the network is dructured by
hysteresis and anisotropic behavior. The system alternating spring and mass layers.

also attempts to model the effects of surface
friction, air resistance, wind and moving bodies
interacting with the cloth. Hutchinson et al [6] to
define an adaptive refinement process which
concentrates effort in refining the mesh, only
where it is required. The technique employs a
multi-level, hierarchical mesh to represent the
varying level of granularity across the cloth’s
surface. As well as resulting in more accurate
simulation, computation times are less than
simulations which use a conventional uniform

mesh, because the smulation can commence

with a coarse mesh and refine the coarse AL :
approximation in affected regions when required. Fi99£e 1 Network representation of a 2D-mesh

Provot [7] observed that when smulating a ’\x VPN

In“the com On approach, the simulation
hanging cloth using a mass-spring model,/ - \
loop may be dl\&dﬁi into two steps:

St}pl Use mechanlcal parameters and laws to

excessve deformation often occurs at th?e
congtraint points. To solve this problem, Provot
introduced constraints based on the \(ate/ kf)f
deformation. When the rate of dm
exceeds a predefined threﬁhold th\siongatlon of © A,
the springs is limited. @{t |ater e)d/ded the/

chpute the vertex accelerations from
) ) \ the current positions and velocities of the
on / 7 object.
/Step2 Do the integration of velocities and

accelerations to compute the next vertex
system to handle collision \agd self- oolllsons

enabling thesmulanonk;\draped cloth.”
N\ \ N later.
N\ Each neuron interacts by two forces,
3. The neuro-fuzzy model Y
/ We! u;g neuro-fuzzy model to describe the
<“cloth \‘\avi/or. The presented network uses a

positions and velocities for one time step

internal and externa force. The interna force is
used to describe the mass dynamics of the mass

o point, and divided in three ‘sub-neurons’. These
prob specific structure. The structure of the

three sub-neurons are used to cdculate the
neural network was designed to speed up the

position, velocity, and acceleration of the mass
simulation and learning process. The structure

point, respectively (see Figure 2). The applied
externa force is used to calculate the actual

implements the system of differential equations,

which defines the mass-spring model. Assume
o ) ) acceleration of the mass point. The velocity and

that a surface is discretized into a set of punctual
) position neurons are self-connected feedback

masses and spring nodes. A 2D-mesh

. . — nodes.
mass-spring mode is shown in Figure 1. Asthe
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Figure 2 Description of the mass point

Let s be the number of springs and the
connection matrix with nil and ni2 be the node
numbers connected to spring i ,The network
input, output and activation functions for the

neurons are defined ag 11]:
net; = Ei;(wij .Xi)

a; = A (net;) = net;

accel eration neuron:

<
X =0

J J

vel ocity and position neurons:

Let k be the number of t
weightsare mmakzed m the following val ues:
acceleration/meuron;

(1 if

-1 otherwise

node/ then the

k:nil

velacit
\ 1

euron:

Where M isthe mass of node.

position neuron:
w, =1

These nodes implement the following Netowian

laws, which are used for the definition of the

physical spring model:

acceleration and velocity neuron

2R =F=ma

vel ocity neuron

dv

E =
position neuron

d \
—p=V o \

~

dt Q)
The neurons behavior h<é(/e/ ‘ <%ﬂamined

by two forces in the physical based models. One
is the spring dynamics that can calculate the
actual spring force
that usedtpsnm/ul/eb the velocity vectors.

other is damping force

\nét Z( )

1, S l Q]

A

- The\agk on funchﬂn and theinitial weights of

thel sub-neurdh%\are defined as following.. The
jtion fOroe neuron is defined by:

,'\ Q

> Wy =Lw, =-1

//' The spring function

a; = A (netj)

where “spring function” defines the used spring
function (for example, if alinear model isused a
linear function which defines the spring forces).

The velocity force neuron is defined by:
W =Lw,, =-1
The damping function
a; = A (netj )

where “viscosityfunction” defines the used

viscosity function. In case of linear models, let ¢
be the spring constant and d be the viscosity
constant, otherwise let b, = b, =1. Then the



N

A

force neuron is defined by:

Wy = bl’WZj = bz

a, = A (net,)=1-(net,)

The surface behavior can be described using
several mechanical properties, which are formal
models of the real behaviors of the considered
material and its reactions against external
interactions. The main mechanical parameters
are the elasticity parameters (such as Elongation
elagticity, Poisson coefficient, Bending elasticity,
the viscosity, the plasticity). The parameters
describing external influences mainly are the
gravitation acceleration, the friction forces with
the air (such as wind, turbulence and the related
viscosity forces). The contact forces with
colliding external objects (such as reaction
forces, friction forces).

= f.(p,v)+ f,(p,v)=ma
where f_(p,V) defines the spring forc ar}z/
fd(p,v) the damping force(v/ecost \
This propagation }orithm
in two steps.

\/ <
N7 R
Stepl: the network was pro agated untit alocal

v

energy m pl‘m was reached.
Step2: to calcul\at&the activities a of the
sub-neurons for the next time step.
Howeér the stability problems could occur
ur:eg}'k/e propagatlon process. If the parameters

of the network parameters (e.g. spring constants,
foree, time step, damping constants) are defined
badly, the network tends to an chaotic behavior.
We are currently working on learning
methods, which are based on back propagation
learning methods for recurrent neural networks.
The learning stage use measured data or data

generated by an exact physical mode for

learning. The learning algorithms use the
position of every node at discrete time-steps as
input. In learning stage, it tries to minimize the

error (total cost) function of the network. The

N
Lete t =0, 1, ..,

N be the til ep yk(t)
represents the position oynod\r’k;}d pk(t)
t

represents the position of the nod he exact

function isdefined as:

E:iEm
SN0

physical model at the time-step t, then Ex(t) is
defined as: < N
if node k‘hav%jesi edoutput P, (t) then

( ) pk(t)

\iéﬁwEdﬂ

AU (19)

< \aeh(e parametere\(weghts) of the network are

apted (( afler each time-step by a gradient
deﬂ:@t method The learning process is finished

g ‘Eis sufficient small. The fuzzy system can be

\\AQS separated A /used to describe the rdations between existing

(vague) expert knowledge of the solid behavior
(for example ‘very hard’, ‘soft’, ‘elagtic’) and
the network parameters.

To be able to use apriori knowledge for the
inlitialization of the network parameters we use
afuzzy system. A fuzzy system approximates an
unknown function based on vague samples,
which are described by linguistic rules, so-called
fuzzy ruleq11].The fuzzy rules make use of
linguistic terms defined by fuzzy sets to describe
vague data. A fuzzy system consists of r parallel
rules. To calculate the output of this system, the
outputs of every rule are computed first. Then,
all outputs are combined into a single system

output. To construct a fuzzy system, the fuzzy



rules as well as the membership functions
describing the fuzzy sets have to be defined. The
constructed fuzzy system describes the relations
between the vague knowledge of the cloth (e.g.
‘very hard’, ‘soft’, ‘dagtic’) and the network
parameters. As input values (domains) we
currently use mass and forces. The fuzzy system
can be easily extended to different domains.
As output values the physical parameters of the
network model are determined, those are spring
constant, mass, viscosity and fraction force.
Every domain was partitioned by fuzzy sets
representing the linguistic terms used.

Some sample fuzzy rules for the description
of cloth materias are asfollowing:
»  if material massisbig and eladticity is big,

then spring constant islow.

»  if material massissmall, .then spring

constant is very low and viscosity is high." \

»  if forceissmall, .then spring constant is
very low and viscosity is high \/
The fuzzy rules were found out )z)y m&h@ of
experts and they are optl m|z
Currently we are wi rK 9 on néro—tuzzy
methods to optlmlzethe deri E@ruleb@se g

4. Exp\er\lmehtal results
Several simulation results are shown in

ure' 4, %ble 1 shows the pseudo code of the
%;; ropagation algorlthm The program was run on
a Peadn [11-866 machine and written in C++.
Thé/ parameters used in the simulation are
friction=0.1, damping value=0.8, and the time
step interval=0.04. In figure 5, the damping
value was set to 0.05. Figure 6 shows the result

for thetime step=0.01.

Tablel Psaudocodedf  thepropagation dgarithm

repeat
propagate all springs at timet;
propagate all nodes at timet;

if max > f, |>[max f, ,|then

tc:=tcx 0.5

ese <
t:=t+tc gi§§§>
tci=tcx 2; \//\,/ ’
endif / \\

until t>t,+t,; <
I* t, the start time ~

=3 f, sum of the f&\r::ector values
<y £, sum of)qé ormer force vector values

I* 1, refresh rate

5. C@somi

In thls paper, we used neuro-fuzzy

network a/stem to describe cloth smulation. The
N\ \ v

v/véi;cjhf of the network nodes can be initialized

manually A /by the mass and spring parameters. It can smply

add external force to any node of the model and
change the object structure fredy. The
simulation result shows that the proposed model
can obtain a better result for cloth behavior.
However, the stability of propagation must be

considered carefully.
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gi‘g% Snapshats from cloth simulation

Friction=0.1,damping=0.03,time
intervals= 0.03

L

Fig.4 Snapshots from cloth simulation
Friction=0.1,damping=0.05,time
intervals= 0.03



