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In one simple and versatile model of interest rates,
all security and rates depend on only one factor—the
short rate. The current structure of long rates and their
estimated volatilities are used to construct a tree of pos-
sible future short rates. This tree can then be used to
value interest rate-sensitive securities.

The main contribution of this paper is a general ap-
proach to calibrate the tree of short rates efficiently.
Two important concepts are introduced that can greatly
speed up the process and save much space. They are the
concepts of differential tree due to Lyuu (1995) and for-
ward induction due to Jamshidian (1991). With them,
the running time can be reduced to-O (n‘“’) and the space
to O (n), where n is the number of time periods. The
results are very encouraging. For ezample, interest rate
trees with hundreds of periods can usually be calibrated
within 20 seconds. Even trees with up to 2,000 periods
can constructed within 100 seconds.

1 Motivations

Interest rate-contingent claims such as caps, floors,
swaptions, bond options, warrants, captions, and

*Master thesis version is winner of a 1997 Dragon Best Thesis
Award, Acer Foundation.

mortgage-backed securities have been popular in re-
cent years. The valuation of these instruments is now
a major concern for both practitioners and academics.
To achieve that, one needs good methods to describe
the evolution of yield curves.

During the past twenty years, there have been many
attempts to describe yield curve movements using one-
factor models. See Hull (1997) for a survey. In 1990,
Black, Derman, and Toy used a binomial tree to con-
struct a one-factor model of the short rates that fit the
current term structure of all discount bonds. Given a
market term structure and the resulting binomial tree
of the short rates, a model can be used to value in-
terest rate-sensitive securities. Take the bond option
as an example. First the future prices of a Treasury
bond at various points in time are found. These prices
are used to determine the option’s value at expiration.
Given the values of a call or put at expiration, their
possible values before expiration can be found by the
same discounting procedure used to value the bond.

To get accurate solutions for option values, we need
a tree that is finely spaced between today and the op-
tion’s or even the underlying asset’s expiration. Ideally,
we would like a tree with one-day steps and a 30-year
horizon so that coupon payments and option exercise
dates would always fall precisely on a node.

In practice, it may cost much memory to build a 30-
year tree with daily periods, and it may take hours to
value a security. So, we introduce a general approach
to calibrate the tree of short rates efficiently. Two im-
portant concepts are introduced that can greatly speed
up the process. They are concepts of the differential
tree method and forward induction. The space issue is
addressed by the specific nature of the model, which
allows for very efficient representation.
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2 Binomial Interest Rate Trees

A term structure model is a model that describes the
probabilistic behavior of interest rates. They are more
complicated than the models used to describe stock
price or exchange rate. This is because they are
concerned with movements in the entire yield curve,
not just with changes in a single variable. As time
passes, the individual interest rates in the term struc-
ture change. In addition, the shape of the curve itself
is liable to change as well.

The goal of this section is to present an arbitrage-
free discrete-time binomial term structure model which
has enough flexibility to explain the different features
of interest rate movements and allows the valuation of
a rich class of interest rate derivatives. The idea of
arbitrage-free model is due to Ho and Lee (1986). The
alternatives are the so-called equilibrium models.

The binomial tree is constructed so that the loga-
rithm of the short rate, or future one-period spot rate,
obeys a binomial distribution. In this way, the limiting
distribution for the short rate at any time is lognormal.

In the binomial interest rate process, a binomial tree
of possible short rates for each future period is con-
structed. Each short rate is followed by two short rates
as the possible outcomes of a previous time period. In
Figure 1, node A is associated with the start of period j
during which short rate r is in effect. At the conclusion

of period j, a new short rate goes into effect for period .

J + 1. This may take one of two possible values: 7,
the “low” short rate outcome for period j+1 shown at
node B, or 74, the “high” short rate outcome at node
C. Each of 7, and 7, has a fifty percent chance of oc-
curring, and they are the only possibilities for period
J 4 Us short rate from node A.

As the binomial process unfolds, we should make

sure the paths recombine. The result is that the loga- A

rithm of the one-period rate obeys a binomial distribu-
tion with p = 0.5. In this way, the limiting distribution
for the one-period rate becomes lognormal.

Suppose the short rate r can go to r; and 7; with
equal probability in a period of length At. Percent
volatility of short rate, Ar/r, is

o = % X \/—1_A-_t X ln(rh/rl)

when the short rate follows a lognormal process in the
limit (Lyuu (1995)). So (1/2) In(rs/ri) = ov/At . Note
that, as

Th 20VAL (1)

‘ T

greater volatility, hence uncertainty, leads to larger
rr/r1 and wider ranges of possible short rates. The

ratio is a constant across time if the volatility is a con-
stant. Note also that r;/r; has nothing to do with r
vet. To nail down the values of r, and 7, we need in-
formation from the current yield curve, and it is this
information that establishes the relationship between
r and its two successors, r; and r,. Equation (1) is
a fundamental building block for the binomial interest
rate tree.

We now proceed beyond the first period. In general,
there are j possible rates for period j. According to
the binomial process, the rates are '

Y .
s pade eyl pd—1 b
Ty PV, TV, T5; , (2)
where
-9 : A
vi=e 2o;VAL

is the multiplicative ratio for the rates in period j. We
shall call r; the baseline rate. Figure 2 depicts the
resulting tree structure. One salient feature of the tree
is path independence, that is, the term structure at any
node is independent of the path taken to reach it.

3 The Black-Derman-Toy
(BDT) Model

The model has three key features.

1. Its fundamental variable is the short rate—the an-
nualized one period interest rate. This short rate
is the one factor of the model; its change drives all
security prices,

2. The model takes as inputs an array of yields on
zero-coupon Treasury bonds for various maturi-
ties and an array of yield volatilities for the same
bonds. We call the first array the yield curve and
the second the wvolatility curve. Together, these
curves form the market term structure.

3. The model internally adjusts an array of baseline
rates and an array of volatilities for the future spot
rate to match the inputs.

We examine how the model works in an imaginary
world in which changes in all bond yields are perfectly
correlated, expected returns on all securities over one
period are equal, short rates at any time are lognor-
mally distributed, and there are no taxes or trading
costs.

In the BDT model, all we want to do is to find the
short rate tree that can match the market term struc-
ture. We will find the rates starting from now and
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Figure 1: BINOMIAL INTEREST RATE PROCESS.
From node A, there are two equally likely scenarios
for the short rate: r; and ra. Rate r is applicable to
node A for period j, rate ¢ is applicable to node B for
period j + 1, and rate rp is applicable to node C for
period j + 1.

onward into the future. Remember, however, that the
BDT model assumes that there are n possible short
rates for period n. The n short rates are

L2 Lo, =1
R A )

where 7, is the baseline rate. Suppose the price of the
n-period zero-coupon bond moves up to p; and down
to pa one period from now (time zero). Obviously, p1
and pa are functions of 7, and v,. We can get

i+ 3p2 _ 1
T+r (L))

where yg(n) is the current n-period spot rate, which is
known.

Viewed from time zero, the future (n—1)-period spot
rate at period one are uncertain. Let y11(n — 1) repre-
sent the (n—1)-period spot rate at the upper node one
period from now, y10(n—1) represent the (n—1)-period
spot rate at the lower node one period from now, and
o2(n) represent the variance viewed from date zero of
the (n — 1)-period spot rate one period from now. The
variance calculation depends on the assumptions made
regarding the interest rate process. Since we assume
short-term rates are lognormally distributed, the log-
arithms of the rates follow a normal distribution and
the appropriate variance calculation is given by

(3)

w2n) = p(l—p)ngiln—1) —Inyo(n— 1)
— (- miln =17
- s [t

Hence, for p = 1/2,

oom =1/ (BE2) @

Figure 2: BINOMIAL INTEREST RATE TREE. The
distribution at any time converges to a lognormal dis-
tribution. The baseline rates are ri, re; ra, ... .

Recall that the bonds are zero-coupon bonds. So,

1

o= [1+y11(n—1)]n"1
1

p2 =

[1+ yo(n—1) 1
In other words,
yn(n—1)=p; " -1 (5)
yio(n—1) =p5" -1 (6)
Substitute (5) and (6) into (4) to get

n=1 .1

oo(n) = _l—i_— (7)

Rearranging (3) and (7) in the form of simultaneous
equations, we have

In (P———‘ :_1_‘1>

flp1,p2) = p1'ﬁ-— 1 — e2ooln) (pz‘ﬁ - 1) £
2(1+7‘1)
[1+y0(n)]n - (9)

The above shows we have to solve two simultanecus
nonlinear equations. -

P+ p2—

g(p1,p2)

4 Calibrating BDT Model with
Differential Tree

4.1 Solving systems of nonlinear equa-
tions

To solve equations like (8) and (9) simultaneously re-
quires numerical methods. Let (zx,y,) be the kth ap-
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proximation to the solution of two simultaneous equa-
tions,

fle,y) =0 and g(z,y) =0.
The Newton-Raphson method leads to the follow-
ing linear equations for the (k + 1)st approximation,

(Tha1, Yet1),

. , Of(zk,
df(giyk) f((?;yk: } [ Aa:k+1»] [ fk, yr) ]
Sg{rr yk)  8g(zi Yk Ay i, Yk
o 7 _\.yk+1 g( A,!JJ»)
where A.rk = Lp+l — Tp and Ayk-|-1 = Y41 —
+

yx. The above equations have a unique solution for
(Axpt1, Ayps1) when the Jacobian determinant of f
and g, -

or 8f

— ar o
J=1 25 &
or 9y

does not vanish at (zr,yr). The (k + 1)st approxima-
tion is simply (zx + Azgg1, Yo + Ayey1). See Hilde-
brand (1974).

4.2 The differential tree method

To solve nonlinear equations like (8) and (9) by the
Newton-Raphson method, we need to calculate deriva-
tives. This is accomplished by the differential tree
method due to Lyuu (1995). Take Figure 3 as an ex-
ample to describe the idea of differential tree.

Suppose r such that P(r) = 0 is to be calculated with
the Newton-Raphson method. Node A is the root of a
subtree of the original tree. In the process of computing
the price ps(r) at node A, money at A’s two successor
nodes, B and C, will be discounted by a factor of 1 /(14
ra). Note that r4 is known. We need to compute 4 (r)
as well to use the Newton-Raphson method. Since

_ ., p(r)+pc(r)
pa(r) =c+ 2ty

where ¢ denotes the cash flow at node A,

\(r) = p—__%(g ii’;i)(”) . (10)

Hence, if, by induction, pz(r) and p/,(r) are both avail-
able, then computing p/, (r) is easy. Applying the above
argument recursively, we will eventually arrive at the
root of the tree with p(r) and p/(r) simultaneously. We
shall call it the differential tree method.

We proceed to find the short rate tree by combining
the differential tree method and the Newton-Raphson
method. Since p; and p, are functions of rn and vy,
J(p1,p2) and g(p1,ps) are also functions of rp and v,
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say. F(ra,v,) and G(rn,vn). Now we want to solve
F(rp,v,) = 0 and G(rn,vn) = 0. For the sake of ex-
pression, we use F(r, v) instead of F(rn,vp) and G(r,v)
instead of G(r,, vn). As mentioned in Section 4.1, the
(k+1)st approximation, (rg4y, Vkt1), satisfies

OF(re,ve) OF (rg v
aGEar k) aczafj k; [ ek J == [ Eire, ve)
L , . e
Bf' k g:” Yk Avk+1 G(rk, Uk)
1
where Arg 1 ==rg ) —ry, and Aviy) = vggy—v. So
we need to evaluate %—f, %, %—f and %—f. Obviously,

G dp1  Opa

or ar " or
9G _ O 9p
dv T v T o
And by the chain rule,
OF _ Of0p , 0f Ops
or — dp1 dr " Bp, Or
OF _ 3fom  0fop
dv " Op dv ' p; Ov

Take the above four equations into consideration, the

1

common items that we need to evaluate are %%, %—”r—g,
3

QEL 8 2 9 Iij M 8 6 2 Fi) Q
IR —8%., 8_pLx and ?p%‘ Evaluating 2L, 2, A F2
directly is cumbersome. Fortunately, the tree, already
a compact representation of py(r, ) and pa(r,v), can

be used to compute all of them in one sweep. This

. is where the differential tree method would come into

play. As for 3—‘913% and aﬁpf;, we can compute them directly
from function F. ‘They are:

of 1 ooa '
of 00 1 =
Op2 = ¢ O(n)n—1p2 = (12)

By working backward, the differential tree can find py,
P2, %%, %’j.—?, %ﬁ/—‘, %”U—Q, respectively. So §L and 32L are
also available. By the Newton—Raphsong metholélg, we
can finally evaluate Tk+1 and vg 4. With a good initial
guess, the Newton-Raphson method can converge in

Just a few steps.

5 Fusion of Forward and Back-
ward Induction
The algorithm presented in the previous section is a

method based on backward induction. When we iter-
ate to estimate the baseline rate and the v;’s at the
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Figure 3: DIFFERENTIAL TREE. The simultaneous evaluation of a function and its derivative with the binomial tree

structure. The cash flow at node A is denoted by c.

period, we sweep backwards several times through the
tree. This is a time-consuming process. The running
time is O (n®) since each sweeping takes O (i*) time.
To remove the shortcoming, we will give an algorithm
that runs in quadratic time based on forward induc-
tion. We continue to use the Newton-Raphson method
to find the short rates. But now the idea is to sweep a
line across time forward. Every time when calibrating
the short rate tree, we proceed to compute the discount
factor of each node at the next stage — that is, com-
puting how much one dollar would contribute to the
model price using such numbers from its two predeces-
sors and the current short rate. This enhancement is
consistent with the differential tree method; it simply
speeds it up.

Let’s be more precise. Suppose we are at the end
of period i. So there are i + 1 nodes. Let the baseline
rate for period be r and Py, ..., P be the discount fac-
tors at the node of the previous period. By definition,
Z}___l P; would be the model price for one dollar i — 1
periods from today. We call a tree with these discount
factors a binomial discount factor tree. We need to
keep it in mind that there is no need to actually store
the whole discount factor tree; just the current column
suffices. The details can be found in Lyuu (1995). The
running time is now quadratic.

6 Experimental Results

6.1 Efficiency and accuracy

The goal of the short rate tree is to evaluate interest
rate-sensitive securities. To get accurate solutions for
the values of the securities, we need a tree with finely
spaced steps between today and the expiration. By our
algorithm, it turns out to be easy to find the short rate
tree from the given market term structure.

While implementing the algorithms, we are mainly
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concerned about the accuracy of the resulting short
rate tree and time complexity. Since it is inconvenient
to display the final resulting short rate tree, we just
depict the final tesults. in Figure 4 and the number
of iterations accompanied by its standard deviation in
Figure 5. :

It is clear that the running time of the forward in-
duction algorithm is far less than the time taken by the
backward induction. Notice that both algorithms can
calibrate huge trees due to the O(n) representation of
the tree allowed by the BDT model.

6.2 Discussions on the experiments

1. We ran the programs under Sun UltraSparc with
256MB of DRAM.

2. While solving the nonlinear equations using
Newton-Raphson method, it is very important to
get a suitable initial guess in order to reduce the
running time. In our algorithm, we used the base-
line rate and multiplicative ratio of the previous
period as our initial guesses, and it worked well.
By the above figures, we can solve for the baseline
rate and multiplicative ratio in just a few itera-
tions (four, in this case).

3. We take the upward-sloped yield curve scenario
and declining volatility structure as our input. In
particular, the current ¢-period pure discount yield
is 0.06+0.005 x Int and the i-period pure discount
yield volatility is 1.4 x (1—e~%1%#)/¢ (Gagnon and
Johnson (1994) and Hull and White (1990)). “Un-
reasonable” term structures may have convergence
problems.

4. We took the relative error at 10~13in our program.
This is a very stringent requirement.

5. We can build the short rate tree with one day steps
(365 periods per year) and 30 year-horizon. Since
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Figure 4: Time Efficiency of the Two Algorithms
Compared.

we just have to store the baseline rate and the
multiplicative ratio, the memory required is just
2.2 x 10* instead of 6 x 107.

7 Conclusions

In this paper, we propose an approach to find the tree
of short rates in the case of the BDT model. The ap-
- proach uses backward induction with differential tree
and forward induction procedures. We show how to
implement both procedures and compare their time ef-
ficiency. The results show that forward induction is
robust and much more numerically efficient than back-
ward induction. The forward induction method can be
viewed as an enhanced differential tree algorithm made
possible by the special structure of the model.

Most of the people use the well-known backward in-
duction procedure. But the paper shows it is more effi-
cient to use the forward induction procedure due to the
iterative nature of the root-finding process. Once the
tree has been constructed, most interest rate-sensitive
securities can be valued easily.
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