TERENTAEERHERTS

FIF Hybrid-SDSM iSRG E R B R B H SR I R
A Study of Accelerating Ray Tracing CSG Solids Using Hybrid-SDSM Structure -

REE
Shou-Shang Chang

EEE
Hong-Da Wang

ExReh
Chung-Ming Wang

BT R ER B AR R SRR
Institute of Computer Science National Chung Hsing University
Taichung, Taiwan 402, R.O.C.
(sschang, hdwang, cmwang)@cs.nchu.edu.tw

%

CSG Bt EEehEaT o — % AR HE - 7
FEARBHEETRTE CSG FAEE S MEREE - 8
HerBHNE A G FE R SRV ERE - B MR —E
Hybrid-SDSM E GBI INTRE GAVE £ HE -
Hybrid-SDSM {7 & 2= B R TR EHERME
R s atEHt - TER3EHA Hybrid-SDSM FEH
RELCE LHLEHERYE T TR -

F#E S S BHNE, Hybrid-SDSM
Abstract

Constructive Solid Geomeltry (CSG) is one of the
most popular - techniques to create 3D solids in
Computer-Aided Design and Manufacturing. Besides,
the ray tracing CSG solids can generate very realistic
images with the expense of long computation costs. In
this paper we will propose a hybrid-SDSM data
structure which combines bounding volume hierarchy
and spatial subdivision to accelerate ray tracing
computing. The experimenis collected demonstrate that
the ray tracing time has been reduced using the
proposed hybrid-SDSM data structure.

Key Words:Ray tracing, Hybrid-SDSM

1. Introduction

Solid modeling systems [11, 13, 14, 15] is used to
represent three-dimensional components and assmblies.
They make engineers to efficiently design, analyze and
manufacture products [13, 15]. One of the requirements
in these systems is to visualize models that are
represented by the Constructive Solid Geometry (CSG)
scheme [11, 15]. Realistic images are preferable to other
display methods because they can help the designers
reason with the solid models, identify model’s weakness,
and communicate the resultant model specifications to
the manufacturers.

Ray tracing has been a popular and powerful
display method generating high quality shaded images

B-211

suitable for visualization purpose. The main idea of ray
tracing is to trace rays backward from its source to
pixels in an image plane, considering all possible
intersections with the objects in the scene. The intensity
of each pixel is calculated by the shading models and
the characteristics of the object surfaces. Unfortunately,
ray tracing takes a lot of time in ray-object intersection
computations. Whitted et al. [19] estimated that in a ray
tracing algorithm most of the time (75% ~ 95%) is spent
in computing ray-object intersections to produce an
image. While many techniques being presented for fast
ray tracing, the space subdivision and the bounding
volume hierarchy are the most popular schemes.

The main idea of space subdivision is to divide the
image space into some disjoint cells. Each cell contains
the objects in the model that intersect the space
occupied by the cell. When the ray pierces a given cell,
it only checks intersections with the objects in that cell.
If there is no object in that cell or there is no
intersection with all objects in that cell, the ray moves to
the next cell on its path and repeats the same procedure
mentioned above. Usually space subdivision technique
can be divided into two parts : non-uniform and uniform
schemes. Non-uniform space subdivision scheme
divides the space into a set of non-overlapped cells
according to the object distribution density. Uniform
space subdivision scheme is to use the same grid
without considering the object's distribution density.

The other technique to speed up ray tracing is
called bounding volume hierarchy. The central idea
behind this technique is to use a simple volume
containing a given object and permits a simpler ray
intersection check than the original object. Spheres or
boxes are usually adopted as the bounding volumes and
then are created bounds hierarchically. If a ray does not
hit the parent bounding volume, then its child bounding
volumes and objects within them need not to be
checked. If a ray does hit the parent bounding volume,
then the objects contained inside will be checked for the
intersection.

This paper describes our approach to' investigating
techniques for fast visualizing CSG solids using ray
tracing. A hybrid-SDSM data structure is proposed
where both the spatial subdivision and the bounding

volume hierarchy are adopted. This paper is organized
as below : section 2 describes previous work. Section 3
outlines the hybrid-SDSM structure. Some fundamental
results are presented in section 4 followed by some
conclusions and future work in final section.

2. Previous Work

Constructive Solid Geometry (CSG) is a scheme for
representing solids using a set of primitive solids and
the regularized set operations union (U*), intersection
(~*) and difference (-*). A model is generally
represented as a binary tree whose internal nodes are set
operations and leaf nodes are primitive solids.

The ray tracing algorithm was first described by
Appel [1] and later by Goldstein and Nagel {8]. The
basic operation of ray tracing can be divided into two
phases. First, a primary ray is cast from each pixel for
intersections with objects in the modeling space to
determine the first visible surface. Second, pixel
intensities are determined on the first visible surface by
a shaded illumination model.

Due to long computation for ray tracing, we now
review some related works about fast ray tracing. -

Glassner [6] has implemented a ray tracing system
for ordinary 3D objects. An octree-like data structure is
used to sort the modeling primitives. 3D objects are
maintained as a leaf cell representations and are
accessed via a hash table. For each ray cast, the cells it
intersects are determined incrementally until either a
real ray-object intersection is found, or the ray exits the
universal domain. Glassner improved the performance
by factors ranging from 4 to 30 depending on the scene.
This proposed data structure is very important, though
Glassner’s svstem did not support CSG modeling
scheme. ' . '
Wyvill et al. [20] have also devised an octree-like
structure to generate ray traced images of CSG models.
They produced a divided model using octal cell division.
The system is of interest because the spatial subdivision
is controlled by both the halfspace number and a
predefined maximum level of subdivision.

In 1991, Stephen Cameron [3] proposed a new
efficient bound called S-bound. The main idea is to
construct an efficient and tight bound of objects. The
method can divide into two rules : upward rule and
downward rule. After applying these rules several times,
an efficient and tight bound can be generated.

Glassner [7] presented a new bounding volume
hierarchy for efficiently ray tracing the animated scenes
but not for CSG solids. It combined elements of non-
uniform space subdivision and bounding volume
hierarchy techniques.

Recently, Chuang and Hwang {4] proposed hybrid
method for fast ray tracing CSG modeling scheme. The
method constructs bounding box of CSG objects first.
Then they applied spatial subdivision to the space

2 RE\ A R EE R

according to the bounding box. Results showed the ray
tracing time has been reduced. However, the model they
proposed is less complexity containing at most 313
primitives.

3. A Hybrid-SDSM structure

This section describes the proposed data structure,
hybrid-SDSM, used to accelerate ray tracing
computations.

3.1 Creating a hybrid-SDSM structure
3.1.1 Creating bounding boxes of primitives

Each primitive’s bounding box has to be
determined after finishing creating a global CSG tree
for the scene. We use three extent slabs whose unit
normals are (1,0,0), (0,1,0), (0,0,1), respectively. We
can construct a bounding box by intersecting a primitive
and these three slabs. In our bounding volume hierarchy
(BVH) structure, we only need to record the d value in a
plane’s equation; namely, ax + by + ¢z = d, as shown in
Figure 1.

K upper N\
x_slab lower W

upper
lower

upper

z_slab
\' lower /

Figure 1. BVH Structure.

y_slab

Recall that primitives in the modeling space may
position in any location and orientation. The method of
constructing bounding box for such primitive has to be
determined. First, we create a bounding box along the
primitive’s orientation. Then we find out the eight
corners’ coordinates and get the extreme values of x, y,
z. Finally these extreme values are the bounding box’s d
value.

After finding out each primitive’s bounding box,
we save these value in the leaf of CSG tree which
preserves all informations about halfspaces. The
structure is shown in Figure 2.

/ label \

Lefi «—— left | right +—Rioht
BVH

_ halfspace

Halfspace BVH
structure

subtree subtree

information

Figure 2. The CSG Structure.

3.1.2 Localized CSG tree Representation
The approach of non-uniform spatial subdivision of

B-212

TERE/ T AFZE e S

modeling space is to adaptively subdivide modeling
space and compile objects into the spatial hierarchy. For
CSG modeling scheme, this means that it is necessary to
develop the CSG tree a solid’s local representation with
respect to a spatial region such as cell. This process is
referred to as the “ tree pruning ”, and a solid’s local
representation is called “localized CSG tree®.

Consider an arbitrary cell V and a primitive P in 3D
space. We identify such a cell as a Full cell if the cell V
may be totally inside the primitive P. It may not
associate with this primitive. We identify such a cell as
an Empty cell. Finally, it may partially intersect with
this primitive as being identified as a Partial cell.
Figure 3 shows a CSG simplification lookup table. We
simplify the global CSG tree into the localized CSG tree
with respect to this cell V using the lookup table.

Right
Operator | Lefttree| tree Simplified tree
Full Full Full

Full Partinl | Partial (right tree)

Full Empty Empty
Intese. | purgit | Fun | partiat (lefttree)
m*
Partial | Partinl | Partial (left n* right)
Partial | Empty Empty
Empty Full Empty
Right
Operator | Left tree tree Simplified tree
Full Full Empty
Full Partial | Partial (left-* right)
Full Empty Full
Diff | pavtiat | Fun Empty
%

Partial | Partial | Partial (left-* right)

Partial Empty Partial (left tree)

Empty Full Empty
Empty | Partial Empty
Right
Operator | Left tree tree Simplified tree
Full Full Full
Full Partial Full
Full Empty Full
Union | pyegar | Fun Full
U*

Partial | Partial | Partial (left U* right)

Partial | Empty Partial (left tree)

Empty Full Full

Empty Partial Partial (right tree)

Empty Empty Empty
Figure 3. The CSG Simplitication Lookup Table.

3.1.3 Creating an SDSM

A universal cell containing the whole modeling
space is first selected. A recursive decomposition of this
cell is then employed together with the simplification of
the global CSG tree with respect to each sub-cell
generated. Each internal node of SDSM structure
represents a DIVIDED cell and each leaf node
represents a TERMINAL cell. A DIVIDED cell will
maintain references to its eight sub-cells. A
TERMINAL cell can be further characterized as a Full
cell, an Empty cell or a Partial cell. Only a Partial cell
maintains a reference to its localized CSG tree.

Figure 4 shows a “ 2D “ SDSM data structure. The
SDSM cells corresponding to the adaptive spatial
subdivision at each SDSM level, with the root cell being
level zero, are expressed in clockwise starting from the
upper-lefi-most cell. The DIVIDED, Partial, Full,
Empty cells are abbreviated as D, P, F, E, respectively.

00 01
O

Ray
) 1

03

CSG CSG CSG

CSG CSG (S

tree tree tree tree tree tree

Figure 4. The Spatial Divided Solid Model.

3.1.4 Generating S-bounds

When an SDSM is being created, the next step is to
generate an S-bound with respect to each localized C3G
tree. We can divided this procedure into three phases.
The first phase is the upward phase, the second one is
the update phase, and finally the third one is the
downward phase.
° .The upward phase : This phase is to combine
children’s bounding box. It is done from the bottom to
the top of the localized CSG tree. Let B(P) indicate the
bound stored at a general node P in the localized CSG
tree. Given a parent tree node P of the form P=C1©C2.
We can combine bounding box according to the parent
operator as shown in Figure 5.
e The update phase : This phase is to update the

B-213

FERE/\+AEREEHERES

bounding box of the root of the localized CSG tree with
respect to the cell boundary. Given the bound of the
root for the localized CSG tree B(R) and the cell
boundary B(C), we may update the bounding box of the
roof at this cell as B(R)NB(C).

© The downward phase : In this phase we modify the
children’s bounding box from the top to the bottom
using the root’s bounding box. Given a child node C
with a parent node P, we replace the bounding box at C
by B(C)NB(P).

@ Left tree Right gree C%?:.:?jed
Operator s
%] o) %)
Union %] B(right tree) |B(right tree)
(S B(left tree) [B(left tree)
B(left tree) B(right tree) Blu*Br
%) |17} g
Intersc. (%) B(right tree) [%]
n* B(left tree) %] %)
B(left tree) B(right tree) BI~*Br
%] g %]
Diff. . (%] B(right tree) %]
-* B(left tree) o Bieft tree)
B(left tree)

B(right tree) | B(left tree)

Figure 5. The Lookup Table for Generating S-bound

3.2 Ray Tracing a Hybrid-SDSM

When a hybrid-SDSM data structure has been -

generated, the next step is to employ ray tracing
algorithms on it to calculate the intensities of each pixel
in the image plane. An outline of the ray tracing
algorithm using a hybrid-SDSM structure, expressed as
RayTraceSDSMY(), is shown in Figure 6.

Given a hybrid-SDSM and a primary ray, the main
ray trace process is executed for every pixel in the
image. The procedure begins by calling
RayTraceSDSM() function. Then it starts with
RayNavigation() whose function is to traverse each cell
along the path of the ray and proceed the ray-object
intersection calculation.

B-214

RayTraceSDSM (SDSM, ray, nearest)
{
hit = NOHIT;
RayNavigation (ray->origin, SDSM->root, ray,
hit, nearest);
returnthit);
}

RayNavigation (point, cellptr, ray, hit, nearest) {
if (PointOutofRange (point, cellptr))
return;
currentnode = cellptr;
if (cellptr->kind == DIVIDED) {
childcellptr = LocateChildCell (point, cellptr);
RayNavigation (point, childcellptr, ray, hit, nearest);
if (hit ==NOHIT)
RayNavigation (point, currentnode:ray. hit,-nearest): }
else §
FindRayCellRange (ray, cellptr->bounds, raycellrange):
hit_bound = RayIntersectBVH (cellptr->tree->BVH, ray,
rayBVHrange);
it (hit_bound == HIT) {
hit = RayCastCSG (cellptr->tree, ray, nearest,
rayBVHrange);
}
if (hit == NOHIT)
GetNextPointOnRay (raycellrange, point, cellptr->bounds,
cellptr->levet);
else

return;

Figure 6. Ray Tracing Algorithm with A
Hybrid-SDSM Structure.

When a ray is navigated within cells, we will first
check if the cell is DIVIDED or Partial. If the cell is
DIVIDED, then the ray is being navigated to the lower
level of the hybrid-SDSM. Otherwise, a
RayIntersectBVH() function is called to check the
bounding box of the localized CSG tree. If a ray does
hit the bounding box, then the ray-object intersection
test is performed by calling the RayCastCSG() function.
Otherwise, this ray is navigated to the next partial cell
(if any) and the procedure just described will be
continued.

PERE N AEEEH RS

4. Fundamental Results

The idea described above was implemented with
the C programming language on UNIX-based
workstation environments, and some results are
collected here. These results are collected on SUN
ULTRA-2 with 128M RAM.

Haines [9] proposed a set of models for evaluating
the performance of systems using ray tracing for
realistic image generation. Unfortunately, these models
were not designed for CSG modeling scheme and most
of them can not be easily represented by CSG.

We presented two test models here to show some
results. The resolutions of images are 512x512 and two
light sources only. Figure 7 lists parts informations of
the test models. We perform the test five times for each
test model and calculate the average timing values as

shown in Figure 8 and 9.

Model |Resolution| No.of [Tree ni)des Halfspace
lights-
ball 512X512 2 1223 612
ngk 512X512 2 7895 3948
Model | Reflection | No. of test Halfspace types
ball No 5 sphere and cylinder
nek No P block, cone, cylinder
and torus

Figure 7. Model Characteristics.

d:h Bound |Preprocess | Ray trace | Total time
time time
3.7 No 0,25 159.84 160.09
37 Yes 0.39 140.27 140.66
3:10 No 0.23 160.07 160.32
3:10 Yes 0.40 140.49 140.89
4:10 No 0.48 134.33 134.81
4:10 Yes 0.78 120.27 121.05
4:15 No 0.32 151.03 151.35
4:15 Yes 0.51 134.23 134,74
5:10 No 0.49 125.38 125.87
5:10 Yes 0.79 112,45 113.24
5:18 No 0.32 150.02 150.34
5:15 Yes 0.51 132.57 133.08

Figure 8. Timing Data of Model ball.

B-215

dh Bound |Preprocess| Ray trace | Total time
time time
5:7 No 3.58 212.80 | 21638
5.7 Yes 5.52 187.30 192.82
5:10 No 3.57 20348 | 207.05
5:10 Yes 5.50 187.38 192.88
5:13 No 3.55 212,16 | 21371
5:13 Yes 547 20094 | 20641
6.7 No 6.46 124.05 130.51
6.7 Yes 10.61 113.88 12449
6:10 No 6.38 129.99 136.37
6:10 Yes 10.49 11543 125.92
6:13 No 6.26 141.26 147.52
6:13 Yes 1041 119.64 130.05

Figure 9. Timing Data of Model ngk.

Figure 8 and 9 are timing data with different d:h of
the model “ball” and “ngk”, respectively. Wang and Lai
[18] proposed that d (the maximum level of subdivision)
and h (the maximum halfspace numbers existed in a cell)
can influence the execution time of both creating and
ray tracing SDSM. It is of importance to choose an
optimal d:h since it can effect ray tracing results. Figure
8 and 9, show some interesting facts. First, we can find
out that the ray tracing time using a hybrid-SDSM is
faster than using an SDSM only. Second, if we compare
the ray tracing time of using a hybrid-SDSM with
different d:h, we can find an optimal d:h is 5:10. This
shows that to produce the best results we might consider
the maximum level of subdivision, the maximum
halfspace numbers stored in a cell and using bounding
box or not.

5. Conclusions

A hybrid-SDSM structure is proposed in this paper
for accelerating ray tracing CSG solids. The
fundamental results demonstrate that it accelerates the
performance of ray. tracing. The first test model
performs 25% time reduction, while the second one
shows 8% time reduction. It is concluded that the
hybrid-SDSM is of success to accelerate ray tracing
computing obtaining the benefits of both the spatial
subdivision and the bounding volume hierarchy.

Future work is to include model with larger model
complexity and to proceed the system analysis to
understand the relation of d, h and b.

TEREN\TAFREHERGS

Reference

[1] A. Appel, “Some techniques for shading machine
renderings of solids,” In AFIPS Spring Joint
Computer Conference, pp. 37-45,-1968.

[2] J. Arvo and D. Kirk, “4 survey of ray tracing
acceleration techniques,” In A.S. Glassner, 4n
Introduction to Ray Tracing, Chapter 6, Academic
Press Limited, 1989. .

[3] S. Cameron, “Efficient bounds in constructive solid
geometry,” [EEE Computer Graphics and
Applications, pp. 68-74, May 1991.

[4] JH. Chuang and W.J. Hwang, “A new space
subdivision for ray tracing CSG solids,” [EEE
Computer Graphics and Applications, pp. 56-62,
November 1995.

[3] AS. Glassner, An Introduction to Ray Tracing,
Academic Press Limited, 1989.

[6] A.S. Glassner, “Space Subdivision for Fast Ray
Tracing,” JEEE Computer Graphics and
Applications, vol. 4, no. 10, pp. 15-22, October
1984.

[7] AS. Glassner, “Spacetime ray tracing for
animation,” [EEE Computer Graphics —and
Applications, pp. 60-70, March 1988.

[8]J R.AA. Goldstein and R. Nagel, “3-D visual
simulation,” Simulation, vol. 16, no. 1, pp.25-31,
1971. ‘

[91E. Haines, “A proposal for standard graphics

environments,” IEEE Computer Graphics and '

Applications, vol. 7, no. 11, pp. 3-5, November
1991.

[10] T.L. Kay and J.T. Kajiya, “Ray tracing complex
scenes,” ACM SIGGRAPH 86, pp. 269-278, vol. 20,
no. 4, August 1986.

[11] M. Mantyla, 4n introduction to solid modeling,
Computer Science Press, 1988.

[12] R.G. Oliver, “Hierarchical Data Structure for
Solid Modeling” Ph.D. thesis, Department of
Mechanical Engineering, University of Leeds, UK,
June 1987.

[13] A.A.G. Requicha And J.R. Rossignac, “Solid
modeling and beyond,” IEEE Computer Graphics
and Applications, vol. 13, no. 9, pp. 31-44,
September 1992,

[14] A A.G. Requicha, “Representations for rigid
solids : Theory, methods and systems,” ACA
Computing Surveys, vol. 12, no. 4, pp. 437-464,
December 1980.

[15]JR. Rossignac, “Beyond solid modeling,”
Computer Aided Design, vol. 23, no. 1, pp. 2-3,
January 1991.

[16] S.D. Roth, “Ray casting for modeling solids,”
Computer Graphics and Image Processing, vol. 18,
no. 2, pp. 109-144, 1982,

B-216

[17]IN. Spackman, “Scene Decompositions for
Accelerated Ray tracing,” Ph.D. thesis, University
of Bath, UK, February 1990.

[18] C.M. Wang, C.W. Tseng, B.J. Chen and D.H. Lai,
“Techniques for fast ray tracing CSG solids,” In
Proceedings of the National Computer Symposium
Taiwan, December 1993,

[19] J.T. Whitted, “An improved illumination model
for shaded display,” Communications of the ACM,
vol. 23, no. 6, pp. 343-349, June 1980.

[20] G. Wyvill and T.L. Kunii, “Space division for ray
tracing in CSG,” IEEE Computer Graphics and
Applications, vol. 9, no. 4, pp. 28-34, April 1986.

