1998 International Computer Symposium
Workshop on Artificial Intelligence)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Bring Intelligence to Object-Embedded Documents
Using PrologScript Language

Tai-Wen Yue and Su-Chen Chiang

Department of Computer Science & Engineering
Tatung Institute of Technology

Abstract

Nowadays, it is not uncommon that a web page includes many
ActiveX controls and/or applets, which are controlled via
various scripts coming with the page. Besides reducing Internet
traffic, this also makes the page more active and enhances
software reusability. Two leading scripting languages are
VBScript, which was provided by Microsoft, and JavaScript,
which was provided by Netscape. Such procedural languages,
however, arc inappropriate in AI (artificial intelligence)
programming. To apply Al technology into Web, we develop
the so-called PrologScript language. This allows Web page
designers to embed rules into documents and, as a result, make
controls in documents, seémingly, intelligent.

This research is based on COM (Component Object Model)
model and ActiveX Scripting technology. In the paper, we'll
describe the architecture of a scripting engine and its
counterpart, say, scripting host. In addition, we highlight the
strategy of building a scripting engine using available
programming environment in a local system. Two concrete
examples are given to manifest the feasibility of using
PrologScript to bring intelligence into object-embedded
documents.

1.Introduction

At the beginning stage of the World Wide Web (WWW), an
HTML document is simply comprised from a set of hypertext
information [2]. Today, due to the rapid evolution of object
technology, most web browsers can also render objects or
controls, which carry execution code to the client site to
perform certain tasks while a HTML document is downloaded.
" The popular controls currently used in WWW are Java applets
and ActiveX controls.

To achieve reusability and flexibility, controls are generally
designed programmable. Specificaily, a control includes a set
of properties to configure its profile, a set of methods to control
its behavior, and itself can generate events to feedback its state
to listeners. Henceforth, a scripting mechanism is required to
coordinate the behavior of such embedded controls. Today, the
two leading scripting languages for writing scripts are
JavaScript [10] and VBScript [8). These two scripting
languages are syntactically very similar to one another, and are
Algol-type procedural languages [1]. To enrich the scripting

capability, it's conceivable that other types of language might
be developed so as to achieve specific goals easier.

Although JavaScript and VBScript are sufficiently powerful
in many situations, such procedural languages, however, are
hardly to let us bind intelligence into a document. In the paper,
we' discuss the newly developed scripting language called
PrologScript. PrologScript is made up of a subset of Prolog
language for scripting. The corresponding scripting engine is
developed using ActiveX Scripting technology [7], which is
defined based on COM [9, 12] object model.

Since the WWW comes to our life, office automation heavily
depends on using Internet and/or Intranet applications. Many
such applications in WWW may also be required to
intelligently interact with users, such as stock analysis, decision
making. Prolog is a rule-based language. It is particular suitable
for Al programming, e.g., building an expert system [4]. To
build an Al application, the programmer simply describes the
logic among all of its terms, including atoms, variables,
lists, ... etc., using clauses (rules). This, hence, will ease and
accelerate the design process for Al applications (when
compared with using traditional Algoi-type languages.)

This paper is organized as follow: Section 2 gives a brief
review of the COM object model and describes the architecture
of a scripting engine. Section 3, describes the syntax and
semantics in writing a PrologScript. Section 4 discusses the
main components for the scripting host and scripting engine of
PrologScript. In Section -5, two games, called slide-block-
puzzle and 3-pile-nim, are demonstrated to manifest the
applying of PrologScript to Al applications. Finally, we draw a
conclusion in Section 6.

2.COM And ActiveX Scripting

2.1 COM

The core of the Component Object Model is a specification
for how components and their clients interact. For any platform,
COM defines binary standard for interoperability of software
components. An object creates a vrable, see Figure 1, that
contains pointers to the implementations of the interface
member functions. The client’s pointer to an interface is, in fact,
a pointer to the pointer of the vtable. Thus, components can be
implemented in any programming languages and used by
clients that are written using completely different programming
languages.

-220-

Client
Variable

VTBL pointer T~ VTBL

private object / ' N\
data fn1(pObj, argi, arg2)

«
}

fn2((pObj, argl, arg2)

faN (pObj, argl, arg2)
o {

o

Figure 1. Virtual function tables (VTBL)

Code 1. The members of IUnknown interface.

interface IUnknown

{
H_RESULT QueryInterface (REFIID riid,void** ppvObject):
ULONG AddRef ()
ULONG Release();

To become a COM object, the object at least must implement
the IUnknown interface. It has three member functions as
shown in Code 1. Furthermore, COM allows an object to
implement multiple interfaces, all of them have to inherit the
IUnknown interface. The IUnknown::Querylnterface() member
function allows the client to perform interface navigation, i.e.,
the client can navigate to any interface from anywhere by
issuing Queryinterface() request on the underlying interface
given the goal interface ID as an input parameter, as shown in
Figure 2. In addition, the object must maintain a reference
counter to keep track its interface usage. Specifically, if the
object reports an interface to the client (i.e., the object copies
the pointer of a vtable to a client’s location), it must call
AddRef{) once to increase the reference count. As for the client,
if an interface is no more used, the client must call the Release()
member function once on that interface. Upon receiving the
release call, the object will decrease the reference count. If the
counter reaches zero, the object will destroy itself. This means
that the object will automatically return its resource to the
system if it is not used by any client.

In summary, with COM, an object is a piece of compiled
code that provides some service to the rest of the system. Itis a
binary standard of how you talk to an object, how that object
handles its own lifetime, and how it tells the world that it can
do.

2.2 ActiveX Scripting

Programs that drive other applications are sometimes called
scripts. In other words, script is the data that make up the
program that the scripting engine runs. You could place an
ActiveX control on a page, but it may work improperly without
script. ActiveX controls are actually more reliant on scripting

1998 International Computer Symposium
Workshop on Arificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, ROC

User calls A:: QueryInterface to
asking for a pointer to interface B

Object

Implementation
>®—— of interface

A members

Client

pinterfaceA

Object’s
internal
Implementation data

=®__. of interface

B members

pInterfaceB

A::QueryInterface returns a pointer to interface B
on the same object. B::QueryInterface can return
a pointer to interface A as well.

Figure 2. Using IUnknown::QueryInterface

than other kinds of Web interface elements. We will take a look
at ActiveX Scripting, which is an OLE [3] communication
technology rather than a scripting language.

With ActiveX Scripting, hosts can call upon disparate
scripting engine from muitiple sources and vendors to perform
scripting between components. The implementation of the
script itself—language, syntax, persistent format, execution
model, and so on—is left to the script vendor. The purpose of
this standard is to define a method for a scripting host to call on
various scripting engines and allow communication between
objects within an OLE container. Three different elements, see
Figure 3, are involved in an ActiveX Scripting session: the
ActiveX Scripting host, an ActiveX Scripting engine, and the
window, called container, containing the code and controls.

An ActiveX Scripting host is a piece of code that
communicates with scripting engine(s). When you define a
script, it's the host that accepts it and then sends the commands
to the engine. A scripting host typically hosts objects, placed in
a container, with their methods, properties, and events can be
invoked, accessed, and received by an executing script. The
most common example of an ActiveX scripting host right now.
is Intemet Explorer 4.x. A script is executed by a scripting
engine under the control of a host. An ActiveX scripting engine
is the object that actually interprets the script. There are no
limitations on the precise language syntax or even the form of
the script. ActiveX Scripting engines can be developed for any
language or run-time environment, including Microsoft Visual
Basic for Application (VBA), Microsoft Visual Basic Scripting
Edition (VBScript), Per], and Lisp. In the next section, we'll
describe how to apply the architecture to devélop PrologScript
engine.

2.3 Interfaces and Executing Scenario

The . main interfaces defined for ActiveX Scripting are
summarized as follows:
Scripting Host:

* [ActiveScriptSite: The host must create a site for the
engine’s communication by implementing this interface. It
monitors events such as the starting and stopping of scripts
and when a script error ocqurs, :

-221-

1998 International Computer Symposium
Workshop on Artificial intelligence)
Decembeg' 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

ActiveX
Scripting
Container
N Scripting
>O— Ergine
>0
Host »(O—- g
VBScript
O JavaScript
amOa PrologScript

Figure 3. Three different elements that are involved in
an ActiveX Scripting session

Code 2(a): The script of Polygon control with VBScript

<HTML>

<HEAD>

<TITLE> PolyCtl with VBScript</TITLE>

</HEAD>

<BODY>

<OBJECT ID="polygon”

< CLASSID=
"CLSID:4CBBC676-507F-11D0-B98B-000000000000”
>

>

</OBJECT>

<SCRIPT LANGUAGE="VBScript">

<l=-

Sub polygon_ClickIn(x, ¥)
polygon.Sides = polygon.Sides + 1

End Sub

Sub polygon_ClickOut (x, y)
polygon.Sides = polygon.Sides - 1

End Sub

-—>

</SCRIPT>

</BODY>

</HTML>

LActiveScriptSiteWindow: The host can support this
interface to allow an engine access to that object’s window,
e.g., displaying a message window.
IProvidMultipleClassinfo: This interface provides access to
the type information of the default interfaces that describe
an extended object. A container typically implements an
extender object to add properties, methods, and events to an
existing object, extendee.

Scripting Engine:

» [dctiveScript: Every scripting engine must support this
interface. A user uses the method in IActiveScript to pass
the engine a pointer to the host’s I4ctiveScriptSite interface,
to tell the script begin executing and performing other tasks.

* [ActiveScriptParse: Scripting engines that allow script text

to be added dynamically can support this interface,

The steps involved in the interaction between the host and

1. Create Host -
Hoot 2. Create OLE Scn'pﬁ_nx___) ActiveX
08 Scripting
3. Load Engine
script)
) Ipersist* / IActiveScriptParse
_ 4. Add Named Item
LAcﬁvZéEﬁpt
5. Run
6. Get Item Info
IActiveScript
. 7. Advise
Page _ X Code
(Named | IConhectionPoint Object
Ite 8. Invoke
m) for Page
& Controls “\C. ¢ top -

Figure 4. ActiveX Scripting Basic Architecture

Code 2(b): The script of Polygon control with PrologSript

<HTML>
<HEAD>
<TITLE> PolyCtl with PrologScript</TITLE>
</HERD>
<BODY>
<OBJECT ID="polygon"
< CLASSID=~
"CLSID:4CBBC676-507F-11D0~B98B~000000000000*
>
>
</OBJECT>
<SCRIPT LANGUAGE="PrologScript">
<te-
polygon{onClickIn, X, Y):-
polygon{getSides, Pl),
P2 is Pl+1,
polygon(setSides, P2).

polygon{onClickOut, X, Y):-
polygon (getSides, P1),
P2 is Pl1-1,
polygen(setSides, P2).

-=>

</SCRIPT>

</BODY>

</HTML>

engine [8], as shown in Figure 4, are as follows:

1. The host loads a document, which may designate the
script language to be used. for the associated script, for
example, in the LANGUAGE attribute of <SCRIPT> tag,
see Code 2.

2. The host creates a scripting engine by treating the value
of that attribute as the engine’s ProgID. A call to
CoCreatelnstance() completes the task.

3. The host calls engine’s IActiveScriptParse:: InitNew() to
create an empty script and, then, calls
IActiveScriptParse::ParseScriptText() to set the script
context into the engine.

4. The host calls the I4ctiveScript: :AddNamedItem method
to add a top-left named item into the engine's name
space.

5. Now, ActiveX Scripting engine has everything it needs

to run the script; the host issues an

-222- .

Figure 5. The Polygon Control

ActiveX

Scripting

Figure 6. PrologScript engine Architecture

LActiveScript::SetScriptState(SCRIPTSTATE_CONNECT
ED) call to start the script.

6. Each time the script engine need to associate a symbol
with a top-level item, it calls the
IActiveScriptSite::GetltemInfo method, which returns
information about the given item.

7. Before starting the actual script, the scripting engine
connects to the events of all the relevant objects through
the IConnectionPoint interface.

8. As script runs, the scripting engine realizes references to
methods and properties on named objets through
IDispatch::Invoke -or other standard OLE binding
methods.

3.The PrologScript

PrologScript is a scripting language formed from a subset of
Prolog language. In essential, the syntax of PrologScript is
similar to that of Prolog. In the following, we informally
describe the syntax regarding to control’s operations. We
assume the object being named theObject.

3.1 get/set Properties
To get/set a property, say, Property of theObject, use
the following syntax:

1998 International Computer Symposium
Workshop on Artificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Code 3. The Type Information of a Polygon object

import "oaidl.idl";
import "ocidl.idl";
(
object,
uuid (4CBBC675-507F-11D0-B98B-000000000000) ,
dual
]
interface IPolyCtl :
{
[propget, id{1l)) HRESULT Sides([out, retval] short
*newval) ;
[propput, id{1l)] HRESULT Sides([in] short newVal);
[uuid(4CBBC673-507F-1100-B98B-000000000000)]
library POLYGONLib
{
importlib("stdole32.tlb");
[uuid(4CBBC677~507F-11D0-B98B-Q00000000000)]
dispinterface _PolyEvents
{
properties:
methods:
{1d(1)] void ClickIn({in]long x, [in]l long y):
{1d(2)] void ClickOut({in)long x, [in] long y):;
i
[uuid(4CBBC676-507F-11D0~-B98B-000000000000)]
coclass PolyCtl
{
(default} interface IPolyCtl;
[default, source} dispinterface _PolyEvents;
}i
}i

IDispatch

Get Property : theObject(getProperty, X)

Set Property : theObject (setProperty, Y)
That is, to get/set a property, one simply appends the property
name defined in IDL (interface description language) of the
object after "get"/"set". To get a property, X must be an
unbounded variable (in Prolog, an unbounded variable begins
with a capital character). To set a property, Y must be a
bounded variable or a literal (such as a digital value, or a
string.)

3.2 Method Invocation
To invoke a control's method, say, Method with parameters,
say, (<kparml>, <parm2>, ..), use the following syntax:
Method Invocation : theObject (callMethod,
<parml>, <parm2>, ..)
That is, to invoke a method, one simply appends the method
name defined in IDL after "call”. For each {in] parameter of
a method, it must be passed as a bounded variable or a literal.
Conversely, for each [out] parameter, it must be passed as an
unbounded variable. For each [inout] parameters, for
example, X, it must be passed as an order pair [Xin, Xout],
i.e., a two-clement list, where Xin must be a bounded variable
or a literal while Xout an unbounded one.

3.3. Event Handlers
To define a event handler for an event, say, Event with
parameters, say, (<parml>, <parm2>, ..), use the
following syntax:
Event Handler : theObject (onEvent, <parml>,
<parm2>, ...)
That is, to define an event handler, one simply appends the

-223-

1998 International Computer Symposium

Workshop on Artificial Intelligence)
Decembe?r 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Code 4. The code of invoke rule

invoke (Obj, Name, Param):-

atom _string(Obj, SObj), string_chars(SObj, LObj),

append (LOb3, [44}, L1),

atom string(Name, SName), string chars(SName, LName),

append (L1, LName, L2),

(

({ { number (Param}, number_string{Param, SParam));

(atom({Param), atom_string(Param, SParam) };
(string{Param), SParam=Param)

)I
append (L2, {44}, L3},
string_chars{SParam, LParam},
append (L3, LParam, Last),
string_chars(S, Last)
)i
(var(Param), string_chars(S, L2})
)I
window (Handle),
sendMsg (Handle, 1025, 0, 0, S),
{
{ var (Param), sendMsg(Handle, 1026, 0, 0, Param), !):
sendMsg (Handle, 1026, 0, 0, P), !
Yo b

event name defined in IDL after "on". The parameter passing
convention is the same as that defined for method invocation.

3.4. The Comparison between PrologScript and
VBScript

For comparison reason, we use a simple ActiveX Control
called Polygon, see Figure 5, to highlight the differences
between PrologScript and VBScript. The IDL of Polygon
control is listed in Code 3. The control has a property named
Sides. By varying its value, the control will redraw the
polygon with the specific number of sides. Figure 5 shows the
polygon with Sides being set to 5. The control also generates
two events ClickIn and ClickOut, which are fired while
mouse left button is clicked inside and outside the polygon
respectively. The event handlers written using PrologScript and
VBScript are listed in Code 2.

4.The Architecture

Figure 6 shows the architecture of scripting host and engine
for PrologScript. The interfaces between the host and engine
follows the ActiveX Scripting described in Section 2.

4.1 The Scripting Host
Any browsers that follow the specification of the ActiveX
Scripting, for example, IE 4.0, can serve as a scripting host of
the proposed PrologScript engine. For experiment purpose, we
have built a simplified host using Visual C++, Our host only
eats contents located inside <OBJECT> and <SCRIPT> tags in
HTML documents. The host also serves as a control container,
Upon receiving a document, e.g., see Code 2. The host
performs the following parsing actions:
1. When encounters <SCRIPT> tag, the host extracts the
engine's ProgID described in LANGUAGE attribute, e.g.,
“PrologScript”, “VBScript” or “JavaScript”.

Accordingly, the host retrieves the engine’s CLSID by
calling CLSIDFromProgID(}). Then, the host calls
CoCreatelnstance() to lannch the engine and, through
the invocation of IActiveScript::SetScriptSite(), passes
the IdctiveScriptSite interface to the engine to make that
as an connection channel from engine to host.
Furthermore, the host calls IdctiveScriptParse:: InitNew()
to initialized an empty script context. The rest of content
in this tag, i.e., script context, is then sent to the engine
by issuing IdctiveScriptParse::SetScriptText().

2. When encounters <OBJECT> tag, the host extracts its
ID and CLSID attributes to serve as the object name and
to create the object, respectively. The object name
{becomes a property) and its associated IDispatch is then
put into a type library, which is created for extending
objects.]

3. When reaches the end of the document, the host calls the
IActiveScript::AddNamedltem() to add its top-level
named item to engine's name space. This enables the
engine to dynamically retrieve the IDispatch interfaces
of extending objects.

4. The host now is ready. It then starts the engine by setting
the engine's state to SCRIPTSTATE_CONNECTED by
using IActiveScript::SetScriptState() call.

5. As an ending, the host closes the engine by calling
McﬁveScrxpt::CioseO, and releases all the interfaces it
holds.

If the steps from 1 to S are successfully done, the host and the
engine both are ready to interact one another.

4.2 The Scripting Engine for PrologScript

This prototype of scripting engine is buiit on the top of an
existing Prolog product WIN-PROLOG [5], developed by
Logic Programming Associates LTD. For convenience, we call
the upper-layer engine shown in Figure 6 as engine, and call
the lower-layer engine as WIN-PROLOG unless otherwise
specified. Because WIN-PROLOG supports DDE (Dynamic
Data Exchange protocol) [11], the engine and WIN-PROLOG
communicates using the established DDE channel. Passing
WM_DDE POKE or WM _DDE_EXECUTE messages
between these two layers, the engine can set data to WIN-
PROLOG or request it to handle events, and vice versa.

The interfaces that we implement are consistent with those
described in Section 2. The actions that the engine performs are
described as follows: :

1. As the instance of the engine is created, it seeks to find the
WIN-PROLOG server using DDE protocol, i.e.,
broadcasts WM_DDE_INITIATE message for finding
application named "Prolog Server”, and with topic name
being "Engine”. If failed, we will notify the user to start up
the server manually and to try it again. After connection
established, the engine then sets itself to "Uninitialized"”
state and waits host's invocation.

2. Upon receiving lActiveScript::SetScriptSite and

-224-

IActiveScriptParse::InitNew invocations from the host (in -
"Uninitialized" state), the engine steps into "Initialized”
state. In the scope of the invocations, the engine saves the
host's [ActiveScriptSite interface pointer and reports its
state to the host by the invocation of
LActiveScriptSite: :OnStateChange().

3. Upon receiving IdctiveScript::AddNamedltem (in
"Initialized” state), the engine adds this top-level item
name into engine's name space.

4. Upon receiving IActiveScriptParse::SetScriptText (in
"Initialized” state), the engine asks WIN-PROLOG to
clear any script that it has ever received (via
WM_DDE_EXECUTE message). Then, it hands this
newly received script to WIN-PROLOG (via
WM_DDE_POKE message.)

5. Upon receiving IActiveScript: :SetScriptState
(SCRIPTSTATE_CONNECTED) (in "Initialized" state),
the engine, incorporating with the host, performs a
sequence of preparation tasks (to be detailed shortly).
After the preparation has suitably been done, the engine
steps to "Connected" state and notifies the host this. Now,
both the host and the engine are ready to talk to one
another.

6. When the host wants to terminate the engine, it will notify
the engine by the invocation of LdctiveScript::Close().
Upon this, the engine sends WM_DDE_TERMINATE
message to WIN-PROLOG to terminate the associated
DDE channel and, then, releases any host-site interfaces it
holds.

The most complicate part in writing engine's code is that to
respond the ctiveScript: :SetScriptState
(SCRIPTSTATE_CONNECTED) invocation from the host. In
the following, we summarize the tasks that should be done by
the PrologScript engine to respond this call:

1. Getting dispinterfaces of objects: In order that the
engine is able to get/set the properties, and to invoke
methods of all objects hosted by the container (including
the container itself), the engine has to acquire their
dispinterfaces (a shorthand for IDispatch interface). To
this, the engine, through the IProvideMultipleClassinfo
interface provided by the host, queries the type library
information that the host dynamically builds during
parsing phase (refers to Step 2 that the host performs.)
From the type information, a set of object names is
obtained. By that, the engine can get the all related
IDispatch interfaces of object instances hosted by the

1998 International Computer Symposium
Workshop on Artificial intelligence

December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

generates an event-sink object and makes a connection
to the event source. The event-sink object has a
dispinterface, which is dynamically built by consulting
to the type information that we obtained earlier. The
source-sink connection is established by negotiating the
IConnectionPointContainer using the IID, which is
prescribed in the type information, of the source
dispinterface. When the source makes an invocation, the
request will be delegated to WIN-PROLOG for service.

. Rules generation: In a Prolog system, everything is

driven by rule. Consider the event handler
polygonfonClickin, X, Y) shown in Code 2.
polygon{onClickIn, X, Y):-
polygon(getSides, P1),
P2 is P1l+1,
polygon(setSides, P2).
It is clear that there are three sub-goals in the above rules.
If without corresponding rules that serve to achieve
those sub-goals, this rule will be failed. This reveals that,
although the scriptwriter does not write rules to perform
property get/set or functional invocation, the engine
automatically generates them for him/her. As a
demonstration, given the type information of Polygon
in Code 3, the engine generates the following rules:
polygon(getSides, NewVal):-
invoke (polygon, getSides, Return),
nunber string(NewVal, Return).
polygon(setSides, NewVal):~
-invoke (polygon, setSides, NewVal).
It is not hard to see that these rules further have sub-
goals. Sub-goal number_string is a WIN-PROLOG
function, which performs conversion between a string
and a numeric value. Sub-goal invoke is the one that
we write to establish the connection from lower-layer
engine (the WIN-PROLOG) to upper-layer engine (or
simply as engine). The rule invoke is, somehow,
cumbersome because low-level function call is involved.
Basically, in the rule, we apply conversion functions
(rules in WIN-PROLOG) to convert parameters and the
return result(s), and use WIN32 low-level function call
interface (support by WIN-PROLOG) to communicate
with the engine through the established DDE channel.
For clarity, we list the rule of invoke in Code 4.

S.Example AI Applications

In many problems, state space growth is combinatorially

container. explosive, with the number of possible states increasing
2. Building event sinks for objects: Through the exponentially with the depth of the search. In Al the weil-
IProvideClassinfo interface of each object, the engine known A* algorithm [6] is very efficient in defeating this

can get its type information. If the object can source combinatorial explosion and finding an acceptable solution. A*
events, it should include an entry of dispinterface with algorithm is a heuristic algorithm along with an evaluation
[source] aftribute in the coclass module (see Code 3 function. Using Prolog to implement A*, its root pattern (rules),
for an example). If such an entry is available, the engine in general, is in the form of:

-225-

1998 International Computeir Symposium
Workshop on Artificial Intelligence .
Decembe‘: 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

1. goal(Start, End) :-
initialize(Start),
End) .
2. moveToGoal (X, X):-!.
3. moveToGoal (From, To)} :-
chooseNextStep (NextStep),
gotoNextStep (NextStep),
moveToGoal (NextStep, To).

The user demands Prolog to find out a way to reach a goal by
specifying the Start and End configurations corresponding to
that goal, as shown in the first rule depicted above. This rule
initializes an Open list and a Close list so as to keep track the
paths that haven't and have been tried. It, then, starts its main
task by invoking another sub-goal moveToGoal(From, To). The
rules to achieve this sub-goal are described in the 2° and 3"
rules. It can be easily seen that the 2* rule simply terminates
the inference process of Prolog. The 3™ rule is the one that is
most critically to effect the efficiency to solve a problem.
Human intelligence, namely heuristic, can be appropriately
involved to improve solution quality and performance. In
particular, the rule for sub-goal chooseNextStep(NextStep)
should be designed based on the so-called evaluation function.
In terms of Al, the evaluation function corresponds to solution
cost, may be a predicted one, to a problem. Therefore, the rules
to reach this sub-goal are problem dependent. In the following,
we'll apply different such rules to solve the corresponding
problems. The next sub-goal, say, gofoNextStep(NextStep) is
simply used to report the node being reached. And, the last sub-
goal, say, moveToGoal(From, 1o) simply repeats the
aforementioned scenario by recursively invoking the goal of
itself.

moveToGoal (Start,

5.1 The Game of Sliding-Block-Puzzle

The game is defined as follows: Consider a sliding block
puzzle with the following initial configuration as shown in
following:

0123456
WIwWIw[E[B|B[B]

There are three black tiles (B), three white tiles (W), and an
empty cell (E). The puzzle has the following legal moves:

(a) A tile may move into an adjacent empty location.

(b) A tile can hop over one other tile into the empty cell.
The goal of this game is to make as few moves as possible to
bring all of the black tiles to the left of all of the white tiles, and
to make the empty cell divides two kinds of color tiles.

We've designed an ActiveX control, see Figure 7, to
represent such a puzzle. The control has only one property
named Config (the puzzle configuration) and without any
method. While the automation controller changes its value, the
control will redraw itself (in animation) to reflect this change.

With a little investigation, one can see that there are
infinitely many paths that can lead puzzle into a goal state if

-226-

solution cost is not considered. In many applications, the
perfect knowledge to solve a problem is hardly available. In
such a case, one may resort to use A* approach by specifying a
reasonable evaluation function. To demonstrate using
PrologScript to solve the problem, the evaluation function that
we define is very simple. Given a configuration of the puzzle,
by comparing it with the goal, the solution cost is defined by
the number of mismatches between them. For example, the
goal state of this puzzle is BBBEWWW, and the value of
evaluation function of configuration BBEBWWW is 2 because
the tiles at locations 2 and 3 are mismatch. Through this
evaluation function you can decide which node, seemingly, will
be the best for the next move. For comparison, an exhaustive
approach is also applied to this game. The total steps resulted
by using exhaustive search and A* are 151 and 22,
respectively.

5.2 The 3-Pile-Nim

The sliding-block-puzzle is independent on user’s interaction.
Now, we demonstrate another game with user interaction being
involved. The game, called 3-pile-nim, is defined as follows:
There are three piles initially with different number of balls.
Two players are required to play the game. They withdraw balls
from those piles alternately. The restriction is as follows: For
each move, one can withdraw any number of balls only from
one of those piles. The one that makes all piles empty will lose
the game.

The ActiveX control used to demonstrate this game is shown
in Figure 8. The control has following properties: Count1,
Count2 and Count3 represent the numbers of balls in the 1%,
2" and 3™ piles, respectively, and DownCountl,
DownCount2, and DownCount3 represent the numbers of
balls to be withdraw from the 1%, 2™ and 3" piles, respectively.
A user can set the values of those downcounters using the spin
controls. Only one of the values can be nonzero, however.

In the game, one player is computer and another is a user. In
order to win the game, the decision to be made should depend
on the opponent’s last move. With “Prolog” as a player,
heuristics has to be embedded in rules to win the game.
Because two players are involved in this game and the goal is
clear, the 3™ rule described above is modified as follows:

3. moveToGoal (From) :-
chooseNextStep (From, NextStep),
gotoNextStep (NextStep).
That is, when turns to Prolog to make a new move, one simply
invokes goal moveToGoal by specifying the current
configuration of the piles. Therefore, we must design an
evaluation function to make Prolog smart enough. Shamelessly
to say, with the following heuristics, the polygon can beat any
of my colleagues in the game. The rule is described as follows:
1. The one who makes two piles with equal number of balls
and another pile empty will lose the game.

Figure 7. The game of sliding-block-puzzle

2. The one who makes the three piles to become (1, 1, 1)
will win the game.

3. The one who makes the three piles to become (1, 2, 3),
(1,4,5),(1,6,7),..., and so on, will win the game.

4. The one who makes the three piles to become (2, 4, 6),
2,57, @2, 8,10), (2,9, 11),..., and so on, will win the
game,

These rules can be easily coded using PrologSript.

6.Conclusion

ActiveX controls are ready-to-use elements. Therefore,
recoding and recompilation are unnecessary to embed such
components into documents. This reveals that useful controls
are generally designed to be programmable and controllable. To
function a set of controls to achieve a particular goal, a
document designer scripts them using high-level scripting
languages. Two well-known scripting languages are VBScript,
and JavaScript. These languages are sufficiently powerful and
found many uses, particularly, in Web-page design. In the paper,
we propose the so-called PrologScript. The goal of the research
is to provide control users another tool for programming
controls using Al technology. With PrologScript, one cap easily
formulate the problem-solving heuristics into rules. Upon
receiving user requests, Pfolog inference engine then performs
actions to carry out its corresponding tasks autonomously by
firing the predefined rules.

Reference

[11 D. Appleby and J. J. Vandekopple, Programming
Languages: Paradigm and Practice 2* ed., McGRAW-
HILL, pp. 100-113, 1997.

[2] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk
Nielsen, and A. Secret, “The World-Wide Web, ” Comm.
of the ACM, Vol. 37, No. 8, pp. 76-82, Aug. 1994.

[3]1 K. Brockschmidt, Jnside OLE 2™ ed., Microsoft Press,

1998 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Figure 8. The game of 3-pile-nim.

1995.

[4] 1. Giarratano and G. Riley, Expert Systems: Principle and
Programming 2™ ed., PWS, pp. 1-54, Aug. 1994,

[5] Logic Programming Associates LTD, WIN _PROLOG -
Personal Edition, http://www.lpa.co.uk/per.html.

[6] G.F. Luger and W. A. Stubblefield, Artificial Intelligence:
Structures and Strategies for Complex Problem Solving 3%
ed., ADDISON-WESLEY, pp.140-144, Aug. 1994.

[7] Microsoft Corporation, ActiveX Scripting, Microsoft
Developer Network (MSDN) Library, SDK
Documentation, Platform SDK, ActiveX SDK, ActiveX
Controls, April 1998.
http://www.microsoft.com/msdn/sdk/inetsdk/help/compde
v/scripting/scripting.htm

[8] Microsoft Corporation, ¥BScript, Nov. 1998,
http://www.microsoft.com/scripting/vbscript/default.htm.

[91 Microsoft Corporation and Digital Equipment Coperation,
The Component Object Model Specification, Draft Version
0.9, Oct. 24, 1995.
http://www.microsoft.com/oledev/olecom/title.htm.

[10] NetScape, JavaScript.
http//home.netscape.com/comprod/products/navigator/ver
sion_2.0/script/index.html.

[11] H. Rodent, "Supporting the Clipboard, DDE, and OLE in
Applications,” MSDN Tech. Group.
http://premium.microsoft.com/msdn/library/techart/msdn
ddeole.htm.

[12) The Component Object Model: Technical Overview, Dr.
Dobbs Journal, Dec. 1994,
http://www.microsoft.com/com/wpaper/Com mod].htm.

-227-

	
	220
	221
	222
	223
	224
	225
	226
	227

