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Abstract

The invariant recognition of shapes under affine distortion and franslation requires the use of invariant
descriptors under these distortions. This paper is concerned with the definition of classes of such features which are
appropriate for the description of 2D shapes and could be used for problems like character recognition, even for cases
where the characters are very complex like Chinese characters, for example. As we are concerned with the problem of
classes of features as opposed fo individual features themselves, we are in position to propose very large numbers of
Jeatures that belong to these classes. These features do not necessarily have a straight forward geometric interpretation

as they are derived algebraically. Therefore it is difficult to investigate their usefulness theoretically, so they have to be
analyzed by Al systems before being used for Pattern Recognition. ‘

1 Introduction

This paper concerns the problem of ﬁnding invariants or .

quantities that are invariant under planar affine
transformations of images. These invariants are to be
used in complex character recognition.

Every function defined on a set of images can be
called a feature. Therefore the feature characterizes
images by its own way. Using this term, any kind of
information about an image can be called by feature.
Then we restrict ourselves to infegral features. This term

cannot be absolutely definite, but usually it is understood

that this is a feature which can be computed using simple
mathematical formulas without many logical operations.
For example, statistical characteristics of images are
integral features. To have a better idea about integral
features, let us recall that they can be easily computed by
massively parallel algorithms. Integral features are
indifferent to color restrictions, good boundary and noise.
Therefore, they seem to be prominent.

There were many papers devoted to integral
features at the beginning of Pattern Recognition theory;
we can read about this in old surveys. For example, such
features as square, length of boundary, projections, center
of gravity, characteristics of color histogram, moments,
fractal dimensions, mean curvature of the boundary,
middle distance between black points, coordinates of
center of gravity — they are integral features.
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Unfortunately, it is well-known, that these approaches
had no considerable success. Nowadays investigators
prefer to examine structure of images more carefully,
using more complicated ideas than simple math. -

The point of our studying began when we
discovered a simple mathematical form of presenting all
known integral features. This form involves three
functionals into one formula. Then this formula,
consisting of a friplet of functionals, provides us with
triple feature. So every triple feature is a function,
defined on images, and this function has a special
algebraic form (see below). .

The first result of this form of triple feature is the
following. Suppose we have 100 samples of functional;
they can be found easily. Combining them by three into
triplets, we immediately receive 100x100x100 = one
million of triple features. We see that.the situation is
sufficiently different from previous papers on integral
features. Authors explored there integral features and
every time they observed a few number of features, see [1
- 3]. Apparently, they had an advantage of knowing the
meaning of the features under their consideration.
However, it is impossible to know the meaning of the
million features.

Having many features, we hope sooner or later to
resolve a given pattern recognition task. We perform our
experiments in this paper to demonstrate this. The first



experiment is concerned with a hieroglyph recognition
problem and finding out positions, rotations and scaling
of distorted patterns. The second one deals with classes
of human blood cells. In the second experiment the
problem was not to recognize (like we-have done before
with hieroglyphs), but to determine classes. We prepared
5 classes of blood cells by lists of patterns, and
sometimes it was not easy to find out the class of every
new cell with the naked eye. However, 120 of the triple
features did recognize the class of every new cell. We do
not know how they did it, because we do not know the
meanings of triple features.

One expects that some triple features are not good
for a given recognition task, but there can be triple
features which fit well. And this can easily be seen froin
our experiments. So the problem of sorting and
investigating of triple features arises. This is a reason
why we present our paper to this conference on artificial
intelligence (AI). We resolved the presented simple tasks
taking many triple features without any analysis; we used
good features and bad ones as well. We see that this
works; however, it is obvious that this method can be
used for real tasks if only a special system for analysis of
triple features would be made by specialists on Al

2 Attributes of functionals

In the base of our theory, there is a simple mathematical
construction; therefore, we can soon explain it, leaving
for a while more complicated results and strict
definitions. To construct a good triple feature we should
know something about the triple of functional involved.
Functionals can have properties we are interested in. The
problem of constructing new triple features is charged
upon a computer; therefore, formulas of functionals
should be presented to a computer’s program, and their
properties also should be described in the program. We
call these properties we are interested in by “attributes”
of functionals. Below we give strict definitions, now we
‘give an example. A functional is a map, defined on a set
of usual functions of one variable, say x. Let = be a
functional; for example, let it use the formula Z(E(x))=

(ﬁg(x)F’ dx)q for some fixed p and ¢. We see from this
that E(E(ax)) = a 1 B(E()) and E(cE®) = &7 EE®)

for all positive a and c. These exponents —g and pq are
attributes of the. functional E and they are designated
k=x(E)= ~q and A=A(E)=pg. We refer to these numbers
as exponents of functionals. We call k(E) to be
penetrating  homogeneity  exponent and A(E)
homogeneity exponent of the functional =. An arbitrary
functional may have not one of these two exponents or
have not both. This information goes to the computer.
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There are very common properties of functionals:
(i1) EEE+h))= E(E) (for all permissible functions and
_numbers b) and (s1) ZE(E(x—b))=b+E(E) (for all £ and b).

Our example EE@)= (e ax)? fits to the first, In
our terminology, “the functional E is invariant (to shifts
of underlying functions along the axis of independent
variable).” .

These attributes will be used in the first result —
Theorem 1. Later we introduce more attributes.
Mathematically, our theory consists in introducing more
attributes of functionals and inventing theorems like
Theorem 1 (see below). Functionals that we use must
reveal some features of functions of one variable; in other
words, they. are intended to be used for telling one
function from another. One sees that in this paper all of
the used functionals have attributes. The following
question arises. Surely we can invent good functionals to
detect features of functions. But will these good
functionals have good attributes? Will these functionals
go to the theory of triple features? Our answer is the
following. If we have a functional Z without some
attributes, and we want to have these attributes, we can
easily remake this functional E into a new one =* which
will have the desired attributes and will have similar
reactions to underlying functions.. This way is called
“normalizing” of functionals. We do not explicitly use
this way in this paper; however, let us give a notion of it
with a plaiﬁ\g:xample. Suppose we want™a functional =*
having a property A(E*)=0. For this we can normalize =
in ways EXE@)= EEE@maxf) or E*EE)=

E(E)/JE@)d). Tt is easy to check that we have A(E#)=0.
There is no a standard way, but there are many methods,
depending on circumstances. This shows that we have a
sufficient source of functionals for constructing triple
features; here we are not restricted by the mathematical
nature of functionals.

3 Structure of triple features

The idea of triple features is based upon a well-known
parametrization of lines in the plane, so we have to touch
this known theme. Let 7 be an image function defined on
the plane. Every point A/ of the plane has rectangular

_coordinates (x,y) and polar coordinates » and ¢ connected

by formulas x= rcos@, y= rsing. The number F(x,y) is the
color or brightness in the point having coordinates (x,y)
of the image described by its image function F. Below we
use the standard parametrization of a line /=I(p,¢) in the
plane in the form

parametrization of the line I(p,p) with parameter t:

L(t,p,9)y=(pcose—tsing, psing+tcos), )]
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where ¢ is a natural parameter on the line. The distance
between the origin having coordinate (0,0) and the line /

is |p|. The point of the line./ with coordinates (pcose,

psing) is the nearest to the origin with coordinates (0,0).
We can consider L(t,p,¢) being a vector-function of three
independent variables. This function is a parametrization
of the line / which we call the line with polar attributes p
and ¢. This line has a direction defined by the direction
of movement of the point L(¢,p,p) when the parameter ¢
increases. This direction also ‘can be defined with the
unit vector having coordinates —sing and cos¢p. Therefore
we consider two lines /(p,p) and I(-p,p+m) being
different because of their different directions in spite of
they coincide geometrically.

Now we can introduce. triple features. To make a
formula for a triple feature we must have three
functionals prepared. Designate them by T, P and ®. We
call them frace functional T, diametrical functional P
and circus functional ®. The first two of them, T and P,
should be defined on two sets of functions, and every
function f of these two sets is finite supported (i.e. it has
to be equal to zero for all arguments remote from the
origin 0 of the real line R). The third functional is
defined on a set of 2%~ periodic functions of the real line
R. To -simplify our notation, suppose that these
functionals are applied to only those functions whose
independent variables are designated by ¢, p and ¢
respectively. That is notations like Tf, Pg and ®/ stand
for T(RY), P(g(p)) and ®(h(p)) respectively. Also, it
means that if functions f, g and # have more variables,
designated by others letters, then these additional
variables are considered to be fixed while one of the
functionals is applied, because these functionals can be
applied to functions of one variable only.

.Mathematically the triple feature (designate it by
IT), made out of the triplet of functionals (®, P, T) for
the image function F, has a simple form of

| TI(F)= ®PoToFoL(t,p,9), @
where the sign “°” means map’s composition. To get a
the number II(F), we involved the functionals. Therefore
we can use also notation II(F)=II(F, ®, P, T).

Let us explain formula (2). Formula (2) begins to
work at the composing a function f{t,p,p)= F(L(t,p,9)) of
three variables. This is the color (or brightness) of the
image in the point having coordinates (1). Next step is
receiving the function g@p,p)= TALp,e)) of two
variables; notice, please, that the functional T is applied
to ft,p,) while p and ¢ are fixed; that is, in computers
the functional T must be applied many times, to exactly
how many pairs (p,9) are involved. We discuss this
below. Then we apply the diametrical functional and get

212

a 2zn-periodic function /()= Pg(p,¢). At the last step we
have the triple feature II(F)= ®h(p).

4 Computation of triple features

Consider an image set in a circle with radius ». For
points situated out of the circle let the image function <
be equal to zero. We take a finite set of lines I(p.,¢),
(k=1..K, j=1..J) so that we have equidistant grids —r=p,<
po<..< pr=r and 0=¢;< @p<...< @9<@=27. Every line
I(p1, ;) bhas points L(Z, p,,p) (see (1)) on it, where ¢
ranges in a grid of a segment [-r,#]. Therefore for this
line /(p, ;) we have a finite set of values Az, p. @) for a
finite grid of parameter ¢. This allows us to compute the
trace functional T for this function f, then we get
numbers g(py,®,). These numbers make a trace matrix; it
has J columns and K lines. Then every column,
representing values of the function g(p,,) for finite set of
parameter p, goes under the. diametrical functional P.
Therefore we get h(gp) for ¢= D1, P2,..., Py At last, we
can compute IT(F) using the circus functional @ at 4(g).

5 Invariant triple features

Theorem 1. (a) Let T, P and ® be three functionals
described in section 3. Let the three are invariant in
sense (i1) (see section 2). Then the triple feature
IF, ®, P, T) (see (2)) is independent of any—
rotation and shift of image with image function F.

(b) Let two images be given having image functions F;
and F,. Suppose the second image is made out of the
first image with rotation, sizing with a positive
coefficient p (if u<l, then the second new image is
smaller than the first image) and shifting to a
vector. If T, P and @ are invariant in the sense of
(i1), and there exist four attributes x(T), x(P), A(P)
and A(®D), then the triple features (2) for the two
images are connected with the following relation

TI(Fy)= p°TI(F), where o=(x(TIA@)+k@)MD). (3)
Theorem 1 (b) gives us a plan for pattern
recognition. Take many triple features having ©=0, they
react only to shape neglecting size and shift of images.

Therefore these features characterize images by vectors

(every component of which is one of the triple features)

and these vectors are the same for patterns, for sized

patterns and shifted patterns. Therefore we can recognize

patterns like ones presented on Fig 1.

After a successful recognition process we can use a

set of triple features having ®#0. Using Theorem 1 (b)

we can find out the sizing parameter p.-We do this in the

first experiment concerning Fig.1.



Theorem 1 (a) covers all results of stereometrical
metallography and stochastic geometry [1-3] in thelr
application to image analysis. Their method is based on
mean characteristics of intersection of an arbitrary line
and an image. Designate this characteristic by T and
then we see that theory of [1-3] is the theory of triple

features (2) where we assumed Pg=jg(p)dp and

(Dh(cp)=_[ [0,2n}#(®)dp. By choosing several different
variants of T they got several geometrical characteristics
* of images. However, having P and ® fixed, their method
is not able to use the advantage of combinatorial
multiplication as it holds for triple features.

6 More theorems

In previous sections we explained the main ideas of our
method and below we give a more formal and brief
account.

Now let us discuss how images can change thelr
brightness while they are being distorted. Let F; be'a
function of a toned image, that is the F; is a function

defined in the plane which gives the whole information

about the image. Let the F; describes the brightness of
the image or its color. We refer to the image with the
same designation F,. Consider another image F,which is
made of the initial image F;, by sizing with coefficient p.
Then let a movement be applied. That is, every point of
the initial image is translated with a fixed beforehand
linear operator and a shift. The whole transformation is
an affine conformal transformation Aff of the initial
image F,. For example, if the distance between the
camera and the image is increased in two times, we have
u=0.5. Let M be a moving point in the plane. It is easy to
see, that we can write Fo(M)= F; M.

However, distortion of images can provide
changing in their brightness. We may have another
formula F,(M)= pPF,(Aff "M), where B is a brzghtness
exponent. This exponent depends on a case we consider.
For example, the light in the image is unchanged and F,
is got while changing the distance. We see that =0 here.

- Now suppose that the light is attached to the camera. A
simple computation shows that f=2. Another example is
if the image F is painted on some ribbon film. If it is
shrunk while the distance of the view is constant, we
receive the small and more bright image F, because the
paint is made dense. In the latter case we have p=-2.

We conclude the parameter B can be constant for a
recognition task and it is known beforehand. Assuming
the hypothesis of brightness exponent we take the
parameter B being fixed. In [4, 5] there was assumed
B=0. This case is called the hypothesis of color
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independence for - linear distorted images [6]. Now
assume the hypothesis and fix the brightness exponent B

Now we give several definitions. A functlonal
‘called invariant if

(1) EGx+h)) =
additional properties:

(12) There exists a positive function o and E(§(ax))
= o(a)ZE for all >0 and acDom(x); in any case le
Dom(a);

(i3) There exists a positive function y and Z(cE)= y
(c)ZE for all ¢>0 and ceDom(y); in any case 1€Dom(y).

It is always possible a case Dom(a)={1} or
Dom(y)={1}. Another natural case is if the domain is
(0,¢). It is easy to prove that, assuming the functions o
and y are continuous at least in one point, we can find
numbers k=k(Z) and A=A(E) such that (see (i1) and (i2))
ofa)= a*® and y(c)= *®. We refer to these numbers as
exponents of invariant operator. Functions o and vy are
penetrating homogeneity  function and homogeneity
Junction respectively. The same terminology is held for
the exponents.

We call a functional Z sensitive if

(s1) Z(¢(x+b))y= Zc-b for all real b.
It may have additional properties:

(52) Z(¢(ax))= (1/a) Zc for all positive a; comblmng

B¢ for all real b. It may have

* this and the (s1), we obtain Z(¢(a(x+b)))= (1/a)Zg-b or

Z(g(ax+b))= (1/a)(Zs-b).

(s3) Z(cg)=Zg for all positive c.
We call a functional Z t-sensitive if

(s1.7) Z(g(x+b))= Zc-b (modd <) for all real b.

We can combine (s1.1) and (s3) but (s2). A T-sensitive
functional is applied to 2m-periodic functions in this
paper.

Now we give results of [4], generalized with the
hypothesis of brightness exponent. Let IT, be a triple-
feature for the initial image and IT, be the same triple
feature for a conformal distorted image made out of the
initial one with a homothety, a rotation, and a shift. The
results are shown in Table 1.

Let us give explanations for this table The second
image is stretched in p times (if p>1; or shrunk, if
0<u<1) comparatively with the initial image and rotated

. to an angle 6. The number » in the Table can be any

natural number, v=1/p. The operation #" is elimination
of the first Fourier harmonic from the underlying
periodic function .

7 Finding shift parameters

It is known that center of gravity simplifies recognition
of simple objects. Problem is that sometimes we cannot
find it properly-because images can be damaged. One of
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advantage of our theory is that we can avoid using
centroid coordinates. Therefore we do not use center of

gravity. In this section we show that we can find
displacements of images using triple features.

Table 1 Theorems . : ' -
Property of T Property of P Property of ® Connection IT, and IT;
@1); ar(v)and | (i1); o(v) and ye(yr(n")oer(v)) ay IL= yolyp(yr(n®)
yr(u®) can be can be computed or(V))op(V))IT;
computed - .(if the coefficient can be
. computed)
see above see above (s1.2n/n), (if IL=I1,+
, _ Ye(yr(pPYor(v))op(v)=1 then (s3)) (modd 27t/n)
see above (s1); Gf p=1 then (s2)); (if (i1), @u=du" for all permissible u I=yo(WIL
‘ Yr(pP)or(v)=1 then (s3)) (if the coefficient can be
, computed)
see above see above (s1.2n/n), (Gif p#1 then (s3)); IT=I1,+0
o ' ’ " Du=@uyfor all permissible u (modd 2m/n)

* Let an initial image function F; be given and'a
distorted image function F, be given. Suppose that the
distorted image was received by rotating to an angle 9
sizing with a coefficient p and then shifting the initial
image. Let the shift vector have coordinates (x, y)'=
(socosyo, sosinyo)'. Let T satisfy (i1) and (i2). Let P
satisfy (s1), (s2) and (s3). After computation T and P in
(2) we receive a Zn-penodlc function A(F, ¢). We call it
circus for F. Under the pointed out conditions we can
derive the followmg relation of circuses: wh(F;,o-0)+
Socos(p—wo)= h(F,p). After the recognizing procedure
explained above, and finding out parameters p and ©
according Table 1, we are able to find displacement
parameters s, and \, using this formula. Let C, and C,
be circus functionals giving coefficients a; and 5, of the
first Fourier harmonic of a 27-periodic funiction. Define
two triple features IT(F)= C.,P(TF(L(pp.1)))) and
ILE= CETEFEL(.p.n)). Taking - only first
harmonics, we rewrite our the relation in the form
WIL(F)oos(p-0)+  pIT(F))sin(@-0)+  socos(p—yo)=

I1,(F>)cos(p—0)+ IIx(F>)sin(p-H). In this formula, we
know all numbers, but s, and . The parameters s, and
o of the shift can be immediately found from th1s
formula.

8 Pattern recognition with triple features

Using results of Table 1 and explanations in the previous
sections, ‘one can organize the pattern recognition
process. Therefore we give only a brief account of our
experiments, to show the main steps, and results.
Presented tables give the notion what kind of numerical
information we get working with triple features.

To get a triple feature we need a triple of
functionals. The first of them is ‘a trace functional T.
Samples of trace functionals are presented in Table 2.
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They all are invariant. In Table 3 there are samples of a
diametrical functional P used in this experiment. Two
samples (namely D3 and D6) are sensitive diametrical
functionals, the others are invariant. These sensitive
functionals are used to reveal an angle of the pattern's
rotation and parameters of shifts of patterns. A circus
functional @ is applied to 2n- periodic functions;
therefore it has no exponent k(®), but it may have an
exponent A(®). The samples of it are shown in Table 4.
We see there the amplitudes of Fourier harmomcs and
other functionals. _

Samples of the patterns are denoted by pl, p2, .. p8.
The distorted (twisted, sized and shifted) patterns are
denoted by q1..q8 respectively. They aré shown in Figure
1. The distorted images are made from pl..p8 by sizing
with coefficients pl, p2, .., p8 respectively. Then
rotating to angles 61, 82, .., 68 and translating.

Our aim is to recognize* the patterns q1..g8 and to
find out sizing coefficients pi (i=1..8) and angles 0i
(i=1..8). Then shifts have to be found. This sequence is
offered by the theory of triple features. Notice that the
usual way is quite the reverse: to find a shift at first, then
sizing and rotation, and at last to recognize the image.

The lists of functionals in Tables 3-4 are input into
a PC with attributes listed in those tables. ‘So a PC
program is able to choose triple features having the
exponent ©=0 in formula (3). Columns with these triple
features characterize shapes without accounting their
size, rotation and shift. To proceed with the recognition
procedure, we need to introduce a distance in the criteria
space of these columns. We use L'-distance. The result is
presented in Table 5. The diagonal of the Table consists
of the smallest numbers in each row. It means that the
recognizing procedure is a success.
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Table 2 Samples of Trace Functional Table 3 Samples of Diametrical Functional Mathematically, these

Trace functional T Diametrical functional P | small numbers should be equal to

No | T(u(t)) x(T) | | No | Pu(p)) xP) | MP)| zero. However, we have

T1 | Ju(t)dr -1 D1 (12 norm of 05| 1 quantization in numbers of lines /

T2 | Length of the maximal 1| [Pz [Max) 0 | 1 | (see above) and points in these

segment in supp(u) lines. There were 40x30 lines in

T3 | mes(conv(supp(u)))) -1 | | D3| Middle point of w/fu(p)dp | -1 | 0 this experiment. However every

T4 | Standard deviation of -1 D4 | mes(supp(u)) -1 0 line is taken into account two

[ea(8) VS buc) ldit o 0 if =0 times. Therefore we deal with

T5 | TI*T4 2 | | D5 | Max ldu/dp | -1 1 trace matrices consisting of

D6 | Min(Supp(u)) -1 0 20x30 independent numbers.

That is, we compuied trace

Table 4 Samples of Circus Functional matrices having size of 20x30 only. Tt explains why

Circus Functional ® the diagonal elements in Table 5 are not equal to zero.

No | @(u(9)) M®) | | No | &(u(e)) M) Table 5 shows that only 20x30 numbers are sufficient

81 [ARmiuee | 1 C7_|C5/C6 0 to recognize the shapes of our pictures. The maximal

C2 | Ampl.2 harm. 1 C8 | Ampl 4th harm. 1 numbers in the diagonal of Table 5 are dist(q3,p3) and

C3 | Max(u) 1 C9 | C8/C5 0 dist(q6,p6). This is explained by the size of the images

C4 | C2/C3 0 €10} Phase 2nd harm. | none | 43 and g6 being smallest. Therefore only few lines of
C5 LZ norm of u 1 C11 | Phase 3d harm. none the 20x30 intersect them.

C6 | Var(u) T

Figure 1 Binary pictures

5

%

a2 a% as as a? aB
Distorted Inages

Table 5 Distances between shapes of the initial images (p1, p2..., p8)
and distorted ones (g1, g2..., g8), using trace transform in 20x30 points.

! p2 p3 p4 p5 pé p7 p8 .
2.572 1.405 | 2.425 | 2.706 1.057 this Table-6, and below, we reduce the number
3.423 | 1.678 [ 1.690 | 2.711 | 1.554 of samples to 4 to show the numerical

1
q2 | 167N

q3 | 1.608 2.290 | 1.983 |3.299 [2.639 | 1.561 | information in detail. ’

qd 2.469 | 3.182 4.772 | 4.079 | 2.499 To find angles of rotation for the distorted

a5 1.249 | 1.694 | 1.952 | 2.803 | 2421 | 1.895 | images we use formulas from Table 1. There are

96 12575 | 1.791 | 3.602 | 4.579 | 1.935 1.965 | 3.305 | two problems. First, these formulas are valid

q7 1 2713 | 2.778 | 3.605 | 4.349 | 2.682 | 1.892 modulo <. In our cases v= n for C10 and = 271/3

q8 1.442 | 1.534 | 1.299 | 2.154 | 1.944 | 3.090 | 3.764 for Cl11, gee Table 7. To resolve this problem,

Then we took triple features having o (see (3)) we need both these functionals. For example, we
‘being nonzero. The number of such triple features is note in the first three rows of Table 7 that 94 is equal to -
greater. The results are presented in Table 6. It turns out 0.14 or 3.01. What value that is valid, we can find out
that a problem of finding sizing coefficients is solved. In using the three lines below. They provide us with the
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values which approximately equals 1, -1 or 3. This
means that the proper value is 3.01, but not -0.14.
Another problem is that some triple features give
wrong results. In the previous tasks we also got wrong
results, however, the mean values were right. It is not
good to take a mean value for angles. Therefore
characteristics are needed which can approve a choice of
triple features. In our examples we use phase angles of
Fourier harmonics. Therefore we propose a coefficient
“check”= (amplitude of the Fourier harmonic)/
(Variation of the underlying 2n-periodic function). Call
it a check coefficient. It is computed for the samples of

We take reliable values which have big “check,” and use
other values as an advice to establish k in the addend k.

We see that angles are found properly.

For finding shifts we use theory of seciion 7.
Results are in Table 8. Notice that five pairs (T1, D6),
(T2, D6),..,(T5, D6) give the same result in view of the
nature of these functionals. Thus there is only one row in
Table 8 for these combinations. Let diagomals of each
square on Fig.1 be equal to 200 units. Comparing Table
8 and Fig. 1, we see that shifts are found propertly.

Table 6 Sizing coefficients

images and distorted images. They are in Table 7. To get T Pand @ M 1) H3 My
the desired angle we want these two numbers (marked by T1 | 24 combinations | 1.087 | 0.985 | 0.730 | 0.876
“check” in Table 7) to be greater and approximately T2 | 24 combinations | 1.052 | 1.033 [ 0.726 | 0.851
_equaled. Such good pairs (two pairs for every trace T3 | 24 combinations | 1.105 | 0.984 | 0.747 | 0.813
functional) are pointed out by bold font in Table 7. The T4 | 24 combinations | 1.105 | 1.021 | 0.740 | 0.764
full variant of Table 7 must consist of 30 lines. We have TS5 | 24 combinations | 1.106 | 0.996 | 0.734 | 0.808
chosen lines having the biggest coefficients marked by Mean value 1.1 1.0 0.74 | 0.84
“check” in every column of the full variant of Table 7.
Table 7 Angles of rotation
Functionals Angles of rotation for q1, 92, g3 and g4 and their validations (k=-1,0,1)
T|P| ® 07 . check 0, check 03 check check
T3 | DI | C10 89 | 91 | 9098 | 195 64 35
T4 | D2 1 C10} -0.37+mk [43|39| 004+nk |55] 51 1.36+mk |21 52
T5 | D1 |Cl0f -0.324mk |54 67| -0.01+mk [74[72 1.15+nk |40 28
T2 | D3 |C11]-033+2mk/3| 6 | 5 28 13] 5 5
TS [ D3 [C1i]-030+2nk/3] 7 | 8 | 0.05+27k/3 | 8 | 6 | 16| 7 | -1.18+27k/3 |10 | 3
T5 |1 D6 | Cl1 17| 0.014+27mk/3 |20 | 11} 0.184+2xmk/3 {12 4 | 0.9127k/3 | 5 | 2
Result -0.32 0.00 -1.99 3.01
True value -0.30 0.00 -2.00 3.00
Table 8§ Computed shifts
Shifis of sized and rotated samples pl..p4 to get ql..q4 the class of every image using other
Functionals pltoql 02 to q2 p3 to a3 p4to g4 images. For example, let us fix series
T Pl x y x y x y x y number j. We found numbers (they
Tl D3 |-0.14] 026 | 674 | 2220 | 1566 | 21.24 [ 3139 | 837 | compose string headed “a;” are in Table 9)
T2 D3 | 026 | 0.87 | -6.84 | -22.44 | 1531 | 21.15 | 3130 | -835
T3 D3 1012 0.16 | 678 | 22.14 | 15.83 | 2114 | 3L52 | -8.47 zi;qdist(cy,ai), ZiijdiSt(aﬁbi)a
T4 D3 | 0.10 | -042 | -6.76 | -22.05 | 15.75 | 2128 | 3147 | -846 Z Jisia.e:
T5 D3 | 0.03 | 0.29 | -6.74 | -22.14 | 15.69 | 21.28 | 3143 | -834 i dist(a;,g:),
TLIthsu | D6 -0682 -0672 .-6-.;59 -2-12.288 151.:1 2(;‘?7 3;.;11 -8-.;6 Zi;ejdiSt(aj,ei), Z#jdist(aj, ) ()

9 Image classification with triple features

Consider 5 classes a, b, g, ¢, and 7 of images presented
on Fig.2. Every class on this picture is presenied with 7
images. This pictorial information can be divided io 7
series, that is { a1, Dy, g1, @1, /n} is the first series,.., { a7,
" bq, g7, e, by} is the seventh series. The task was to define
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they can be considered as distances
between image a; and the five classes, here every class is
presented by six images (with exception of elements of
the j-th series). The same distances can be found for
every image in Fig. 2. Therefore we have 35 distances;
they are in Table 9. The classifying process of the image

a; is a success if the least sum (4) is zi;ejdz'st(aj,ai)‘ The
same is true for the all others images b;, g, ¢; and /;.



Table 9 Finding Classes
a | & 2 e h

Every number
in Table 9 was
computed with
6x5%4=120 triple
features defined by
the following
functionals. To
compute the
following trace
functionals,
numbers 2, 3, and
4, we made the
images binary using
threshold 5.5 in the
color interval of
0..15. Trace
functionals are 1)
T, 2) T2, 3)
Number of
segments in support
4) T3, 5) T4, 6)T5.
Diametrical
functionals are 1)
D1, 2) D2, 3) D4,
4) D5, 5) Variation.
Circus functionals
are 1) C2/C3, 2)
C3, 3) C5/C6, 4)
C8/C5. Using
results of Table 1,
we see that all those

- 6x5x4 triple
features are independent of any movement of images.
Most of them are independent of sizing with exception of
6x5x1 features which use C3.

We also tried to fix the trace functional (one of the
six), so we had 1x5x4 triple features and made six
variants of recognition process. We saw that in these
particular cases we were success in 80%. However, when
we use the 6x5x4 triple features we are completely
successful, as we see in Table 9.

e; 1206 |2.15 [2.27 P
1.14 [1.80 [ges

Conclusion

The simple mathematical structure of triple features is
described. A method of construction of a lot of invariant
triple features is presented. These features are intended to
be used in AT systems for image analyses.

We confirmed with our experiments that the theory
of triple features is able to be used in systems for
recognizing and clearing up parameters of rotation,
sizing and displacement of images. Also, it is shown the
theory is able to find classes of images.
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