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Discretization of the Dynamic Output Feedback Controllers via Recurrent Neural Networks
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Abstract

This paper presents a new method which utilizes
recurrent neural networks to discretize the dynamic
output feedback controller for use in computer-
controlled systems. We have shown that the new
method does improve the stability robustness in the
discretization of dynamic output feedback controllers.
Besides. we also have shown that the recurrent neural
network controller is independent of the sampling time
under the Sample Theorem. Consequently, it can not
only discretize the dyvnamic output feedback
controllers, but also tolerate a wider range of sampling
time uncertainty.

Keyword : recurrent neural networks, discretization,
robustness, dvnamic output feedback controller

1. Introduction

When a continuous-time controller is discretized
to become a discrete-time controller using the
conventional methods, such as design of discrete
equivalents by numerical integration. zero-pole
mapping equivalents, and hold equivalents, an
undesired feature that the discrete-time controller is
dependent on the systems sampling time T will occur
[1]. For linear systems using generalized sampled-data
hold function [2}. the discrete-time controller also
depends on the sampling time Ts. For nonlinear output
feedback systems, the discrete-time controller also
depends on the sampling time Ts [3]. Therefore, it is
difficult to design a digital controller which has
robusiness against the different sampling time Ts based
only on conventional methods in the state space.
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Recently, Kabamba and Hara [4]. Keller and Anderson
[5]. applied H .. control theory to the worst-case
analysis on the sampling time Ts for linear systems;
however, their methods also depend on the sampling
time. In general, if the sample time changes, the
digital controller must be redesign. On the other hand,
if we want to obtain a likewise analog controller, one
approach to overcome this difficulty is increasing the
sample frequency. However. there are loss of
reachability and obserability when using the high
sample frequency [6].

There are two types of connections in neural
networks. Neural networks with only feedforward
connections are called feedforward networks, and
neural networks with arbitrary connections are
recurrent neural networks. The nonlinear dynamical
behavior of recurrent networks is suitable for spatio-
temporal information processing. Learning algorithms
for recurrent neural network which employ the steepest
decent method to modify weights have been proposed
[71, [8]. Several applications of recurrent neural
network have been reported, mainly in dynamic
information processing., such as identification of
nonlinear and linear dynamic systems [9]. In this
work, we propose a method using the recurrent neural
networks to overcome the above drawbacks in discrete-
time systems. At first, we show that the new method
has high stability robustness in the discretization of
dynamic output feedback controller. Secondly, when
using the recurrent neural networks to learn the
desired dynamic output feedback controller, if the error
is less than a specified small value, then this new
controller satisfies the stability robustness. If the error
is nearly. equal to zero, then this new comtroller is an
optimal controller in the sense of discretization. We
will also show that the new recurrent neural networks
controller is independent of the sample time under the
Sample Theorem. The recurrent neural networks can
use to approximate C' functions arbitrary well in this
new controller: consequently, it not only discretize the
dynamic output feedback controllers, but also tolerate a
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wider range of sampling time uncertainty. In addition,
it is easy to obtain a likewise analog controller. Hence,
using recurrent neural networks to the discretization of
dynamic output feedback controller is a practical
approach.

2. Mathematical preliminaries and definitions
Definition 2.1 (Persistent Excitation) [10]. The set
of all functions g : R, —RN" with g belongs to
piecewise-differentiable functions that satisfies Eq. (1)

_[M"‘ g(t)g" ()= ar vz (1)

l
where ¢, and c. are positive constants over a period 7,

and 7 is an identify matrix. It is called persistent
excitation (P.E.).

Lemma 2.2 [8]. Let ¢ be a strictly increasing C'-
sigmoid function such that o(93) = (0, 1). Let D be an

open subset of (0, )", F* D %" bea C'-mapping,
and suppose that X = F( X) defines a dynamical

system on D. Let K be a compact subset of D and we
consider trajectories of the system on interval [0, s,]

_'( 0 <s, < oo ). Then, for an arbitrary € > 0, there exist
an integer h and a recurrent neural network with n
output unit and h hidden units such that for any
trajectory { X(t) : 0 <¢ <5, } of the system with initial
value X(0) e K and an appropriate initial state of the
network satisfying

maxlX(t)— O(t)! <t )
1eyy
where O(1) = (Ol(t),---,O,,(t))T is the output of the

recurrent neural networks with the sigmoid output
function G.

Definition 2.3 (Controller is independent of the
sampling time). If the sampling time of a system is
changed then the controller does not need to redesign
again. This is called that the controller is independent
of the sampling time.

Definition 2.4 [11]. For each real p g[1,cc), the set Lp

consists of all measurable function £(-): 9%, — 9 such
that

J 1A de <o ()
0
The set Lp consists of all measurable function

() : 9, — m that are essentially bounded on [0,0).
Definition 2.5 [11]. For p e[l ), the function

" . Hp 'L, >R, is defined by
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o

voL=[f voral” o

Definition 2.6 [12]. The sub-multiplicative property of
the H,-norm is defined that satisfies Eq. (5)

IAELL <IALIAL. ©)
where H, -norni is defined by
T T— L ®)

¢eL,[0,») ”e"z |
Definition 2.7 [11]. The system F is Lp stable without
bias (wb) if there exist numbers Yp( F)e %R, such that

vp(F)=inf {yp:H Fe"p < yp"eup}, where e is the input,
p €(1,0], and F is an operator.

Lemma 2.8 (Small Gain Theorem) [11]. Consider the
feedback system in Fig. 1, and suppose that p e(1,]
is specified. It is assumed that both £, and F, are causal

and L, stable wb. Let Tip =Yp(F1)’ and Y2 =Yp(Fz)‘
Under these conditions, the system in Fig. 1 is L, stable

lf’Ylp"ﬂ/Zp <l

By a simple transformation of the system in Fig.
1, the range of applicability of Lemma 2.8 can be
expanded. The idea is to introduce an additional Lp
stable operator C by first subtracting it and then adding
it to F,, as shown in Fig. 2.

Lemma 2.9 (Loop Transformation Theorem) [11].
Consider the system in Fig. 2, and suppose that
p €(1,] is specified. F, and F, are both causal and Lp

stable wb. The system in Fig. 2 is Lp stable wb if there
exists a causal operator C which is L, stable wb, and

. F,( [+CF, )’l is causal and Ly stable wb,
@ 1,(F=C)ery[ AT +CR) ] <1,

3. Problem formulation

In this paper, we consider the problem of
discreting a dynamic output feedback controller by
recurrent neural networks (RVN) controller as shown in
Fig. 3. .

It is assumed that the dynamic output feedback
controller C which has been designed for the control

plantisa L., function, and
(1). control input can be persistent excitation, and the

sampling time must satisfy the Sample Theory at
least,
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the recurrent neural networks controller can
approximate the C' function arbitrarily well in the
multi-input function approximation problem.

().

It is desired that the RNV controller in Fig. 3 will not
alter the conventional computer-controlled
implementation structure. It is also required that the
proposed RNN controller satisfies the stability
robustness of discretization of . the dynamic output
feedback controller and overcomes the difficulty of
sampling time uncertainty.

4. Main results

.Lemma 4.1 (Stability robustness of discretization of
dynamic output feedback controller) [13]. Let RNN
be a neural networks controller, C be a dynamic output
feedback controller as the target for neural networks,
and P be a unstructured nonlinear uncertainty plant.
Assume that

(1). RVN can approximate C arbitrary well,

(2). C stabilizes P, and

(3). “(RNN _c)p(1+CP)”
then RNN stabilizes the plant P.

Definition 4.2 [13]. The RVN is optimal in the sense of
stability robustness of discretization, if it minimizes

”( RNN - C)P(1+CP) ”J 8)

The Fig. 3 can be represented by Fig. 4 below and
can further be expressed by Fig. 35 after loop
transformation.

From the Lemma 2.8 and Lemma 2.9, we can derive
the following Theorem 4.3.

<1
o b

Theorem 4.3. Let C be a continuous, L., and a causal
operator which can stabilize P. If the following
conditions hold

(2). There exists a causal operator C which is Ly
stable wb,

(b). There exists a causal operator RVN which is Lp
stable wb,

©. P(1+ CP)" is causal and L, stable wb, and

(d). yp(RNN—C).yp[P(]+CP)"]< B

then the system in Fig. 5 is Ly stable wb.
Theorem 4.4. Assume the operator C, plant 2 and RNN
controller in Fig. 5 satisfy conditions (a) ~ (d) of
Theorem 4.3. In particular, if p = 2, then

/D(RNN—C)eyp[P(f'FCP)—l] =

P(r+cp)! (9)

’

(&N - c)l..e

3
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and

|(&n

P([+CP)_1‘L <1, (10)

Proof: First, we shall derive Yp( RNN —-C). Since

vo(F)=int{ry < IFel < vulll }, (1)
and from Fig. 5, we obtain
|(RaN ~C)a] < v, J,
RNN - C)e,
or ||( R )elup Sypl' (12)
2 "p -
From Eq. (11) and Eq. (12), we have
|(rRVN - C)))
infy, = max - 2 (13)
8 TRl
Now let p=2 mepl = max M
gelipeny |l
= (RN -C)|, =[ell, =v,(RVN ~C). (14)

' Next, we shall derive y [ 1+CP ] Since

vo(F)=int {vp, ¢ 17, < vyalel, ). (19
and from Fig. 5, we obtain

"P(l +CP) " ve,

<1lal,,

HP(HCP)“ ey

or LIPS (16)
I, e
From Eq. (15) and Eq. (16), we obtain
“p(] +CP) " e
ianrQ: max - 7
¢, €L, [0.2) llex “p
Now let p=2
P(1+CP)'ee|
inf Yp2 & max :
ey 8L,[0,m) les "2
=HP(1+CP)"” : (18)

Therefore,

inf ¥, =}'P(I+CP)"”m = yp[P(HCP)“]. (19)
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From Eq. (14) and Eq. (19), we can obtain

y‘p(RNN—-C)oyp[P(1+CP)-‘]=

[(RNN = C)]..o|P(+cP)7) - 20)

From Theorem 4.3 and Eq. (20), it follows that

»n®

<1. Q1)

x

p(r+cp)!

*®

|(RVN - C)|

_ QE.D.
We know that when Eq. (10) holds, it implies that

<1 by using  the

3

submultiplicative property of the H__-norm. The RNN

controller satisfies stability robustness of discretization
of dynamic output feedback controller, and stabilizes

(RNN =C)o P(1+CP)!

the plant P. Besides, if we let “( RNN—C)” =e~0,
then the RNN which minimizes

“( RNN = C)P(1+CP) (22)

is optimal in the sense of discretization of the dynamic
output feedback controller.

When the RNN is equivalent to the dynamic
output feedback controller C in the input-output sense,

then €2 in Fig. 5 is equal to zero. From Fig. 5, we have

y=P(I+PC)" (1, +Cuy)

’
)

P PC n

= Uy + Uy (23)

I+ PC I+ PC
which is equivalent to the Fig. 6.
Based on above results, we know that if the error is less
than a small constant, and Eq. (10) holds, then this new
controller satisfies the stability robustness. If the error
is nearly equal to zero and Eq. (10) holds, then this new
controller is an optimal controller in the sense of
discretization. That is, the Eq. (10) ensure the system's
stability robustness in Fig. 3. Besides, for the nonlinear
plant the result is the same as Eq. (10), i.e.

I(RVN = C)|_ o|F(c.P)|, <1 (24)

where F(C, p) is the operator from e, toy in Fig. 5.

Now, we shall show that the RNN controller in
the Fig. 5 is independent of the sampling time Ts. Fig. 5

can be simplified as Fig. 7 below, where g, is controller

input, x is controller output, ¥ is the output of
recurrent neural networks controller, and g, is the error.
The sample time Ts must satisfy the Sample Theorem.

We can construct /() by f () based on a RV,
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From Fig. 7, we have

&(n+1)=x(n+1)-2(n+1)

= f(a(F.0).x(5,0)) - 76 (7,0).2(F,,))25)
According to Lemma 22 the RNN can
approximate C' functions arbitrarily well. When we use

A

any one of the RNN to learn f() by f (), and the
sample time Ts satisfies the Sample Theorem. Then the
RNN can approximate C' functions 7(-) arbitrarily

well. Therefore, we can obtain the following result
from the Lemma 2.2

(6.0~ < Sdm=e. €6
n=l
and
F@(n).x(1) = /@(D). () +e/ v, @D

where Tl is a constant in the interval [0 s] (0 <s
< oo ), N is the number of sample points, and e is a
arbitrary small constant. Therefore, we conclude

F(3,(s).x(s)) = f(5(s).x(s))- forall input

or ' ‘[f—f” < ¢ forall input - (28)

That is, f converges to f uniformly on (2 (s),x(s))-

Since there is no restriction on the step size of the RNN
controller output, we can conclude that the recurrent

neural network controller /() is independent of the
sampling time Ts.

5. Computer simulations

The propose method of using the RNN to
discretize the dynamic output feedback controller is
simulated by following example. The simulation
programs are running under the Matlab.

Consider the third-order plant [14].

MR MEH S

gz=x—4r+u

y=x 4z (29)
The corresponding reduce order plant is
X 0 Il 0
. = ~ + u
X 125 1| x 1.25
¥=125x+0.25u. (30)

The dynamic output feedback controller is
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V= —1.5v=2(y—0.25u) + 1.25u

%, =0.8(y—0.25u)
£ =v+2(y-0.25u)

u= “‘2.{'{ ‘-2,{:2 (31)
Eq. (31) can be simplified as Eq. (32) when use
r=125%+0.25u.

v=7.25v+225y
u=5v+14y
Fig. 8 shows that the RANN controller is
independent of sampling time. From the results we can
know that the new method has very good robustness
for the different sampling times.

6. Conclusions

This paper presents a new method to discretize the
dynamic output feedback controller by the recurrent
neural networks which has very good robustness for
different sampling times. All dynamic output feedback
controllers can be implemented by the proposed
method without changing the computer-controlled
structure under the Sample Theorem. We show that the
recurrent neural networks controller is independent of
the sampling time under the Sample Theorem. That is,
the recurrent neural networks are used to approximate
C' functions. Consequently, it is not only discretize the
dynamic output feedback controllers, but also tolerate a
wider range of sampling time uncertainty. Hence, using
the recurrent neural network to the discretization of
dynamic output feedback controller is more practical in
some applications. Simulation results show that the
new method has very good performance in the
discretization of dynamic output feedback controller.

References

[1] G.F. Franklin, J.D. Powell and M.L. Workman,
Digital Control of Dyvnamic Systems (Addison
Wesley, New York, 1990).

[2] P.T. Kabamba, Control of linear systems using
generalized sampled-data hold function, /EEE
Trans. Automatic Control 32 (1987) 772-783.

[3] H. Nijmerijer and A.V.D. Schaft, Nowlinear
Dynamical  Control ~ Systems (Springer-Verlag,
Berlin, 1990).

[-1] P.T. Kabamba and S. Hara, Worst- case analysis
and design of sampled-data control system, IEEE
Trans. Automatic Control 38 (1993) 1337-1357.

[51 J.P. Keller and B.D.O. Anderson, A new approach
to the discretization of output feedback
controllers, IEEE Trans. Automatic Control 37
(1992) 214-223.

A-141

[6] KJ. Astrom and B. Wittenmark, Computer
Controlled Systems - Theory and Design (Prentice-
Hall, London, 1990).

[7] R.J. Williams and D. Zipser, A learning algorithm
for continually running fully recurrent neural
networks, Neural Computation 1 (1989) 270-280.

[8] K.I. Funahashi and Y. Nakamura, A pproximation
of dynamical systems by continuous time
recurrent neural networks, Newral Networks 6
(1993) 801-806.

[9] K.S. Narendra and K. Parthasarathy, Identification
and control of dynamical systems using neural
networks, IEEE Trans. Neural Networks 1 (1990)
4-27.

[10] K.S. Narendra and A.M. Annaswamy, Persistent
excitation in adaptive system, INT. J. Conirol 43
(1987) 127-160.

[11] M. Vidyasagar, Nonlinear System Analysis
(Prentice-Hall, London, 1993).

[12] B.A. Francis, 4 Course in H,. Control Theory
(Springer-Verlag, Berlin, 1987).

{13] B.D.O. Anderson, Controller design: moving from
theory to practice, /EEE Control Systems
Magazine (1993) 16-25.

[14] H.K. Khalil, On the robustness of output feedback

. control methods to modeling errors, /EEE Trans.
Automatic Control 26 (1981) 524-526.

+ .
U —{ Yt F}
: T ‘ y 3
. L .
Y, 7 u
AT QL L S
____________ +
Fig. 1. The general form of a feedback system
u,- Cu, ‘;) o o [ —
L. - R
; e i 1
p s S OO SR :
i —d !
T —
' o 7+ u.
S, S L A
+ _' T+

Fig. 2. The loop transformation of Fig. 1.
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Fig. 3. Discretization of the dynamic output feedback controller by RVN controller.
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Fig. 6. The general form of output feedback system.
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