1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.0O.C.

SOLVING THE ALL-PAIR-SHORTEST-LENGTH PROBLEM
ON CHORDAL BIPARTITE GRAPHS

Chin-Wen Ho* and Jou-Ming Chang®!

xInstitute of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan, R.O.C.
Email: hocw@Qcsie.ncu.edu.tw

tDepartment of Information Management,
National Taipei College of Business, Taipei, Taiwan, R.O.C.
Email: spade@mail.ntcb.edu.tw

Abstract

The all-pairs-shortest-length (APSL) prob-
lem of a graph is to find the lengths of the short-
est paths between all pairs of vertices. In this
paper, we study the APSL problem on chordal
bipartite graphs. By a simple reduction, we
show that solving the APSL problem on chordal
bipartite graphs can be transformed to solving
the same problem on certain strongly chordal
graphs. Consequently, there is an O(n?) time-
optimal algorithm for this problem.

Keywords: shortest paths, chordal bipartite
graphs, strongly chordal graphs.

1. Introduction

All graphs considered in this paper are undi-
rected, loopless and without multiple edges. Let
G = (V,E) be a graph with vertex set V of
size n and edge set E of size m. If G is associ-
ated with a weighted function w : E — R, the
length of a path in G is the sum of the weights
of its constituent edges. The all-pairs-shortest-
path (APSP) problem is to find the shortest
paths between all pairs of vertices. However,
the all-pairs-shortest-length (APSL) problem is
to find the “lengths” of the shortest paths be-
tween all pairs of vertices instead of providing

explicit information about the shortest paths.
One well-known algorithm for the APSP prob-
lem on genefal graphs without negative-length
cycles is designed by Floyd [8] and it requires
O(n®) time. As to the algorithms of solving
the APSL problem, the most popular method
is offered by Johnson [11] and it can be run in
O(nm + n?logn) time.

Recently, Seidel [16] showed that the APSL
problem on unweighted graphs (i.e., all the
edges on the graph bave the same weight) can
be solved in O(M(n)logn) time with O(n?)
space. M(n) denotes the time complexity of
multiplying two n X n matrices for small inte-
gers, and the time required is currently known
to be O(n?378) [5]. The algorithm additionally
builds a data structure that allows the short-
est paths to be constructed in time proportional
to their lengths. Besides, efficient algorithms
have been developed for solving the APSL prob-
lem on some restricted classes of unweighted
graphs. The O(n?) time-optimal algorithms are
proposed for interval graphs [13, 15}, bipartite
permutation graphs [4], and strongly chordal
graphs with a given strong elimination ordering
(1, 6]. The optimal parallel algorithms of APSL
problem for some certain classes of graphs can

-116-

be found in [4, 6]. All the above algorithms
return an n x n distance matrix to record the
lengths of all-pairs shortest paths.

In this paper, we consider the graphs for un-
weighted case and show that the APSL prob-
lem on chordal bipartite graphs can be solved
in O(n?) time. The algorithm presented later
uses a technique of transformation. We show
that the algorithm of solving the APSL prob-
lem on strongly chordal graphs can be used for
the same problem on chordal bipartite graphs.
Moreover, a slight modification of a table pro-
vided in 1] can be used to construct the shortest
paths in optimal time.

2. Background

For a graph G = (V,E), the open neigh-
borhood Ng(u) of a vertex u € V is the set
{v € V: (uv) € E}; and the closed neigh-
borhood Ng[u] is Ng(u) U {u}. The distance
dg(u,v) of two vertices u,v € V is the number
of edges of the shortest paths between u and v
in G. A clique in a graph is a subset of vertices
which induce a complete subgraph. A mazimal
cligue is a clique that is not properly contained
in any other clique. A vertex u € V is called
simplicial if Ng[u] induces a clique of G. For
a given cycle C of a graph, an edge (u,v) join-
ing two vertices u and v that are nonadjacent
along the cycle is called a chord. Moreover, a
chord (u,v) is called an odd chord if the distance
de(u,v) is odd. A graph is chordal if every cycle
of length at least four has a chord. A chordal
graph is strongly chordal if every even cycle of
length six or more has an odd chord.

In algorithmic aspects, many efficient algo-
rithms on some special graphs are designed by
the linear structure of vertex ordering. Let m be
an ordering of vertices in a graph. We write
v; <r vj if v; comes before v; in w. Note
that, if 7 is clear from the context, we will sim-
ply write v; < vj. For a graph G = (V, E),
a perfect elimination ordering is an ordering

1998 Internationai Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

v < v < e
that for each i = 1,...,n, v; is a simplicial ver-
tex of G;, where G; is the subgraph of G in-
duced by the vertex set {v;,viy1,.-.,vn}. Fulk-
erson and Gross [9] showed that a graph G is

< v, of V with the property

chordal if and only if it has a perfect elimina-
tion ordering. A perfect elimination ordering is
a strong elimination ordering (SEO for short)
if for any ¢ < j < k and vj,vx € Ng,(vi),
Ng,[v;] € Ng;[vk]. Farber [7] showed that a
graph is strongly chordal if and only if it admits
an SEO.

In this paper, we use G = (X,Y, E) to de-
note a bipartite graph which consists of two dis-
tinct sets of vertices X = {z1,Z2,...,%p} and
Y={y1,y2--.
partite graph G, the bipartite adjacency matriz
of G is a p x ¢ (0,1)-matrix Mg = (a;;), while

,Yq}, Where p+ g = n. For a bi-

aij = 1 if and only if (z;,y;) € E. A bipartite
graph is called chordal bipartite if every cycle
of length at least six has a chord. Note that,
chordal bipartite graphs form a large class of bi-
partite graphs containing, for example, convex
and biconvex bipartite graphs, bipartite permu-
tation graphs, and bipartite distance hereditary
graphs (or (6,2)-chordal bipartite graphs). For
an overview of these classes of graphs, please
refer to [2].

A (0,1)-matrix is I'-free if it contains no two
pairs of rows and columns that induce the sub-

(1s)

A matrix that has a permutation of the rows
and columns that are I'-free is called a totally-

matrix

balanced matriz. The notion about totally-
balanced matrix turns out to be extremely im-
portant in the study of strongly chordal graphs
and chordal bipartite graphs. Hoffman et al.
[10] used I'-free matrices to characterize when
a particular linear programming problem could

be solved using a greedy algorithm. They also

-17-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

showed that a graph G is chordal bipartite if
and only if the bipartite adjacency matrix Mg
is totally-balanced. Farber [7] showed that a
graph G is strongly chordal if and only if the
neighborhood matrix of G and the clique-vertex
incidence matrix of G are totally-balanced.

A doubly lezical ordering of a matrix is an
ordering of the rows and of the columns in
which both the rows and the columns, as vec-
tors, are lexically nondecreasing. Lubiw [12]
proved that any doubly lexical ordering of a to-
tally balanced matrix is I'-free, which led to ef-
ficient recognition algorithms for chordal bipar-
tite graphs and strongly chordal graphs. Let
M be a p X g nonnegative matrix containing
r nonzero entries. Pagie and Tarjan [14] gave
an O(p + q + rlog(p + ¢)) time algorithm for
finding a doubly lexical ordering of M. Be-
sides, Spinrad [17] gave an O(pq) time algorithm
for finding this ordering if M is a (0,1)-matrix.
Hence, the time complexities of the best known
recognition algorithms for these cases of graphs
are O(mlogn) for sparse graphs and O(n?) for
dense graphs, respectively.

For a bipartite graph G = (X,Y, E), an or-
dering of vertices {z; < z2 <--- <z} U{y1 <
yo < -+ < yq} Is a strong Y -elimination order-
ing if for every 1 i< ¢, 1 <j <k <pand
zj,zx € Ng(wi), Ng,,(z;) € Ng, (zk) where
Gy, is the subgraph of G induced by the ver-
tices of X U{yn € Y : h > i}. Chang [3] showed
that a bipartite graph is chordal bipartite if and
only if it admits a strong Y-elimination order-
ing. Note that, for a chordal bipartite graph G,
if the bipartite adjacency matrix Mg is I'-free,
then the ordering of the rows together with the
ordering of the columns of Mg corresponds to
a strong Y-elimination ordering of G. Conse-
quently, a strong Y-elimination ordering of a
chordal bipartite graph can be obtained from
a doubly lexical ordering of its bipartite adja-
cency matrix. In the remainder of this paper,
we assume that a strong Y-elimination ordering

of a chordal bipartite graph is available.

Example. Figure 1 (a) gives a chordal bipartite
graph G that its vertices have been numbered
according to a >strong Y-elimination order-
ing. In this Figure, Ng(y3) = {z2,23,Z4,%s},
Ng,, &2) ={y3}, Ne,, &3) = Ng,, (1) = {ys, s}
and Ng,, (zé) = {y3,ys,ys}- Thus, Ng, (z2) ©
Ng,, (z3) € Ng,, (z4) € Ng,, (z¢) satisfies the
property of the strong Y-elimination ordering.
Also, it is easy to see that the corresponding
bipartite adjacency matrix of G shown in Fig-

ure 1 (b) is I'-free. ' '

I zo 3 T4 Ts Tg
! Y2 Y3 Y4 Ys
(a)
Y Y2 Y3 Y4 Ys
r [1 1 0 0 07
To 0 0 1 0 O
I3 0 1 1 0 1
T4 1 1 1 0 1
T5 0 0 0 1 1
s L 0 0 1 1 1 J
(b)

Figure 1: (a) A chordal bipartite graph. (b) A
bipartite adjacency matrix.

3. The APSL problem on chordal
bipartite graphs
In this section, we assume that all the consid-
ered graphs are connected. For a bipartite graph
G = (X,Y,E), we define Gy = (XUY,EUEYy)
as an augmenting graph of G with respect to Y,

-118-

where

By ={(3,¥') : y,¥ €Y and Ne(y)NNg(y') #0}.

As a result, the distances between vertices of
Gy can be formulated by the following lemma.

Lemma 3.1 For any bipartite graph G =
(X,Y, E), the following statements are true.

(1) doy (,¥)=3dc(y,y) fory,y' € Y;
(2) dgy (z,2")=1dg(z,2')+1 for z,2' € X;

(3) day (z,y) = 3(dg(z,y) + 1) forz € X
andy €Y.

Proof. Since the verifications of statements
(2) and (3) are similar to statement (1), only
Let P =
(y = 20,21,---,2¢ = y') be any shortest path
Since G is bipartite,
k must be even, and for each vertex z; €
Thus, (y =
20,72, 24, - - -y Zk—2, 2k = Y') forms a path of Gy
and dg, (v,v") < !2‘- = 1dg(y,y’). Furthermore,
if there is a path joining y and y’ with length
less than £ in Gy, then P cannot be a y-y'

statement (1) is proved here.
from y to 3 in G.

X we have (z,-_l,z,-.;_l) € FEy.

shortest path in G. Consequently, dg, (¥,¥') =
3de(y,9). o

Let G be a chordal bipartite graph. The last
neighbor of a vertex y € Y, denoted by LN (y),
- is the largest vertex in the strong Y -elimination
ordering that is adjacent to y. The following
lemma shows that if G is a chordal bipartite
graph then there is a more efficient algorithm
to construct Gy without testing Ng(y)NNg(y')
for every pair of vertices y,y €Y.

Lemma 3.2 Let G = (X,Y, E) be a chordal bi-
partite graph. Then, Ey = {(yi,y;) 1 % € ¥
and y; € Ng, (LN (yi)) for i # j}.

Proof. Assume that y; € Y and y; €
Ng,, (LN(y:)) with i # j. By the definition

1998 international Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

of Gy, we obtain y; < y; in the strong Y-
elimination ordering of G. Since LN(y;) €
Ng,, (y:) 0 Ng,, (y;), (vi,y;) € Ey directly fol-
lows from the definition that Ng(yi) N Ng(y;) #
0. Conversely, we consider that (y;,y;) € Ey
for any two vertices y;,y; € Y. Without loss of
generality, we assume y; < y; in the strong Y-
elimination ordering. Since (yi,y;) € Ey, there
is a vertex z € X such that z € Ng(yi)NNg(y;)-
Since LN(y;) is the largest vertex of X that
is adjacent to y;, Ng,, (z) C Ng,, (LN (yi)) fol-
lows from the property of strong Y-elimination
ordering. Thus, y; € Ng, (z) implies y; €
Ne, (LN () 0

Lemma 3.3 Let G=(X,Y,E) be a chordal bi-
partite graph and K C Y. Then, K is a clique
of Gy if and only if there is a vertez z € X in
G such that it is adjacent to all the vertices of
K.

Proof. The “if” part is obvious from the def-
inition of augmenting graph Gy. Conversely,
the proof is produced by induction on k, the
number of vertices of K. It is trivial for k €
{1,2}. Assume that the lemma is true for every
clique with no more than k vertices. Let K =
{Yh1sUnay- - > Y} With yn, < yny, < -0 < yn,
in the strong Y-elimination ordering. By the
hypothesis, there are two vertices z;,z; € X
in Gy such that z; is adjacent to all the ver-
tices of Yn,, Yoy« -+ s Yhe1» and z; is adjacent to
both ya, and ya,. Due to the property of strong
Y-elimination ordering, if z; < z; then z; is ad-
jacent to all the vertices of yhy,...,¥n,_,- On
the other hand, if z; < z; then z; is adjacent to
Yn,- Thus, all the vertices of K have at least a
common neighbor in X. a

From Lemma 3.3, it is easy to see that if G

"is chordal bipartite, then the set of all maxi-

mal cliques of Gy is {Ng,[z] : £ € X}. The
following procedure describes an algorithm to
compute an ordering of vertices of Gy. Theo-

-119-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

rem 3.5 shows that the resulting ordering is an
SEO. Hence, Gy is a strongly chordal graph.

Procedure Compute-SEO
Input: a chordal bipartite graph G=(X,Y, E)
and a strong Y-elimination ordering of
G.
Qutput: an SEO of Gy.
begin
for i =1to |X]| do
let {Yny>Yhsy»---»Yh,} De the set consisting
of all neighbors of z; in G and assume
that yp, < yp, < < ya, in the strong
Y -elimination ordering;
put z; in the SEO and remove z; from G;
for 7 =1to k do
if y»; is an isolated vertex in the current
graph
then
put ys; in the SEO and remove yp;
from G;
end for
end for
end.

For convenience, throughout the rest of this
paper we refer o to the given strong Y-
elimination ordering of G, and 7 to the resulting
ordering obtained from the above procedure. It
is obvious that for every two vertices z;,z; € X,
z; <, z; if and only if z; <, z;. The following
lemma shows that with a restricted condition,
the property is still satisfied for the vertices of
Y.

Lemma 3.4 Let y; and y; be any two vertices
of Y with at least a common neighbor in X.
Then, y; <q yj if and only if y; <g yj.

Proof. Assume that y; <, y; and let z € X be
the largest vertex in o that is adjacent to both
yi and y;. We claim that LN(y;) = z. Sup-
pose not, i.e., T <, LN(y;). Based on the prop-
erty of strong Y-elimination ordering, we have

Ng,,(z) € Ng,, (LN (y:)). Since y; € Ng,,(z),

y; must be adjacent to LN (y;). This contradicts

that z is the largest vertex adjacent to both y;

and y;. By the assumption y; <, y; and the
result that LN(y;) = z is adjacent to y;, we
have y; <, y;. Conversely, suppose that y; does
not precede y; in o. This means that y; <o v
since the ordering of vertices of Y in o is a total
ordering. Thus, using the same argument men-
tioned above we can show that y; comes before
y; in 7. O

Theorem 3.5 Given a chordal bipartite graph
G = (X,Y,E), the procedure Compute-SEO
generates an SEO of Gy in O(n +m) time.

Proof. The procedure Compute-SEO can ob-
viously be implemented in O(n + m) time. Let
21 <p 22 <gx -+ <g Zn be the ordering of ver-
tices of Gy that is generated from the above
procedure. Let G; be the subgraph of Gy in-
duced by the vertex set {z;,zi+1,.--,2n}. In
the following, we will show that each vertex z;
is a simplicial vertex of G;. Moreover, we show
that if zj, zx € Ng,(2:) for z; <x zj <r 2, then
Ng,[z;] € Ng;[z]). The cases will be discussed
respectively as follows.

Case 1: z; is a vertex of X. We observe
that all the vertices adjacent to z; are the ver-
tices of Y and Ng,[z;] forms a clique of G;.
Thus, z; is a simplicial vertex of G;. Assume
that zj,zx € Ng,(z) with z; <z zx. Note
that, by Lemma 3.4 z; <, zx. To show that
Ng;lzj] € Ng;[z], we consider that there is
a vertex z € Ng,;(z;)\{z,zx} for otherwise
Ng;[z;] = Ng;lzx] = {z,2j,2x}. Clearly, z; <
z;. Hence, if z; € X, then z; <, 2. In this
case, it is easy to see that (z;,2;) € E be-
cause Ng,, (z) C Ng,, (21) by the strong Y-
elimination ordering of G. As a result, z and
zx are adjacent in G;. On the other hand, if
z; € Y, by definition there is a vertex z, € X
such that it is adjacent to both z; and 2z; in G.

-120-

In the following, we will show that z; and zx are
adjacent in G;. Clearly, if z; and zj, are the same
vertex, no further proof is necessary. If z; # zi,
we proceed to the following subcases.

Case 1.1: z; <5 2Zh.

By the strong Y-elimination ordering of G,
(2, 25), (i, 2k), (2n, 2;) € E implies (zn,2¢) € E.
Thus, (21, zx) € Ey follows from the fact that zp
is adjacent to both 2 and 2 in G.

Case 1.2: zp <, z; and z; <q 2-

By the strong Y-elimination ordering of G,
(Zh,Zj), (zh,zl), (z,-,zj) € E implies (zi,zz) € E.
Therefore, (z;,2zr) € Ey follows from the fact
that z is adjacent to both 2 and 2 in G.
Case 1.3: zp <, 2z; and z; <g zj.

It is clear that there is at least a vertex
zp € X with z; <; z such that z, and
z are adjacent in G; (otherwise, z1 < z).
By the strong Y-elimination ordering of G,
(2, 21), (28, 2j), (2p,21) € E implies (2p,2;) €
E, and (2,2;), (2, 2k), (2p,2;) € E implies
(2p,2x) € E. Therefore, (2;,2¢) € Ey follows
from the fact that z, is adjacent to both z and
Z in G.

Case 2: z; is a vertex of Y. From the pro-
cedure Compute-SEO, we can see that all the
vertices of X adjacent to 2z; have been removed
when z; is added into the ordering w. Thus
Ng,[zi] € Y. To show that z; is a simplicial
vertex of Gy, we first prove that for any two
vertices zj, 2x € Ng,(2:), there is at least a ver-
tex of X such that it is adjacent to both z; and
z; in G; ie., (zj,2) € By. Without loss of
generality, we assume z; <g zx. By definition,
if zj,2zr € Ng; (zi)'7 then there are two vertices
zjr,z¢ € X such that zj (resp. zp) is adja-
cent to both z; and z; (resp. z; and zx) in G.
Clearly, if zj and 2z are the same vertex, no
further proof is necessary. Due to the strong Y-
elimination ordering of G, if zj <o 2z, then
(zx,2;) € E because Ng, (zr) & Ne., (zxr).
On the other hand, if zp <, zj/, a similar ar-
gument can show that (zj,zx) € E. Thus,

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

(2j,2x) € Ey. Based on the result that every
two vertices z;,zx € Ng,(z:) are adjacent in G;,
Ng,[z] forms a clique of G;. Besides, since ev-
ery two vertices zj,zx € Ng;(z;) have a com-
mon neighbor in X, if z; <, 2z then z; <r z
by Lemma 3.4. We now show that Ng,[z;] C
Ng,[zx] in this case. We may assume that
there is a vertex z € Ng,(zj)\{z,2x} for oth-
erwise Ng,[z;] = Neg;[zx] = {2, 2j, 2 }. Clearly,
z; <x 2. Since zj,zj,zx € Y and {z;,z2;, 2}
forms a clique in Gy, by Lemma 3.3 there is a
vertex zy € X such that it is adjacent to all the
vertices of z;,z; and zx. Since the two vertices
zp € X and z; € Y are adjacent, zy <r z. As
a result, we have zy < z;. Now, if z; € X then
zp <y 2. 'Thus, (zi:,zj),(zir,zk),(zz,zj) € E
implies (z;, 2x) € E by the strong Y-elimination
ordering of G. Next, we consider the case
z € Y. Since (2,2;) € Ey, there must exist
a vertex (say) zp € X that is adjacent to both
z; and zj in G. Clearly, if zy and z; are the
same vertex, then (z;,2¢) € Ey. On the other
hand, we may consider the following three sub-
cases: (i) zy <g zp; (il) zn <o 2y and z; <, z;
and (iii) zy <, 2y and z <g z;. Since the argu-
ments are similar to those proofs of Cases 1.1,
1.2 and 1.3, we can obtain that (z;,2;) € Fy in
the above three subcases without doubt. 0

To solve the APSL problem on a chordal bi-
partite graph G, we consider that G is given
by a strong Y-elimination ordering. Note that,
this ordering can be achieved in 0O(n?) time us-
ing the algorithm of [17]. We then construct
the augmenting graph Gy. By Lemma 3.2, this
work can easily be done in O(n?) time because
that Ey contains at most O(n?) edges. Theo-
rem 3.5 shows that Gy is strongly chordal and
an SEO can be computed in O(n + m) time.
Hence, we can use the all-pairs-shortest-length
algorithm proposed by Balachandhran and Ran-
gan [1] to obtain the distance matrix of Gy. In
addition, Lemma 3.1 shows that the distance

-121-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

between each pair of vertices in G can immedi-
ately be determined from the distance matrix of
Gy. Since there are n? entries in the matrix, we
conclude the following:

Theorem 3.6 The APSL problem on chordal
bipartite graphs can be solved in O(n?) time.

The algorithm provided in [1] for solving the
APSL problem on a strongly chordal graph G
additionally establishes an n x n table'S which
can be used to construct the shortest paths in
optimal time. In that table, the entry S[u,v]
reports the vertex next to u in a shortest path
from u to v in G; i.e., S[u,v] = w if and only if
de(u,v) = dg(u,w) + dg(w,v) = 1+ dg(w,v).
Therefore, to find the u-v shortest path, we be-
gin by retrieving the entry S{u,v], and then re-
trieve S[w,v] in the next step. The previous
procedure is carried out repeatedly until we find
an entry S{w', v] = v in the table. Consequently,
the shortest path between u and v in G can be
obtained. The detail about how to build the ta-
ble S is not mentioned here. Please refer to [1]
for reference.

By modifying the table S of the strongly
chordal graph Gy, we are able to show how to
construct the shortest paths for a chordal bipar-
tite graph G. By Lemma 3.2, (y,y’) € Ey for
y <,y if and only if LN(y) € Ng(y) N Ng(¥/').
Thus, for each entry Sly, z] =y’ wherey,y’' €Y
and z € XUY, we reset Sy, z] to be LN (y) and
S[LN(y), 2] to be %'.” This modification totally
takes O(n?) time. Due to the structural proper-
ties of Gy, the internal vertices of any shortest
path with length > 2 in Gy are the vertices of
Y. Also, from Lemma 1 we have known that
de(y,v') = 2-dg, (v, ¥) for y,y’ € Y. There-
fore, the new table S can preserve the informa-
tion for the shortest paths of G. Furthermore,
constructing a shortest path between vertices in
G can be performed by retrieving the new table
as the previous process.

References

[1] V. Balachandhran and C. P. Rangan, All-
pairs-shortest-length on strongly chordal
graphs, Discrete Appl. Math., 69 (1996)
169-182.

[2] A. Brandstiddt, Special graph classes —
a survey, Schriftenreihe des Fachbere-
ichs Mathematik, SM-DU-199, Universitat
Duisburg, 1991.

[3] M. S. Chang, Algorithms for maximum
matching and minimum fill-in on chordal
bipartite graphs, Proceedings of the 7th
Annual International Symposium on Algo-
rithms and Computation (ISAAC’96), Lec-
ture Notes in Computer Science, Vol. 1178,
pp- 146-155, 1996.

[4] L. Chen, Solving the shortest-paths prob-
lem on bipartite permutation graphs effi-
ciently, Inform. Process. Lett., 55 (1995)
259-264.

[5] D. Coppersmith and S. Winograd, Matrix
multiplication via arithmetic progressions,
J. Symbolic Comput., 9 (1990) 251-280.

[6] E. Dahlhaus, Optimal (parallel) algorithms
for the all-to-all vertices distance problem
for certain graph classes, Lecture Notes
in Computer Science, Vol. 657, pp. 60-69,
1993.

[7) M. Farber, Characterizations of strongly
chordal graphs, Discrete Math. 43 (1983)
173-189.

[8] R. W. Floyd, Algorithm 97 (SHORTEST
PATH), Communication ACM, 5 (1962)
345.

[9] D. R. Fulkerson and O. A. Gross, Inci-
dence matrices and interval graphs, Pacific
J. Math., 15 (1965) 835-855.

-122-

(10]

(12]

(13]

A. J. Hoffman, A. W. J. Kolen and M.
Sakarovitch, Totally-balanced and greedy
matrices, SIAM J. Alg. Disc. Meth., 6
(1985) 721-730.

D. B. Johnson, Efficient algorithms for
shortest paths in sparse networks, J. ACM
24 (1977) 1-13.

A. Lubiw, Doubly lexical orderings of ma-
trices, SIAM J. Comput., 16 (1987) 854-
879.

P. Mirchandani, A simple O(n?) algorithm
for the all-pairs shortest path problem on
an interval graph, Networks, 27 (1996) 215-
217.

-123-

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

[14] R. Paige and R. E. Tarjan, Three partition

refinement algorithms, SIAM J. Comput.,
16 (1987) 973-989.

[15] R. Ravi, M. V. Marathe and C. P. Rangan,

An Optimal algorithm to solve the all-pair
shortest path problem on interval graphs,
Networks, 22 (1992) 21-35.

[16] R. Seidel, On the all-pairs-shortest-path

problem in unweighted undirected graphs,
J. Comput. System Sci., 51 (1995) 400-403.

[17] J. P. Spinrad, Doubly lexical orderings of

dense 0-1 matrices, Inform. Process. Lett.,
45 (1993) 229-235.

	
	116
	117
	118
	119
	120
	121
	122
	123

