Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Two Dominance Searching Based Temporal Join Algorithms

C.Y.ChenandJ.F. Hu

C. Y. Chen is with the Department of Electronics,
Feng Chia University, Taichung, Taiwan 40724, R. O. C.

J. F. Hu is with the Institude of Electrical Engineering,
Feng Chia University, Taichung, Taiwan 40724, R. O. C. -

Abstract

In this paper, we are concerned with the problem
of efficient processing of temporal join operation
relations. By mapping time intervals to points in the
plane, we first show that the problem of determining the
set of all matching tuples of a temporal join is
equivalent to a dominance searching problem in the
plane. Then, by using an efficient data structure for
solving the dominance searching problem as an index
for the inner relations, we propose a new nested-loops
based temporal join algorithm. For the cases where the
index for the inner relations is too large to fit in the
primary memory, we propose anther partition based
temporal join algorithm which doesn’t need any index
for the operand relations. Finally, in order to provide
more efficient processing of temporal join, we propose a
cluster scheme and an index scheme to support efficient
strong of tuples and direct access of matching tuples.

Keyword: Temporal database, temporal join, dominance
searching ’

1. Introduction

Many real database applications intrinsically
involve temporal information (or time-varying
information). Therefore, in recent years, many efforts
have been devoted to the area of efficient processing of
temporal data [Snodgrass 1987, Elmasri and Wuu 1990,
Leung and Muntz 1990, Gunadhi and Segev 1991,
Leung and Muntz 1992, Rana and Fotouchi 1993, Chen
et al. 1994, Lu et al. 1994]. These include temporal
data modeling [Snodgrass 1987, Elmasri and Wuu 1990]
and query optimization [Leung and Muntz 1990,
Gunadhi and Segev 1991, Leung and Muntz 1992, Rana
and Fotouchi 1993, Chen et al. 1994, Lu et al. 1994].

By a temporal relation we mean a set of temporal
data in the relational database model. There are various
ways to represent temporal data in the relational model;
detail discussion can be found in [Segev and Shoshani

1988]. What we adopt in this paper is a time interval
representation [Leung and Muntz 1990, Gunadhi and
Segev 1991, Rana and Fotouchi 1993, Lu et al. 1994,
Chen et al. 1994]. In this representation model, the
time dimension is considered as a sequence of discrete,
consecutive, equally-distanced time constants. A time
interval is defined as a set of consecutive time instants
tg tgtl, tg+2,......; tg, and is denoted as <tg, tg>,
where tg is called the starting time and tg is called the
ending time, respectively, of the time interval. A
temporal relation is a set of temporal tuples. A temporal
tuple consists of the surrogate of the tuple, some non-
time varying attributes, at least one time-varying
attribute (or temporal attribute), and two time attributes
Tg and Tg. Tg and Tg constitute a time interval<Tg,
Tg> which indicates the period of time that the given
values of temporal attributes are valid and is called the
lifespan of the tuple. The lifespan of a temporal relation
is defined as the time interval <Lg, Lg>, where Lg is
the minimum starting time and Ly is the maximum
ending time of all tuples in the relation, respectively. In
addition, temporal relations are assumed to be in the
first temporal normal form [Segev and Shoshani 1988];
ie., there are no two intersecting time intervals for a
given surrogate instance. Two time intervals <a, b> and
<c, d> are said to intersect each other if and only if a<d
andc<b.

Temporal join is the most common operation on
temporal relations for finding events that bappen in the
same period of time. Let us call two tuples from two
distinct relations respectively matching tuples if their
time intervals intersect each other. A temporal join on
two temporal relations determines firstly, for each tuple
of one relation, the set of all matching tuples from the
other relation; then concatenates each pair of matching
tuples into a tuple of the resulting relation. Accordingly,
the result of a temporal join on two temporal relations is
also a temporal relation in which the time interval of
each tuple is the intersection of time intervals of the
associated matching tuples.

Thus unlike the "snapshot” join in traditionally
relational databases which is an equijoin, temporal join
is a non-equijoin operation in its nature, and hence is a

185



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

very expensive operation over temporal relations.
Besides, temporal join has great flexibility to specify
multiple join predicates over the same pair of temporal
relations [Gunadhi and Segev 1991]. Further, temporal
join depends heavily on the order of data to be processed
[Leung and Muntz 1990, Gunadhi and Segev 1991].
Consequently, a conventional query processor is
deficient for the processing of temporal joins. Therefore,
in recent years, there has been an increasing interest in
the problem of efficient processing of temporal join
operation over temporal relations [Leung and Muntz
1990, Gunadhi and Segev 1991, Rana and Fotouchi
1993, Leung and Muntz 1992, Chen et al. 1994, Lu et al.
1994, Soo et al. 1994, Shin and Meltzer 1994].

Further, it is seen that the essential issue of the
temporal join operation is to determine efficiently the
set of all pairs of matching tuples. This is, in fact,
equivalent to the following Time Interval Intersection
Searching Problem : given a set of time intervals I,
Ip......, In, store them such that, given a query time
interval I, we can efficiently determine those intervals
among 11,12 ......and Ip, that intersect 1.

Since temporal relations are usually very large
and are stored on disks, to support temporal join
efficiently, another important issue is knowing how to
cluster tuples in such a way that matching tuples are
stored together. In addition, to support direct access to
the matching tuples, an efficient accessing index should
be built as well.

~In this paper, we are concerned with the problem
of efficient processing of temporal join operation on
temporal relations. The remainder of the paper is
organized as follows. In Section 2, we review the
previous works. In Section 3, we first show that the
time interval intersection searching problem is
equivalent to a dominance searching problem in the
plane, and by using an efficient data structure for
solving the north-west dominance searching problem as
an index for the inner relation, we propose a nested-
loops based temporal join algorithm. We also suggest a
spatial cluster scheme and a spatial index scheme to
support efficient storage of tuples and direct access of
matching tuples for the proposed temporal join
algorithm, In Section 4, we propose another.
partition_based temporal join algorithm that doesn't
need any index for the operand relations to solve the
cases where the index for the inner relation is too large
to fit in the primary memory. Finally, conclusions and
future research problems are presented in Section 5.

2. A Review of Previous Works

Although temporal join is one of the most
frequently used and most expensive operation for
temporal relational databases, it was not extensively
studied until 1989. Many of the previously suggested

o X

Figure 3.1.1 Spatial rendition of time intervals

Figure 3.1.2 (c,d) strongly deminates (b,a)

X

Figure 3.1.3 An example of strong dominance
searching problem

methods are in fact extensions of the existing three
major methods for the conventional snapshot join;
namely, the nested-loops join, the sort-merge join, and.
the partition based join [Gunadhi and Segev 1991,
Rana and Fotouhi 1993, Lung and Muntz 1994, Lu et al.
1994, Shen et al. 1994].

Segev and Gunadhi [1989] considered strategies
to process the temporal join operator. Subsequently,
Gunadhi and Segev [1991] analyzed the characteristics
and processing requirements of the temporal join
operator. Based on different sort-orders on Tg and/or
Tg of one or both input relations, they proposed three
partial nested-loops temporal join algorithms which,

186



unlike the conventional nested-loops join algorithms,
requires only partial scan of the inner and/or outer
relations. Obviously, performances of their methods
depend on the average scan length through the relations.
In addition, seven nested-loops like temporal join
algorithms were proposed by Rana and Fotouhi [1993]
to minimize the number of unnecessary comparisons.
Unfortunately, the algorithms assumed that the smaller
relation fits in memory. Moreover, no performance
analysis was presented. Chen et al. [1994] also
proposed a nested-loops like algorithm with an efficient
data structure introduced in [Overmas 1985] for solving
the line segment intersection searching problem as an
index for the inner relation. It was pointed out that
their method doesn't need any scan or partial scan on
the inner relation. However, their method is not
suitable for temporal joins in a dynamic environment
for the index structure is a static structure. Further, it
must assume that the index structure fits in memory.

Leung and Muntz [1990], on the other hand,
considered stream processing techniques for temporal
joins. Several sort-merge based algorithms for various
temporal joins and semijoins are proposed and their
workspace requirements for various data sort orderings
are discussed.. Unfortunately, their methods involve
additional house-keeping cost.

Partition-based algorithms have also been
studied recently. = The differences between these
algorithms have to do with how the partitions of the
relations are determined. In Leung and Muntz's
method [1994], operand relations are range-partitioned
on the start or end timestamp of the tuple. In Soo, et
al.'s method [1994], time line is range-partitioned into
n nonoverlapping intervals and a tuple (of both
relations) must appear in the i-th partition if its
timestamp overlaps the i-th interval. .Both the above
methods require determining the partition to which a
time interval belongs, which incurs severe partitioning
overhead. Further, both methods need to replicate some
tuples either statistically or dynamically. This
introduces both storage and management overhead.
Based on a time-space mapping scheme using both
timestamp and time interval of the tuple. Lu et al.
[1994] proposed another partition_based strategy. In
their method, time intervals are mapped to points in a
two dimensional space and the space are partitioned
into subspaces. Data tuples are clustered based on their
mapping in the space. As a result, the overhead of
partitioning is avoided and the join performance is
improved. Besides, they used a spatial indexing
technique introduced in [Shen et al. 1994] to support
direct access to the stored partitions.

3. A Nested-Loops Tempeoral Join
Algorithm

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3.1 The Equivalence of the Interval Intersection
Searching Problem and the Strong Dominance
Searching Preblem

Consider the following time interval intersection
searching problem : given a set V of time intervals
Iji=<aj, bj>, i=1,2,...,n, and a query time interval I=<a,
b>, we want to determine all time intervals in V that
intersect I. Suppose each time interval < aj, bj >, 1<
i =n, is mapped to the point (aj, b;) in the plane. Since
0= ai<bj=U, where U=max{b, b; l 1=i=nj}, (aj, bp)
lies in the triangular region (2 bounded by the lines
x=0, y=U and y=x (see Figure 3.1.1). We call point (aj,
bj) the spatial rendition of time interval <aj, b;> and the
region 2 the spatial rendition of V throughtout this
paper. '

Since, time intervals <c, d> and <a, b> intersect
each other if and only if c<b and a=<d, (c, d) lies in the
north-west quadrant from the point (b, a). Accordingly,
<c, d > intersects < a, b > if and only if (c, d) lies in the
region bounded by the lines : x=0, x=b, y=a, y=U and
y=x (see Figure 3.1.2). In this case, we say that (c, d)
strongly dominates (b, a).

Consequently, our time interval intersection
searching problem is equivalent to the following strong
dominance searching problem : given a set of points
(ai,bj), where aj, bj are integers and 0= aj< b <U, for
1<i<n, store them such that for any query point ( a, -
b), where a, bare integersand 0 < a<b = U, we
can efficiently determine those points among ( aj, bj ),
1=<i=n, that strongly dominates (b, a). Consider, for
instance, five points Pi , 1<i<5, and a query point P
as shown in Figure 3.1.3. It is easy to see that among
the five points, only P2 ,P3 ,and P5 strongly dominate
P

3.2 A Dominance Searching Based Nested-Loops
Temporal Join Algorithm

Give two point P=(a,b) and p’ =(a’, b"), we say
that P dominates P ifa>a’, b>b’ and P#P’
Overmars [1988] presented an efficient data structure to
solve the following dominance searching problem: store
a set of points V such that for any query point P we can
efficiently determine those points in V that dominate P.
The space required by the structure is O(n) and the total
time needed is O(loglogu+k), where u is the

maximum of y-coordinates of all points and k is the
total number of reported answers.

Overmars’ data structure can be easily modified
to fit our strong dominance searching problem
described in the preceding subsection. We call this
modified data structure the SDS (strong dominance
searching) structure. By exploiting the SDS structure

187



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

for determining the set of all matching tuples. of a
temporal join, in this section, we propose a new nested-
loops temporal join algorithm which can be formally
described as follows.

Algorithm DSTJ (Dominance Searching Based

Temporal Join)
Input : Two temporal relations R and §

Output : The temporal join of R and S
Preprocessings :

-1. Associate each time interval <s.Tg, s.T; > of
the inner relation S, a point (s.Tg, s.T;) in
the X-Y plane.

2. Construct a SDS structure for the set of points
(s.Tg, s.T;) forall se§.

Steps : :

1. Read next tuple r from the outer relation R
until EOF(r).

2. Determine, through the use of the SDS
structure, the set M of all points which
strongly dominate (r.T;, r.Ty) .

3. For each tuple s in S with the spatial rendition

(s. T, s.Ty) inM do

read s '

output the temporal join of r and s
end for.

4. Go to Step 1.

3. 3 A Cluster Scheme and an Index Scheme

In this section, we propose a cluster scheme,
called the SP (Spatial Partition) cluster scheme, and an
index scheme, called the TP (Time Polygon) index
scheme, to support Algorithm DSTJ to efficiently access
the required matching tuples.

Our partition_based cluster strategy can be described as
follows. Let R be a temporal relation. Based upon
mapping each time interval <r.T;, r.T; >, reR,toa

point (r.T;, r.T;), call the spatial rendition of
<r1.Tg, 1. T; >, in the plane; R can be represented as a

. set of points in the triangular region 2, called the
spatial rendition of R, bounded by x=0, y=U, and y=x,
where U = max{r. T |r €R}. Then we partition ) into

m-(m+1)/2 subregions by a set of vertical lines : x=0,
x=11, ", x=tm= U, and a set of horizontal lines : y= 0,
y=11, .-, y=tm= U. For simplicity, we assume that t;-
ti-1=t for 1<i<m. For instance, Figure 3.3.1(a)
depicts a partitioning with m= 4 and 10 partitions. In
our SP cluster scheme, tuples of R are clustered
according to the time attributes TS and TE in such a
way that they are stored in the same page if their spatial
renditions falling within the same partition. Note that
since the spatial renditions of tuples may not be

Y=,

4=t} /

1

T 4= X

(a) Logicl partitions

44=1T °1 i P .

o

2

®) ‘Physi‘c‘al“p‘z’li't‘iii(')‘ns ‘

Fifure 3.3.1 An example of the proposed cluster

scheme
Y
Y=X
#=U h f i li 4
3t
% o N  —(ab)
b x(H, 3)
a
" i ar X
Figure 3.3.2 The determination of qualified data
pages of a query tuple

@ (®) © @ O}

Figure 3.3.3 Five well-formed shapes of TP
polygons

uniformly distributed, a partition in Figure 3.3.1 may
consists of a number of pages or one page may cover a
number of partitions. For ease of reference, we call the
partitions formed by lines x =itandy=it, 1<i<m,
logical partitions, while data pages are called physical
partitions (see Fig 3.3.1(b)). Further, since it has been
shown in Section 3.1 that all points representing
matching tuples to a query tuple with time interval <a,
b> lie in the north-west quadrant from the point (b, a),

188



Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

el

HlE | |5

pages pages pages pages pages

storing storing storing storing storing
data data data data data
points points pomts points points

n m
polygonh  polygone

in m in
polygonc  polygonb polygona

pages pages pages pages pages

storing  storing storing storing storing
data data data data data
points points points points points

n m n in m
polygon f polygond polygoni polygong polygonj

Figure 3.3.4 A demonstration of TP-tree

together in our cluster scheme.

When a temporal relation is SP-clustered, it is
easy to determine the data pages qualified by a query
tuple, i.e., the data pages containing at least one
matching tuple of the query tuple. Suppose the query
time interval is <a, b> We first compute

b

[?]t and [%Jt, respectively. Then the qualified data

pages are those contained in the region G bounded by
the line x=0, x= [%"t, y =[%Jt , y=U, and y=x. An

illustrated example is given in Figm'é 3.3.2.

To support direct access of matching pages from

a SP-clustered temporal relation, we propose an
indexing technique. Our index scheme is similar to
that of Lu et al. [1994] and is based upon the TP-trsLe
suggested by Shen et al. [1994]. The TP-trec is a B ' -
tree like index structure, the leaf nodes contain pointers
pointing to the data pages. However, unlike the
conventional B -tree. whose index nodes contain
numeric or alphabetical key values, an index node of
TP-tree represents the subspace comprised by the data
pages in the subtree rooted at the node. In detail, an
internal node of TP-tree has entries of the following
format (child-pointer, polygon) where child-pointer
points to a child node and polygon describes the entire
data space of the child node, while the leaf entry is of
the form (page-pointer, polygon, leaf-pointer) where
page-pointer points to a data page storing points in the
polygon and leaf-pointer points to a succeeding leaf
node. The polygon of the root entry is the spatial
rendition of a temperal relation, the polygon stored in

other nodes are constrained to the five well-formed
shapes illustrated in Figure 3.3.3. When a polygon
contains more -data points than a page can
accommodate, it has to be partitioned by a horizontal
line or a vertical line into two polygons of well-formed
shapes, called buddies of the polygon; and only buddies
of a polygon can be merged together so that the

. resultant polygon can still have a well-form shape.

Figure 3.3.4 demonstrates a TP-tree of a temporal
relation with 10 data pages where we suppose each
node can accommodate three entries. »

To access data pages qualified by a query region
G, we first search the TP-tree for the leaves whose
polygons are subregions of G. Then the page-pointers
in the leaf entries are followed to retrieve the required
data pages. The search algorithm of a TP-tree can be
described as follows.

Algorithm STP (Search on a TP-tree)
Input : A TP-tree T of a data space and a query region

G.
Output : Pointers of data pages qualified by G.
Steps :
1. Let P be a pointer points to a node of T
P < root
2. Let ¢ be a entry in the node pointed by P
If e is a leaf entry
then return the page-pointer stored
ine
3. If the polygon in ¢ intersects G
then P<— child-pointer of ¢ and
go to Step 2.

189



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

When two temporal relations are SP-
clustered and TP-indexed, Algorithm DSTJ can be
elaborately redescribed as follows.

Algorithm EDSTJ (Elaborate Dominance Searching

Based Tempeoral Join)

Input : Two SP-clustered and TP-indexed temporal
relation R and S with the same partitioning
time interval.

Output : The temporal join of R and S.

Preprocessings :

1. Construct the SDS structure for the inner
relation S. )

2. Built a TP-tree of spatial rendition of the inner
relation S.

Steps
1. Read next tuple r from the outer relation R
until EOF(r).
2. Call STP(G), where G is the region bound by

LT T
x=0, X=lrr tE]t, y:{rtSJt ,y=U, and

y=X, to obtain a set D of page-pointers.
3. For each page P pointed by a pointer of D
for each tuple s in P
if r and s match each other
: then output the temporal
joinof r and s
end for
end for.
4. Go to Step 1.

4. A Spatially Partition_Based Temporal
Join Algerithm

" One disadvantage of Algorithm EDST]J is that
the SDS structure of the inner relation must fit in
primary memory. In addition, since SDS structure is a
static structure, Algorithm EDSTJ is not suitable for
dynamic temporal databases for which tuples may
frequently added into or delete from them. In order to
efficiently process temporal joins of large temporal
relations in a dynamic environment, in this section we
propose a spatially partition_based temporal join
algorithm without using any index for the operand
relations.

4.1 A Spatially Partition_Based Temporal Join
Algorithm

Our algorithm is based upon the SP-cluster
structure and TP-index structure introduced in the
preceding chapter. Each operand relation is first
partitioned and clustered on its time attributes according
to the SP-cluster scheme. Each logical partition under

Y=X

= J/
e O Y [Ga)

0,3) [(1,3) {(2,3)

2t

0,2y |(1,2),

©, 1)

: : : |
t 2t 3 4=U

Figure 4.1.1 Logical partitions and their partition_id's
of a temporal relation using a SP-cluster scheme
with partitioning time interval length t

the SP-cluster scheme is uniquely identified by an
ordered pair (i, j) if it is bounded left by the line x= it
and above by the line y= jt, where t is the length of
partitioning time interval. Accordingly, given a tuple
with a time interval <a, b>, its partition_id can be easily

determined as the ordered pair ([%J, [%W) Figure

4.1.1 illustrates logical partitions and their partition_id's
of a sample relation using a SP-cluster scheme with
partitioning time interval length t.

Furthermore, suppose both operand relations are
clustered with the same partitioning time interval. (It is
pointed out in [Lu et al. 1994] that partitioning two
relations using the same time interval performs better
than using different intervals. )  Then for a given
partition of one relation, it is easy to determine all the
partitions of the other relation that are joinable (i.c.,
containing at least one tuple that matches some tuples of
the given partition) with this partition by applying the
following algorithm.

Algorithm CJP (Compute Joinable Partition_id's)
Input : Two SP-clutered and TP indexed relations R

and S; a partition P* of R with partition_id
(c,d).
Output : 1d's of partitions of S that are joinable with P*.
Steps :
Fory=(ct)tto U
for x=0 to (d-1)t and x<y
output (X, y)
end for
end for.

For instance, suppose relations R and S are
partitioned and clustered with the same partitioning
time interval as shown in Figure 4.1.2. Then the id's of
S-partitions that are joinable with the R-partition having
id (1, 3) are (0,2), (1, 2), (0, 3), (1, 3), (2, 3), (0, 4), (1,
4) and (2, 4).

After clustering of tuples, we build a TP-tree for
indexing data pages of each relation. Now, suppose the
available memory capacity is m data pages. To

190



X=Y

[UY)

Relation 8 X=Y

Figure 4.1.2 Id's of S-partitions that are joinable
with the R-partition having id (1,3)

temporally join two SP-clustered and TP-indexed
relations, m data pages of the outer relation are first
read, in batch, into memory according to the order they
stored in leaves of the TP-tree. For each data page read
in, we compute the pages from the inner relation that
are joinable with this outer page by applying Algorithm
CJP. Finally, the TP-tree of the inner relation is used to
retrieve the desired pages into memory to perform the
join. Our approach can be formally expressed as the
following algorithm.

Algorithm SPTJ (Spatially Partition_Based
Temporal Join)
Input : Two SP-clutered relations R and S, and their

TP-trees TPR
and TPg.
Ouiput : The temporal join of R and S.
Steps :
1. Read in m pages of telation R in baich.
2. For each logical partition P* covered by the m
R-pages in Step 1 do
compute JP, the set of S-partitions that are
joinable with P*, by calling Algorithm

CIP(P™)
for each logical partition P™™ in JP
do
read in P**
for each tuple pair in P* and
P do
if two time imtervals
intersect

191

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

then output the join of
the tuple pair
end for
end for
end for.

4.2 Some Discussioms

It should be emphasized that Algorithm SPTJ
can be used to process temporal join in a dynamic
temporal database enviromment. To insert a new tuple
into a relation when applying the algorithm, we first
determine the partition to which the spatial rendition of
the tuple belongs, then search the TP-tree of the relation
for the data page where the partition resides, and finally
added the tuple into the page. If a partition overflows
after inserting a new tuple, it splits into two partitions of
well-formed shapes, and a new page is acquired to
accommodate the new partition. On the other hand, a
tuple can be deleted from a relation by first determining
the data page where this tuple resides and remove it
from the page. If the page remains nonempty, the
deletion is finished. Otherwise, the page is released and
the partition comtaining the spatial rendition of the
deleted tple is merged with its buddy partition into a
new well-formed partition.

Among other things, it was pointed out in [Lu et
al. 1994] that since temporal join is a non-equijoin
operation, a partitions from one relation must be
compared with several partitions from the other relation
in a partition based temporal join, hence, the
partition_based temporal join doesn't perform very well
compared to the nested-loops join, the saving in
reducing the number of comparisons may not be enough -
to offsct the overhead incurred by parttitiowing. In other
words, the partition_based temporal join will not be very
attractive unless the overhead of partitioning can be
reduced or avoided. When applying Algorithm SPTJ,
tuples, when they are gemerated, are clustered into
partitions based on their spatial renditions. Accordingly,
the partition phase is avoided and no overhead of
partitioning is incurred. Therefore, the join petformance
is significantly improved. Lu et al. [1994] also proposed
a spatially partition_based temporal join algorithm in
which each time interval is mapped to the point (a, b-a)
in the plane. Their method doesn't involve partitioning
overhead either.  However, comparing with their
method, our method is simpler, less computation and
easier to implement.

S.Conclusions and Future Research
Problems

In this paper, based upon a dominance searching
technique proposed by Overmars [1988),we have



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

proposed a static nested-loops temporal join algorithm.

An efficient cluster scheme, called the SP-cluster
scheme, and an efficient indexing scheme. called the
TP-index scheme have been presented as well to
promote the performance of the proposed algorithm.

In order to efficiently process temporal joins of
large or very large temporal relations in a dynamic
environment, we have proposed another partition_based
temporal join algorithm in which tuples are partitioned
and clustered by a SP-cluster scheme where they are
inserted into the relation. It has been shown that the
proposed method can’ easily manipulate various
operations in a dynamic temporal database environment,
such as search a relation for a tuple, insert or delete a
tuple into a relation and so on. Moreover, since tuples,
when they are inserted into a relation, are clustered into
partitions based on their spatial renditions, the
partitioning overhead is avoided. Therefore, the join
performance is significantly improved.

Though it is seen that our algorithms have a
number of merits over other methods suggested
previously , a performance study is still very conductive.
We are now conducting some performance studies of
our methods.

In addition, our future research problems include
(1) designing more powerful data structures to speed up
the determination of matching tuples, (2) designing
more efficient clustering and indexing techniques to
help direct access of matching tuples, and (3) designing
new efficient join strategies other than the nested-loops
strategy, the  sort-merge  strategy. and the
partition_based strategy.

REFERENCES

Leung, T. and Muntz, R. (1992) : *Temporal Query
Processing and Optimization in Multiprocessor
Database Machines," Proceedings of the 18th
International Conference on Very Large Data
Bases, Vancouver, Canada, August 1992, pp.383-
394,

Lu, H , Ooi, B. and Tan, K. (1994) : "On Spatially
Partitioned Temporal Join," Proceedings of 20th
International Conference on Very Large Databases
Santiago, Chile, September 1994, pp.546-557.

McCreight, E. (1985) : "Priority Search Trees," SIAM
Journal on Computing , Vol.14, No.2, 1985,
pp.257-276. :

Overmars, M. H. (1988) : "Efficient Data Structures for
Range Searching on a Grid," Journal of
Algorithms, Vol.9, No.2, 1988, pp.254-275.

Rana, S. and Fotouchi, F. (1993) : "Efficient Processing
of Time-join in Temporal Data Bases,"
Proceedings of the 3rd International Symposium
on Database Systems for Advanced Applications,
Taejon, Korea, April 1993, pp.427-432.

Segev, A. and Gunadhi, H. (1989) : *Event-join
Optimization in Temporal Reational Data bases,"
Proceedings of the 15th International Conference
on Very Large Data Bases, August 1989, pp.205-
215.

Segev, A. and Shoshani, A (1988) : "The
Representation of a Temporal Data Model in the
Relational Environment,” Lecture Notes in
Computer Science, Vol.339, M. Rafanelli, Klensin,
J. C. and Svensson, P. (eds.), Springer-Verlag,
1988, pp.39-61.

Shen, H. , Ooi, B. and Tan, K. (1994) : "The TP-Index:
A Dynamic and Efficient Indexing Mechanism for
Temporal Databases," Proceedings of Tenth
International Conference on Data Engineering,

Chen, C. Y. ,Chang, C. C. and Lee, R. C. T. (1994) : "A
Line Segment Intersection Based Temporal Join,"
Proceedings  International  Symposium _ on
Advanced Database _Technologies and Their
Integration, Nara, Japan, October 1994, pp.183-
187.

Elmasri, R. and Wuu, G. (1990) : "A temporal model
and query language for temporal databases,"
Proceedings of the Sixth International Conference
on Data_ Engineering, Los Angeles, CA, April
1990, pp.76-83. '

Gunadhi, H. and Segev, A. (1991) : "Query Processing
Algorithms for Temporal Intersection Joins,"
Proceedings of the Seventh International
Conference on Data Engineering, Kobe, Japan,
April 1991, pp.336-344.

Leung, T. and Muntz, R. (1990) : "Query Processing for
temporal Databases,” Proceedings of the Sixth
International Conference on Data Engineering,
Los Angeles, CA, April 1990, pp.200-208.

April 1994, pp.274-281.

Shin, D. K. and Melizer, A. C. (1994) : " A New Join
algorithm,” SIGMOD RECORD, Vol.23, No.4,
December 1994, pp.13-18.

Snodgrass, R. (1987) : "The Temporal Query Language
TQuel," ACM Transaction on Database Systems,
Vol.12, No.2, June 1987, pp.247-298.

Soo, M. , Snodgrass, R. and Jenson, C. (1994) :
"Efficient Evaluation of the Valid-time Natural
Join," Proceedings of the Tenth International
Conference on Data Engineering, April 1994,
pp.282-290.

Willard, D. (1983) : "Long-logarithmic worst-case
range queries are possible in space 6()."
Information Processing Letters, Vol.17, No.2, 1983,
pp.81-84.

192





