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ABSTRACT

In this paper, we extend the concept of the general
mean-based  winner-take-all network (GEMNET)
proposed in [16] by introducing an accelerated factor to
further improve its convergence speed. The
improvement of the WTA network is based on the
dynamic increase of the threshold which is attained by a
higher order statistics than the mean in mutual inhibition.
keyword: accelerated factor, winner-take-all neural
network

1. INTRODUCTION

In the Winner-Take-4ll (WTA) process, the neuron
initially most activated will gradually dominate and
become maximally activated while the other competitive
neurons die out. In many well-known neural networks
[1-7], the WTA process is required to select the neuron
which has the madmum activation or best
correspondence to the input during learning or
processing.  Many continuous networks [7-10] have
been introduced with asynchronous competitive
behaviors originally. As to synchronous iterative WTA
networks [11-17], one-layer feedback networks with
mutual inhibitions can be effectively achieved.  The
MAXNET proposed in [11] is a famous WTA network
which adopts heavy lateral inhibition.  Recently, the
GEMNET {16] with dynamic mutual inhibitions has been
developed under the concept of the statistical mean to
achieve fast convergence. The improved GEMNET [17]
suggested a method to enhance the convergence speed of
the GEMNET under the assumption of known-
distribution of inputs. However, the convergence of the
improved GEMNET is not assured if the inputs are not
fallen in the class of the designated distribution.

In this paper, we propose a higher order
statistics neural network (HOSNET) to further improve
the convergence speed of mutual inhibited WTA
networks. In Section 2, the WTA behavior of the
GEMNET is briefly described. The HOSNET with an
accelerated factor to improve the convergence of the
GEMNET is addressed in detail in Section 3.  The
optimal accelerated factor for achieving the fastest
convergence is also suggested in this section. In Section
4, simulation results of the HOSNET compared to those
of the GEMNET are discussed.

2. MEAN-BASED WTA NEURAL NETWORKS

Consider M competitors, whose initial
activations are X, X5, ..., and Xj4, assumed in the range
of [Xmine Xmax] Where Xmin and X,y represent the
minimum and the maximum bounds of all possible inputs,
respectively.  If the inputs are arranged in ascending
order of magnitude, which satisfy

Keps £ Xap» 2 X s (1)

where X is called the mth activation and <m> carries
with the original index of the corresponding input. Thus,
the maximum activation is denoted by X< q>, and the
second maximum activation is denoted by Xcpi-i>
where <M> and <M-1> represent the original indices of
the maximum and the second maximum, respectively.
The MAXNET [11] and the GEMNET [16] share the
same one-layer competitive architecture to rtesolve the
WTA problem. However, the GEMNET with built-in
dynamics outperforms the MAXNET, which only uses
fixed mutual inhibitions.

The general mean-based WTA neural network
(GEMNET) shown in Reference [16] is a feedback one-

layer neural network developed under the concept that
the maximum is always greater than the mean of any
subset of activations. The connection weight between
Node i and Node j in the GEMNET is given by
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where v is the compensation factor to approximately
maintain the maximum activation constant [16]. In
summary, the GEMNET physically performs the
thresholding to the mean of active activations for
achieving the mutual inhibition WTA process.

3. HIGHER ORDER STATISTICS WTA PROCESS

In the GEMNET, the WTA process inhibits the
neurons, whose activations are less than the mean of
active activations. Theoretically, the mean-thresholding

approach, which inhibits about one half of current active

neurons, is too conservative to achieve the fast WTA
process for a large number of competitors.  If we
dynamically increase the level of inhibition, the
convergence speed of the GEMNET will be further
improved. -

By using an accelerated factor, the GEMNET
can be extended to a higher order statistics neural
network (HOSNET) for achieving a faster WTA process.
The connection weight between Node i and Node j in the
HOSNET is suggested as

Y =]
Wii(k) = (3)
{—————Yﬁ('k) i#j 1<ij<M

My (k) - B(k)’

where Mpj(k) denotes the number of active neurons in
the HOSNET and f(k) > 1 is the proposed accelerated
factor. If B(k) = 1, the HOSNET is identical to the
GEMNET. From the connection weights depicted in (2)
and (3), we know that the HOSNET and GEMNET
share the similar structure. The GEMNET performs the
mean-thresholding mutual inhibition controlled by Mg(k)
[16]. However, the HOSNET uses Mp(k), the effective
number of active neurons instead of Mg(k).
Conceptually, ppy(k) can be treated as an estimator of the
higher order statistics from the obtained mean estimator,
t(k). Thus, the convergence behavior of the HOSNET
should be faster than that of the GEMNET. In order to
avoid the over-inhibition, the accelerated factor should be
limited in certain bounds. How to determine an optimal
accelerated factor and its upper and lower bounds
becomes an important issue in this paper.

Now, we should find the optimal accelerated
factor, which not only can prevent from the over-
inhibition but also can complete the fastest WTA process.
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For the fastest convergence, the optimal thresholding for
the WTA process should be given in
Xepm-1> £ pHK) < X ()

which can inhibit all the neurons except the maximum one
and avoid the over-inhibition in the HOSNET. For
achieving the fastest convergence and avoiding the
possible over-estimation, therefore, pp(k) = Xp-1> 18
suggested in this paper. Actually, the optimal
thresholding, pp(k), can be treated as an adaptive
estimator for estimating the second maximum activation
in each iteration. Thus, the optimal accelerated factor
should be chosen to satisfy

) = X =1>
Bopt(k) = ist= (5)

Since the threshold pp(k) should be less than Xapg> to
avoid the over-inhibition, the bounds of the accelerated
factor is limited in

U< Phound®) < ®)
Unfortunately, the exact values of Xapi> and Xapgp>
are not available for real applications. The accelerated
factor in the HOSNET should be designed in the average
sense.

From order statistics [18], the dynamic optimal
accelerated factor for M uniformly-distributed activations
can be expressed by

L 2ZM(k)-2 o
Bopt(k) = M1 M2 (72)
and
ﬁopt(k) = 1 for M(k) € 2. (7b)

If the activations are uniformly distributed in any fixed
range, we can also find the same conclusion. With the
above selected sequence of accelerated factors, each
HOSNET process intends to complete the WTA process
in one iteration. If the accelerated factor is fixed as (k)
= Bo for simplifying the implementation, By should be

less than

4. Convergence Analysis
In Reference [16], we know that the
GEMNET requires

K=Logy(M) )

iterations to achieve the convergence for uniformly

distributed inputs. If the initial activations are assumed
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to be uniform distribution in [0,1], we can also analyze
the convergence performance of the HOSNET.

If the accelerated factor in the HOSNET is
optimally selected as (7), we can analyze the convergence
speed of the HOSNET easily. The performance analysis
is based on the statistical average of the first HOSNET
iteration by the assumption that the HOSNET achieves
the worst case in the second HOSNET iteration.

At the first iteration, the optimal selection of
accelerated factor implies that the thresholding of the

M-1 -
inhibition is exactly at T The probability of the

; . M-1
neuron being inhibited is p= T On the contrary, each

. o . »
neuron only has probability of q = M © become

active. For M neurons, the number of active neurons
after the first HOSNET process possesses M+1 cases
which are Mpg(1) =i fori=0, 1,2, ., M-1, M. Based
on Bernoulli's theorem, the probability that i neurons
remain active, is equal to -

M i MU MLy e 2
Pi=CY @MY = e G M)

®

Now, we can discuss that the averaged number of

iterations required for the HOSNET to achieve the
complete WTA process for M-competitors .

For Mg(1) = 0 case, the HOSNET will be

classified as the over-inhibition status. The HOSNET is
‘automatically switched back to the GEMNET, which
requires further Logp(M) iteration . to achieve the
complete WTA process. Therefore, the HOSNET will

require Logy(M)+1 iterations to achieve the convergence

in this case.

For Mpy(1) = 1 case, the HOSNET completes
the WTA process. No more iteration is required. It is
obvious that the HOSNET totally needs only one
iteration to attain the convergence in this case.

For My(1) = 2 and 3 cases, it is easy to check
from (16) and (17) that the optimal accelerated factor in
the second iteration B(2) will be one.  The performance
of the second HOSNET process is the same as that of the
GEMNET process. Therefore, the convergence speed
of the HOSNET totally needs 1+Loga(2) or 1+Logy(3)
iterations for Mpj(1)=2 and Mp(1)=3 cases, respectively.

For MH(1)= /> 4 cases, we can assume that the
second HOSNET process becomes the over inhibition
condition, which is the worst case. The HOSNET
requires further 1+Logp(i) iterations for achieving the
convergence. Thus, the convergence speed of the
HOSNET totally needs 2+Logy(i) iteration to complete
the WTA process in these cases.

The upper bound of the total number of
iterations for the HOSNET to achieve the convergence
can be found as

K <0.1353Logp(M) + 2.1884 = Kpqund- (10)
In other words, if the number of iterations is limited in
Kpound- the HOSNET can complete the WT A process.

: Comparing (8) and (10), if the number of
competitors, M is greater than 6, the HOSNET shows
better convergence behavior than the GEMNET. Table

.1 shows the theoretical averaged numbers of iterations -

required for the GEMNET and the HOSNET to
complete a WTA process. We learnt that the HOSNET
with the optimally accelerated factor is faster than the
GEMNET in the case of uniformly distributed inputs.

Various numbers of inputs with uniform
distribution in .[0,1] are .randomly generated as the
competitors to evaluate the WTA behaviors of the
HOSNET. By using the dynamic accelerated factor
depicted in (7) and the constant accelerated factor fixed
to 2(M-1)/(M+1), Table 2 shows the averaged number of
iterations for 1000 WTA cases performed by the
HOSNET in simulations. ‘Comparing Tables 1 and 2, we
found that the simulation results are close to the
theoretical analyses stated in (10).  Since the most
neurons are inhibited in the first iteration, the dynamic
optimal accelerated factor is close to but slightly better
than the fixed one. As to the normal distribution in
N(0,1), Table 3 also shows that the HOSNET achieves
better convergence performance than the GEMNET in
the case of a large number of competitors.

5. CONCLUSIONS

The HOSNET WTA neural network with an
accelerated factor has been proposed to improve the
convergence performance of the mean-thresholding WTA
process. The optimally accelerated factor and
convergence performance of the HOSNET are also
suggested and discussed. Both theoretical analyses and
simulation results show that the convergence speed of the
HOSNET is higher than that of the GEMNET if the
number of competitors is very large.
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Number of
Competitors

10 50 100 | 500

1000 § 2000 | 3000 | 4000 5000

GEMNET | 3322 | 5418 | 6421 | 8.744

9.966 [ 1097 [ 11.55 | 11.97 | 12.29

HOSNET | 2.638 | 2.952 | 3.106 | 3.401

3.537 | 3.672 | 3.751 | 3.808 | 3.851

Table 1. The theoretically averaged number of iterations required in the GEMNET
and the HOSNET for completion of a WTA process

Number of

Competitors 10 30 100

500 1000 | 2000 | 3000 | 4000 | 5000

Simulated Results 2973 | 3.179 | 3302
(constant B)

SIT [ 3.673 [ 3.802 | 3.885 | 3.945 | 3,958

Simulated Results 2.484 | 2.802 | 2.953
(dynamic B(k))

362 | 3.416 | 3.511 | 3.523 | 3.657 | 3.676

Table 2. The averaged number of iterations required for the completion of WTA process by
the HOSNET with the constant and dynamic optimal accelerated factors
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Number of 50 100 | 500 | 1000 | 2000 | 3000 | 4000 | 5000
Competitors
GEMNET 4336 | 5048 | 6762 | 6.901 | 7.605 | 8.043 | 8.428 | 9.194
HOSNET 3864 | 4092 | 3.692 | 4407 | 4.836 | 4915 | 4.825 | 4.694
(B=3)
HOSNET 32 4758 | 4.818 | 4.002 | 3326 | 3.796 | 4270 | 4.654 | 4.930
(B=7)

Table 3. The averaged number of iterations required in the GEMNET and the HOSNET
with various cases of constant accelerated factors for completion ofa WTA
process in N(0,1).
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