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Abstract

In this paper, we study the problem of designing proxies
(or portfolios) for various stock market indices based
on historical data. We use four different methods for
computing market indices, all of which are formulas
used in actual stock market analysis. For each index,
we consider three criteria for designing the proxy: the
proxy must either track the market index, outperform
the market index, or perform within a margin of error
of the index while maintaining a low volatility. In all
twelve cases (all combinations of four indices with three
criteria) we show that the problem is NP-hard, and
hence most likely intractable.

1 Introduction

Market indices are widely used to track the perfor-
mance of stocks or to design investment portfolios [1].
This paper initiates a rigorous mathematical study of
the computational complexity of the art of designing
proxies for such indices. There are several results on
selecting such proxies (or portfolios) in an on-line man-
ner (see, for example, [2] and {3]), we look at off-line al-
gorithms for designing proxies based on historical data.
In particular, we show that all combinations of three
fundamental problems (such as tracking or outperform-
ing a full market index) with four commonly-used in-
dices give NP-complete problems, so are computation-
ally hard.

To formally define market indices, let B be a set of b
stocks in a market. Let S;; > 0 be the price of the i-th
stock at time t. Let w; be the number of outstanding
shares of the i-th stock. We assume that w; does not
change with time. This paper discusses computational
complexity issues regarding four kinds of market in-
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dices currently in use {1]. These indices are calculated
by the following formulas, which can be multiplied by
arbitrary constants to arrive at desired starting index
values at time 0.

e The price-weighted indezx of B at time ¢ is

b
®,(B,t) = _E,-=g St m

The Dow Jones Industrial Average is calculated in this
manner for some B consisting of thirty stocks.
e The value-weighted index of B at time ¢ is

b X .
®,4(B,t) = ;;’Ml
D=1 WisSi0

The Standard & Poor’s 500 is computed in this way
with respect to 500 stocks.
o The equal-weighted indez of B at time ¢ is

b S
O3(B,t) = =2
a(B,1) ;S;,o

The index published by the Indicator Digest is calcu-
lated by this method, involving stocks listed on the
New York Stock Exchange.

e The price-relative indez of B at time t is

5 N\
®4(B,t) = (P, =L
4( ) ) (Hi—l Sz',D)

The Value Line Index is computed by this formula.
There are numerous reasons why stock investors and
money managers would want to invest in a subset of
stocks rather than those of a whole market [1]. For
instance, small investors certainly do not have sufficient
capital to invest in every stock in the market. Logically,
such investors would attempt to choose a small subset
of stocks which hopefully can perform roughly as well as
or even outperform the market as a whole. They then
face difficult trade-offs between returns and risks. For
these and other reasons of optimization, we formulate
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three natural computational problems for the design
of market indices. Given a market M consisting of m
stocks, we wish to choose a subset M of at most k
stocks and calculate an index of M}, which is called a
k-prozy of the corresponding index of the whole market
M (we sometimes refer to M}, as a portfolio). Our goal
is to choose M} so that the resulting k-proxy tracks or
outperforms the corresponding index of M. This paper
shows that designing proxies for the above four indices
based on historical data is computationally hard.

2 Problem Formulations

In this section we formally define three basic problems
related to selecting k-proxies, or portfolios.

Problem 1 (iracking an indez)

Input: A market M of m stocks, their prices
Sig > 0fort=0,...,f, their numbers w; of out-
standing shares, a real ¢; > 0, an integer k > 0,
and some j € {1,2,3,4} to indicate the desired
type of index.

Output: A subset M} of at most k stocks in M
such that forallt =1,..., f
®j(Mi,t) &M, 1) 61_<I>j(M,t) @)
®;(Mr,0)  2;(M,0)| = " &;(M,0)

Problem 2 (outperforming an inder)

Input: A market M of m stocks, their prices
Sit>0fort=0,...,f, their numbers w; of out-
standing shares, a real €5 > 0, an integer k£ > 0,
and some j € {1,2,3,4} to indicate the desired
type of index.

Output: A subset M; of at most k stocks in M
such that forallt =1,..., f

@j(Mk,t) ‘I)j(M,t)
5 Me0) 2 T ey O

For the final problem, we need a few extra definitions
in order to analyze the wvolatility of a set of stocks. Let
B be a set of stocks as defined in §1.

» The one-period return of ®; for B at time t > 1 is

(I)]'(B,t)

o The average return of ®; for B up to time t > 1 is

_Rj(B,i) — th':l }:J'(B! i).

* The volatility of ®; for B up to timet > 2 is

t . - 2
N \/ T (B89 - Fy(6.1)"

Problem 3 (sacrificing return for less volatility)

Input: A market M of m stocks, their prices
Sit > 0fort = 0,...,f, their numbers w; of
outstanding shares, two reals o, > 0, an inte-
ger k > 0, and some j € {1,2, 3,4} to indicate the
desired type of index.

Output: A subset M; of at ’II-IOSt k stocks in M
such that forallt =1,...,fand s=2,..., f

Qj(Mk,t) a-Qj(M’t) (4)
(Pj(Mk,O) - @j(M,O)

and
Aj(Mp,s) < B-Aj(M, s) (5)

In this problem, (4) is called the performance
bound, and (5)-is called the volatility bound.

3 Price-weighted Index

In this section, we consider taking the value of the mar-
ket and portfolio using a price-weighted index, defined
in (1). As given in the problem statements, we use
the notation @1(M, ) to denote the market average at
timestep ¢, and ®;(M;,t) to denote the average of the
portfolio at that timestep.

3.1 Tracking an index

To solve the problem of tracking the market average,
we need to satisfy (2) using function &;(B,t). We will
refer to this bound as the “tracking bound.” In the
following proofs, we show this by proving an equivalent
relation:

o< BUMO)  Bi(My,1)
= B, (My,0) (M, 1)

<l+e  (6)

Theorem 3.1 Let € be any error bound satisfying 0 <
€ < 1 and specified using n°W) bits in fized point no-
tation. Then the tracking problem for a price-weighted
indez with error bound ¢ is NP-hard.

In the remainder of this section, we prove this theo-
rem by reduction from the minimum set cover problem.
We will use the notation from the minimum cover def-
inition given in the classic book on NP-completeness
by Garey and Johnson [4]: C is a collection of sub-
sets of a finite set S, and K is the desired cover size.
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Specifically, we want a subcollection C’ C C such that
|C’| € K and every item = € S is in some subset from
C'.

Let n = |C|, and consider making an n x |S] matrix
in which each column corresponds to a fixed item from
S, and each row corresponds to a subset S’ € C. The
element in row Z, column j is some given value v if the
element in S for that column is in the subset S/, and
value vy if it is not. Then the minimum cover problem
can be stated as follows: Is there a set of K rows such
that the K X |S| matrix defined using only those rows
has at least one entry with value v; in each column?

It makes sense now to consider this n x |S| matrix as
an input to the portfolio selection problem, where each
row corresponds to a security and each column corre-
sponds to a timestep, and we are to choose a portfolio
of size k = K. Selecting a portfolio is then equivalent to
selecting the subcollection in the minimum cover prob-
lem. A subcollection that is missing some item from
S corresponds to a portfolio in which some timestep
has all values equal to vg, and hence the portfolio av-
erage at that timestep must be vy. Ideally, we would
select vo and vy in such a way that the required track-
ing bound is met if any v, values are included in the
portfolio, but not if all values are vg. However, this
simple construction has very unpredictable market av-
erages at each time step, so we need a slightly more
involved construction.

We will introduce a new row into our matrix called
the “adjustment row”, and we will select values to ad-
just the column averages to predictable values. To
guarantee that this row is not selected in our portfolio
(so selections are made up entirely of rows from the
minimum cover problem), we introduce a special col-
umn called the “control column” — any selection in-
cluding our adjustment row will violate the error bound
in that column, and no selection excluding that row
will violate the bound. In addition, we need to pad the
problem out substantially. This is accomplished by in-
cluding rows that contain value vg in every non-control
column, which is equivalent to padding the original set
cover problem instance with empty subsets added to
C. This clearly has no effect on the set cover problem.
Finally, we insert a column of all ones to give the S; ¢
values for the portfolio selection problem. The final
matrix contains m = 3n rows, f = |S| + 1 columns,
and is depicted in Figure 1.

Note that since Sjo = 1 for all i, ®;(M,0) =

®1(Mp,0) = 1, and so (6) reduces to just checking
that

1-¢< $1(Ms, 1)

_m—ﬁl'*'f.

1998 International Computer Sympasium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

l o

1 ¢ | Indicator variables

l o from min cover Original rows 1)

M problem

l e

1c v vp -reeerene Yo Vo

1 C Y Vg trrtriet Vo Vo

oo Padding rows (2n- 1)
1 gy Yo Vg orormeee 1;0 Vo

1 ¢l Arbitrary Adjustments | }Adjustment row (1)

L

Contrel column

Time Q values

Figure 1: Pictorial depiction of reduction for Theo-
rem 3.1

First we examine properties of the control column,
where the values in that column are defined by

Co = y
€

c1T = c¢p+m.

Lemma 3.1 The tracking bound is met for the control
column if and only if the adjustment row is not included
in the portfolio.

Proof: From the values for ¢ and ¢, it is clear that the
average value of the control column is ¢y + 1. Since we
will be examining the error of approximations relative
to this average, we first note that we can bound (due
to the ceiling involved in the definition of ¢g)

IR S 7
1+e¢ c0+1—6' (7)

Any portfolio that does not include the adjustment row
has average value ¢y, and so we can lower bound the
relative error by

(I)l(Mk,t) _ ¢ - 1

B2 (M. 1) = >l1l—ce

co+1 co+1 "~

Since the relative error is clearly less than one, it falls
into the acceptable range of values.

On the other hand, if a portfolio does include the
adjustment row, then the portfolio average is co+m/k,
and so the relative error is

@1 (M, t) _co+m/k

. m/k -1
B,(M, 1) etl T

co+1°
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Due to our padding of the problem, we know that k <
m/3, and so m/k — 1 > 2. Using this observation and
. the bound from (7) leads to the conclusion that

&1 (Mp,t) 2 2
>1 >l4+—e>1+e
DM, = o+l Trec”
In other words, any portfolio that includes the adjust-
ment row will not meet the required error bound. Com-
bined with our previous observation, this completes the
proof of the lemma. 1

Next we must define the values vy and v;, and show
the equivalence of our portfolio selection instance with
the original set cover instance. To do so, define

=]
{(k-i—l)(l—-e)A—-l"’

€

A

i

Vo

v = ‘I)0+2]CA.

All values in the portfolio selection problem must be
flon—negative integers, and while these values are clearly
integers, are they non-negative? Since A > —l—i—g, we see
that vg > f— > 0. Since vy is greater than vy, it too is
clearly non-negative.

For column ¢, if there are M; rows with value vy,
then the value we use in the adjustment row for that

column is
At = ((k + 1)771 - 2kMt) A -+ vg.
The sum down the column is

(m — M; — Dvo + Myvy + Ay
= (m— M;— g+ M(vg + 2kA)
+(k + 1)mA — 2EM:A + o
= mug + (k+ 1)mA,

which means that the column average is v + (k + 1)A.
Notice the independence from {. We make such an
adjustment for every column in the matrix. )

Is such an adjustment possible? A; is clearly an inte-
ger, and so this is a valid adjustment as long as A; > 0.
Since M; < %, we know that (k + 1)m — 2kM, >
(k+1)m ~ 2k2 = (£ + 1)m, which is clearly positive,
so A; > 0. We have demonstrated that such a reduc-
tion is possible, so the next thing to demonstrate is the
equivalence of the produced portfolio selection instance
with the original set cover instance.

Lemma 3.2 The relative error bound is met if and
only if the portfolio conlains at least one vy value in
each column.

Proof: Let t be an arbitrary column other than the
control column, and recall that M; represents the num-
ber of v; entries in column ¢. We first upper bound the
approximation ratio for all values of M;. In particular,
we know that the maximum possible portfolio average
is v1 = vg + 2kA, so we can bound

1(My,8) _  wo+2kA (k-DA o
Q1("\4:)&) - 1)0+(k+1)A - v0+(k+1)A ( )

We can lower-bound vy be removing the ceiling, giving
a bound on the last fraction above:

(k-1)A (k- 1)A
vo+(k+1)A T G981 4 4 yp
_ (k-1a
= GrDa-1°%© ©

where the last inequality uses the fact that A > 1.
Combining this with (8) gives %4{%‘)1 <1+, which
holds for all values of M;. '

Next, we lower bound the error when at least one row
with a v; entry is selected (in other words, M; > 1). In
this case, the portfolio average is at least vy + %2kA =
vg + 24, and so we derive

@1(Mk,t) 1)0+2A . (k— I)A
Cbl(M,t) _’Uo+(k+l)A— ’Uo+(k+1)A

Notice that this results in exactly the same fraction as
above, so we can use (9) to give %%(A;A—"';? > 1—¢, when
at least one row containing v; is selected.

What we have shown is that any time at least one row
containing vy is selected, the portfolio average tracks
the total market average within a relative error of e.
We next show that this bound is not met when no rows
containing v; are selected. In this case, the portfolio
average is exactly vg, which results in

By (Mg, t) _ Vg _
B (M,1) vt (kDA

(k+1)A
vo+ (k+ 1)A"
(10)
This last fraction can be bounded by first upper bound-
ing vg: just remove the ceiling and add 1 (note that this
gives a strict upper bound). Thus

(k+1)A (k+1)A
(k+1)(1-)A-14¢
v+ (k+1)A U2t 4 (k+ 1A
B (k+1)A

F+rDA-(1-9 "~ ©

where the last inequality comes from the fact that € <
. . . . &1 (M, t

1. Using this bound in (10) gives 7‘}(/\4—",& <1l-—c¢

whenever none of the selected rows contain v;. In other

words, the error bound is not met when no such rows

are selected. |
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As a final note, it is fairly easy to show that all
values in the constructed portfolio selection problem
have length polynomial in the length of the original set
cover problem and the number of bits used to spec-
ify €. Therefore, these values form a polynomial time
reduction from the set cover problem to the portfolio
selection problem, which completes the proof of Theo-
rem 3.1.

3.2 Sacrificing Return for Less Volatil-
ity

Next, we will skip Problem 2 and prove a hardness re-
sult for Problem 3: sacrificing return for less volatility.
In the following section, we will return to problem 2,
and show that the hardness of that problem (outper-
forming an index) follows directly from the results of
this section.

As in §3.1, we will show that Problem 3 is NP-
complete by reducing the minimum cover problem to
this one.

3.2.1 The construction

The main reduction for this proof involves a problem
constructed from a minimum cover instance, and this
construction is illustrated in Figure 2. This constructed
problem is an instance of our portfolio selection prob-
lem where the rows represent different securities, the
columns represent times, and the values in the matrix
represent prices.

In the original minimum cover instance, let n = |C|
represent the number of subsets in the input, let |S|
represent the size of the overall set, and let K be the
number of subsets we are allowed to select. The data
from this problem can be encoded into an nx|S| matrix
M, where the values in this matrix are set as follows
(v2 is a value that will be defined shortly):

M,-,-:{ 82

We will need a larger matrix in order to complete the
reduction, so we embed matrix M into our larger ma-
trix — in Figure 2 the embedded matrix is labeled as
the “Coding Region”. This gives a portfolio selection
problem with m securities, f = P+ |5| time steps, and
portfolio size k = K.

We surround matrix M with various “padding rows”
and “padding columns”. The number of padding rows
and padding columns are defined as follows:

if subset 7 contains element j;
otherwise.

o There are P + 1 padding columns, where P =
max (2(k + 1),2/S]). -
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e The total number of rows is defined in terms of the
following constants:

g = [max (1 + (4/8),loge(2/))],

and
B = [ak?].

The total number of rows is m = nB.

The definition of ¢ implies some important properties
of the constant B that we note here:

B>2 (11)

B>ka>c. (12)
Finally, from the first part of (12) we can derive

l-B—J > 5 k—-_——l. (13)

o a k

All of the first n rows in the padding columns are
filled with value vy, and value vy is used in the cod-
ing region as previously described. These values are
defined in terms of the constant B as follows:

[ ] 1)1=B—1
01)2:10(3—1)

Each column may have an “adjustment value”, de-
noted by A; for column ¢. Odd numbered columns in
the padding region (type-2 columns) do not have an ad-
justment value, but even numbered columns other than
column 0 (type-1 columns) do, and these values are po-
sitioned at successively lower rows; therefore, if column
t is a type-1 column, then A is placed in row n+ £. If
we run out of rows before completing this placement,
simply put all remaining adjustment values on the last
row. Notice that since P > 2(k + 1) there are at least
k + 1 type-1 padding columns, and since the number
of padding rows is (m —n) = (nB—-n) >n > k+1
(using (11)), there must be at least k + 1 distinct rows
that contain adjustment values. Columns that cross
the coding region (called “coding columns”) also have
adjustment values, which are all placed on the last row
of the matrix (see Figure 2). The adjustment values to
be used are defined below, where z; is the number of
zeros in the coding region of column t: ‘

(m=m) (|2] 1)
(m =) (2] = ) + 20

Note that the adjustment values in the padding
columns are all the same, but the adjustments in the

if0<t< P,tiseven;

“
Il

ift > P.
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Figure 2: Construction for main reduction

coding region depend on the data in the coding re-
gion. Furthermore; (12) guarantees that these adjust-
ment values are all non-negative.

Before analyzing the return and volatility of the con-
structed portfolio selection problem, we state the fol-
lowing lemma regarding the size of the constructed
problem, showing that we have a polynomial reduction.

Lemma 3.3 If o and 3 are expressed using n®(1) bits
in fized-point binary notation,.and 0 < o < n°M) and

_ log k
'B =Q logn /7’

lem (including the size of the values in the matriz)} is
polynomial in the size of the original minimum cover
problem.

then the size of the constructed prob-

3.2.2 Guarantees on Return

Lemma 3.4 The performance bound is met for all
columns if and only if the selected porifolio contains
ezactly k ilems from the coding rows and each coding
column has at least one vy value from among the se-
lected Tows.

Proof: We will first prove that if the selected portfolio
contains exactly k items from the coding rows and each
coding column has at least one vz value from the se-
lected rows, then the performance bound is met. First
consider a padding column ¢ — since the k selected
rows are all coding rows, all selected values for any

padding column have value v;, and so the portfolio av-
erage for that column is ®1(M}j,t) = v;. On the other
hand, the market average is different for the two types
of columns. If column ¢ is a type-1 padding column
then the sum of all the values in the column is

n(B—1)+(m——n)("§J—1)

nB-1+ (8 -n(|2] 1)

[0 4

n(B-1)+(B—1)(n[§J —n)

= (B-1)n li:ij

Therefore, the market average for column ¢ satisfies

3

nvy + A;

oy - B2 (2] 2]
B-1B_B-1_mun

= B a o «a
Furthermore, any type-2 padding column has no ad-
justment value, which makes the market average
smaller than a type-1 column. Therefore, for either
type of padding column the bound &,(M,t) < 2
is valid, and so it immediately follows that for any
padding column ¢, since ®;(M,0) = &1(My,0) = v,

D1 (Mg, 1) ) &1(M, 1)
&1 (Mp,0) =7 &(M,0)
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Therefore, the performance bound is met for all
padding columns.

Now consider a coding column ¢, and recall that we
are assuming that at least one v, value from column
t is included in the portfolio. This means that the
portfolio average is ®;(My,t) > ve/k = v;. For the
market average, we compute the sum over all values in
the column, as we did before, and in this case we get

(n—zt)va+ A -
= nvs— 70z + (m -n)qu—k)Hm
= nk(B—1)+( nB—n)([gj—k)

nk(B—1)+( —1)(n[—B-J—nk>

(B-1)n FJ .

a

Similar to the calculation for the padding columns, this
gives us

(M, 1) = ===

[o4

B-1 lBJ B-1 u

o
which implies that

1 (M, 1) oM, 1)
(1)1(./\/(),,0) - @1(/\/(,0)’

and so the performance bound is met for the coding
columns as well. Therefore we have completed this di-
rection of the proof.

For the other direction, we need to show that any
portfolio that meets the performance bound must be
made up of exactly k items from the coding rows and
each coding column has at least one vy value from
the selected rows. We first show that any portfolio
that meets the performance bound may only use cod-
ing rows. By our placement of adjustment values, we
noticed before that there are at least k + 1 distinct
padding rows that contain adjustment values. There-
fore, there must be at least one type-1 padding column,
say column ¢, that does not have its adjustment value
Aq selected as part of the portfolio. Now if all k selec-
tions are not from.the coding rows, then we can bound
the portfolio average for column ¢ by

1 (M, t) < (k—'kll”—l

Since this is a type-1 column, (14) gives the market
average, and we can further use (13) to conclude that

1 (Mg, 1) 81(M,0) (=l
@1 (Mi,0) B1(M,2) = o

U1

5 2]

< = 'a—’ (15)
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k-DB-) 1
STk EhEex s ®

and so the performance bound would not be met.
Therefore, all k row selections must come from the cod-
ing rows.

Since we have established that all k selections must
come from the coding rows, we will next show that
every column in the coding region must have at least
one vy value among the selected rows. This is, in fact,
very easy to see — if no vy values are selected in a
particular column, then the portfolio average is zero,
which cannot meet the performance bound for that col-
umn. Therefore, all coding columns must be contain
at least one vy value, which completes this direction of
the proof, and also completes the entire proof. 1

3.2.3 Guarantees on Volatility

Lemma 3.5 If the performance bound is met for our
constructed portfolio selection problem, then the volatil-
ity bound is met as well.

3.2.4 The main result

Theorem 3.2 Let o end 3 be values expressed using

n®M) bits in fized-point binary notation, and satisfying
0<a<n®U grd g=0 (%g%). Then the problem
of sacrificing return for less volatility using the price-
weighted indez is NP-complete.

Proof: Follows from Lemmas 3.3,3.4,and 3.5. |

3.3 Outperforming an index

Theorem 3.3 Let ¢ be any value satisfying 0 < € < n
for some constant c. Then the problem of outperform-
tng the market average using the price-weighted index
with bound ¢ is NP-hard.

4 Other Indices

For the value-weighted and equal-weighted indices, we
will, in fact, use the exact same constructions as in
the previous section — the prices in the constructed
problem have been selected carefully so that they work
using related indices, such as the value-weighted and
equal-weighted indices. The results will follow fairly
easily from the following lemma.

Lemma 4.1 Let ®;(B,t) be an indez function where
Si,0 = ¢ for some constant c implies that

‘bj(B, t)

W = d . QI(B,t)
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for all sets of stocks B C M, where d is a constant
that does not depend on B ort, then all of the previous
NP-completeness results hold for indez ®;(B,1).

4.1 The Value-Weighted Index

We first apply 'this lemma to the value-weighted in-
dex. For the value-weighted index, we must indicate
the weights (the w;’s) in the constructed portfolio se-
lection problem as well as the prices. In all of our
constructions, we will pick w; = 1 for all :.

If 5;p = ¢ for some constant ¢, then for any valid
time t and any set of stocks B, using w; = 1 gives

zgzl wi - S":‘ — Zgzl Si:t
2?:1 Wi - Si:o Z?:l ¢

- z::l Si:t — 1
= T - c@l(B, t).

@2(3, t)

Furthermore, regardless of B we have ©,(B,0) = 1,
and so Lemma 4.1 holds with constant d = -lc- The
following three theorems are a direct consequence of
this Lemma.

Theorem 4.1 Let € be any error bound satisfying 0 <
€ < 1 and specified using n®1) bits in fized point no-
tation. Then the tracking problem for a value-weighted
inder with error bound ¢ is NP-hard.

Theorem 4.2 Let € be any value satisfying 0 < € < n®
for some constant c. Then the problem of outperform-
ing the market average using the value-weighted indez
with bound € is NP-hard.

Theorem 4.3 Let a and B be values ezpressed using
n%) bits in fized-point binary notation, and satisfying
0<a<n®Mand =0 (}—gg;’:—) Then the problem
of sacrificing return for less volatility using the value-
weighted indez is NP-complete.

4.2 The Equal—Wéighted Index
If Sio = ¢ for all 4,

b s b
d3(B,t) = LI hatia
(5.1 ;5.‘,0 =1 ¢

b

1 b

= ) Sii=-8y(B1).
ci:l ¢

It’s easy to see that $3(B,0) = b, so

®3(B,1) _ 1

m == ®1(B,1),

and so Lemma 4.1 applies with constant d = % The
following three theorems are direct consequences of

that Lemma.

Theorem 4.4 Let ¢ be any error bound satisfying 0 <
€ < 1 and specified using n®) pits in fized point no-
tation. Then the tracking problem for a equal-weighted
index with error bound € is NP-hard.

Theorem 4.5 Let ¢ be any value satisfying 0 < € < n®
for some constant c. Then the problem of outperform-
ing the market average using the equal-weighted indez
with bound € is NP-hard.

Theorem 4.6 Let o and B be values ezpressed using
n9) bits in fized-point binary notation, and satisfying
0<a<n® gnd =0 (-}g—é—ﬁ— . Then the prz;blem
of sacrificing return for less volatility using the equal-
weighted indezx is NP-complete.

;1.3 The Price-Relative Index

Theorem 4.7 Let ¢ be any error bound satisfying 0 <
€ < 1 and specified using O(logn) bits in fized point
notation. Then the iracking problem for a price-relative
indez with error bound € is NP-hard.

Theorem 4.8 Let € be any value satisfying 0 < € < n
for some constant c. Then the problem of outperform-

ing the market average using the price-relative indez
with bound € is NP-hard.

Theorem 4.9 Let a and B be values ezpressed using
n%®) bits in fized-point binary notation, and satisfying
0<a<n®Dand =0 ]l%g%) Then the problem
of sacrificing return for less volatility using the price-
relative index is NP-complete.
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