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Abstract

A new method is proposed to estimate the surface ori-
entations of planar complex textures under perspec-
tive projection through the ridge surface of 2D con-
tinuous wavelet transform (CWT). The ridge surface
derived to be a parabola are used as the surface cue.
A robust regression technique and e fitting technique
are combined to choose the best subset of ridge points
from a single ridge surface to represent the dominate
frequenicy variations of complez textures. From the
selected subset of ridge points, the tilt ans slant an-
gles are computed. The performance of our method is
demonstrated on several complex textures. The sim-
plicity of this method in dealing with complex teziures
is emphasized.

Keywords: compler texture continuous wavelet trans-
form ridge surface

1. INTRODUCTION

It had been pointed out that texture variations
provide important cues in visual perception of three
dimensional structures from a monocular image. The
surface orientation of a planar texture are the slant
angle, which determines the degree of obliqueness of
the surface, and the tilt angle, which is the direction
of slant. The main difficulty in solving the shape
from texture problem is how to characterize the tex-
tfure variations of perceived images. In the literature,
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many authors [1][4] used texture features such as the
texels or edges as the representation of texture vari-
ations. However, it is well-known that the detection
of texels and edges are not much reliable. The tex-
tural variations is better to be characterized by the
space/frequency representation [9][15](16]. We chose
the continuous wavelet transform tuned to various
dilations and rotations to describe the projected im-
ages. The Morlet wavelet optimizing the spatial and
the frequency resolutions simultaneously is adopted
in this paper. In our previous papers [9]{12], analyt-
ical solution had been proposed to estimate the pla-
nar surface orientation of a strongly ordered textur,
i.e., regular texture. The dominate frequency varia-
tions of textured images are represented by the ridge
surfaces of continuous wavelet transform. The ridge
surfaces mark the places in the spatial frequency do-
main where the energy distribution (squared magni-
tude) of wavelet transform is mostly concentrated.

In this paper, a new method is proposed for com-
plex textures (weakly ordered or disordered textures)
described in Rao’s book [14]. The strongly ordered
textures may be approximately regarded as the im-
age of single component, whereas the complex tex-
tures are considered to be composed of multiple com-
ponents. Difficulties will arise when space/frequency
representation is used to characterize complex tex-
tures. Linear transform such as short time Fourier
transform (STFT) and wavelet transfrom (WT) or
bilinear transfrom such as Wigner distribution (WD)
are usually adopted for image analysis. For these
linear transforms, the energy distributions (squared
magnitude) of STFT and WT called spectrogram
and scalogram are often used to represent images.
However, these energy distributions shown to be non-
linearity [3] (similar to WD) will contain ” cross terms”
while analyzing multicomponent images. The cross
terms of spectrogram and scalogram are found com-
parable with those of WD [10]. In our previous pa-
pers [9](12], it was shown that main information of
strongly ordered textures are easy preserved along
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dominate frequencies based on the scalogram of con-
tinuous wavelet transform. However, for complex
textures, the ridge surfaces will be inadequate to de-
scribe the local frequency variations due to the en-
ergy distribution of wavelet transform is interfered
with cross terms. Some techniques of cross terms
reduction have been proposed [3][17] to improve the
readability of space/frequency representations. Since
our estimation of surface orientation is based on a
parabola fitting, we focus on investigating the com-
bination with a robust regression approach [8] to
choose the dominate frequencies as the representata-
tion of texture variations. Although the energies of
the image pixels corresponding to these chosen fre-
quencies are not exactly equal to the idealized auto-
terms. Empirical experiments show that this choice
is simple and powerful in estimating the surface ori-
entation of a complex texture.

In the past, to our knowledge, only Kube [11]
devoted to estimate the slant angle of random tex-
tures. He used orthographical projection model and
assumed isotropic textures. Our method differs from
his in that we use perspective projection model and
no texture type is assumed. In addition, the used
texture models are different: we used sinusoidal tex-
ture model whereas they used fractional Brownian
plane. Furthermore, our method can estimate tilt
angle while his method can not.

2. CHARACTERIZATION OF TEXTURES
BY CONTINUOUS WAVELET
TRANSFORM (CWT)

Let w(b‘ . 3)(x) be obtained by the translation, scal-
a0 = Fb(r_ B,
where b € R?, s > 0, and 8 € [0, 2r) are the transla-
tion, scaling, and rotation parameters, respectively,
and ry is the rotation matrix of angle §. In our im-
plementation, we use the 2D Morlet wavelet, defined
as %I(X) = efkoTxg~xI?/2 i the spatial domain,
which is J’M(W) = e~Iw—kol*/2 i the frequency do-
main, where ko is the center frequency of the Morlet
wavelet. Also, following the conventional usage [2],
the scale parameter s takes discretized values with
s = 2°T%, where o is the octave, v is the voice,
and n is the number of voices per octave. The Mor-
let wavelet optimizes both the spatial resolution and
the frequency resolution simultaneously; therefore, it
is well adapted to characterize the local spatial fre-
quency.

We adopt the idealized or monochromatic texture
model [5] with amplitude A4 and phase p constant:

ing, and rotation of ¥(x):

g(x) = Acos(S2Tx + p), 6}

where 2Tx denote frequencies. For an image f(x)
with IV components, it is modeled as

N N
F) =3 gu(x) =Y Arcos(Qfx +pp).  (2)
k=1

k=1

The CWT of an image f(x) in the frequency do-
main is

N
Wf)(b, 5,0) = Z iié—szM(sr_eﬂk)e—i(sz-i-Pk).
k=1

Since 9pr(W) is concentrated at the frequency ko,
the k-th frequency component € of f(x) will be
concentrated around ry ko/si, where 6 is the an-
gle between ko and Qy, and s;' is the magnitude
multiplier in order to scale ||ko|| to [}€2k]|. In such
case, the texture energy at (b, s,0) is approximately

the summation of the energy of each Auto-terms plus
Cross terms:

N 2
A7 .
|(l/‘Vf)(b,s,0)|2 = Z —45- IdfM(Sr-er)lz + Cross terms,
k=1

(3)
where the Cross terms defined as .

N
ArAg -+ .
D SR (oro o) Par(sr_s ) cos((R=52) T bekpi—py)

kd=1k#l

comes from interference between different frequency
components. The Cross terms will not be com-
pletely absent provided that there are multiple fre-
quency components in an image. However, they will
be small as long as the wavelet 9)(w) is well local-
ized in frequencies and the different frequency com-
ponents are separated far enough such that

VI VEk#1 Vs V8 dhar(st_p)Par(sr_f2) ~ 0.

In this case, the texture energy at (b, s, 6) is approx-
imately the summation of the energy of each Auto-
terms:

N 9

Az
27

k=1

[0V £) (b, 5,6) ae(sm—o2)| . (4)

Egs. 3 and 4 indicate that the texture energy
at b is concentrated around N different components
centered at points (b,s = {fé—i%,@k) in CWT. They
will be referred to as ridge points hereafter. The
ridge points at the given b can be extracted by select-
ing the squared-modulus global maxima [12] or the
squared-modulus local maxima [9] among the neigh-
borhoods of 6 and s at b. One can then read off from
these points about the dominate frequencies . An-
other way to extract the local frequencies by phase
stationary, we refer to [7]. In the following, we will
explain why to use the single ridge surface.
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Fig. 1(a) shows a strongly ordered texture with
almost one component. Its single ridge and multi-
ridge are shown in Figs. 1(b) and (c), respectively.
We found that the multiridge without small fragmen-
tations is prefect than the single ridge. This is be-
cause the single ridge contains some image patches
where the small amounts of pixels usually come from
local structures of textures, whereas the multiridge
delete these patches by a simple ”continuity” crite-
rion. It should be emphaseized that the detected
multiple ridges is continuous. This is also why the
results of [9] based on multiple ridges are better than
those of [12] based on a single ridge, both for strongly
ordered texture. Also, almost all the existing meth-
ods could work well for strongly ordered textures.
However, in practice, there are often complex tex-
tures (weakly ordered and disordered texture) [14]
encountered in our world. Complex textures are al-
ways composed of multiple frequency components.
Even the space/frequency representations [9][15][16]
have been widely used to characterize textures, the
overall space-frequency or space-scale represetnations
are not clear to describe complex texture variations.
An example of a complex texture and its detected
single ridge and multiridge are shown in Figs. 1(d),
(e), and (f), respectively. Note that only one of the
multiple ridges having the maximal number of pix-

- els are shown. It is observed that neither the single
ridge nor the multiridge (base on only simple ”con-
tinuity” criterion) is adequate to represent local fre-
quency variations of the complex texture if no extra
process is made for the detected ridges. It is the
goal of this paper to investigate how to select the
useful subset of data from the ridge surfaces that
efficiently describe the local frequency variations of
complex textures by incorporating a robust regres-
sion technique. Because the multiple ridges may be
obtained by arbitrarily connecting ridge points, it is
thus suitable to use single ridge as the surface cue.

Dut to the limit of space, the detail description of
estimating surface orientation can be found in [9][12].

3. SHAPE FROM COMPLEX TEXTURE
BY RIDGE POINTS CONSENSUS

3.1. Observations of Frequency Variations of
Various Textures

Fig. 2(a) shows an image of sinusoid containing only
one frequency. Fig. 3(a) shows the modulus of the
wavelet transform at various rotations and scales at a
given location. It is found that the energies appear in
one orientation and concentrated on a narrow band
of frequency. The peak frequency of this location is
fairly apparent. It is enough to represent the domi-
nate frequency at this location by the peak frequency.

(@ ® ©

Figure 1: Single ridges (b) and (e), and multiridge
ridges (c) and (f) of a strongly ordered texture (a)
and a complex texture (d).

(a). Sinusoidal image (b). D95

(c). D24 (d). D04

Figure 2: Various structured images: (a) Sinusoid
image; (b) Strongly ordered texture; (¢) Weakly or-
dered texture; (d) Disordered texture.
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Unfortunately, there is few image like sinusoid image
encountered in the real-world. According to Rao’s
book [14], the textured images can be roughly cate-
gorized into three classes: strongly ordered, weakly
ordered, and disordered textures. All these textures
can be regarded as the images composed of multiple
components. Fig. 2(b) shows an strongly ordered
texture D95. Similarly, the modulus responses with
respect to scale at one location are shown in Fig.
3(b). We see that the energy appears more than
one orientations and concentrated on some frequency
bands. But, it is still easily to choose peak frequen-
cies as the “signature” of the local texture variations.
Moreover, the neighboring pixels in regular textures
usually have similar frequency responses and, thus,
the multiple ridge algorithm gives us good continu-
ous ridge surfaces which tend to separate different
frequency components. However, for the weakly or-
dered and disordered textures shown in Figs. 2(c)
and (d), the spatial frequency distributions become
much more complex and the neighboring pixels tends
to have different frequency distributions in each ori-
entation (see Figs. 3(c) and (d)). In such cases,
the multiridge detection algorithm is unable to deter-
mine “good” continuous ridge surfaces. Recall that
the ridge points of single ridge have the maximal re-
sponse in the CWT domain. The most important
information, even partial, are still preserved. Also,
our estimation method is based on a fitting method
[9][12]. Using the least-squares technique to fit a
parabola from the ridge points will not satisfy for
complex textures due to the spurious ridge points
resulting from various frequency components. It is
therefore important to choose the partial ridge points
from a single ridge to characterize the dominate fre-
quency variations.

3.2. Selection of Useful Ridge Points

Because a ridge point is represented with a rotation
and a scale parameters in addition to the position pa-
rameter [9]{12]. We found that two constraints about
the consistency of rotations and the small fitting er-
rors have to be imposed.

Constraint 1 (Consistency of orientation): When
a perceived textured image is slanted, the representa-
tive orientation of the selected ridge points should be
consistent. The ridge points violate the consistency
are rejected as outliers from the ridge surface.

Constraint 2 (Small fitting errors): Owing to our
estimation of surface orientation is based on a fit-
ting method, the best subset of ridge points should
fit a parabola within a certain error. In order to
satisy this constraint, a robust regression technique
(RANSAC) [8), is appropriate because they have the
advantage of finding a subset of points that best sat-
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Figure 3: The modulus of wavelet transform with
respect to scale at various orientations of a location:
(a) Sinusoidal image, (b) D95, (c) D24, and (d) D04.
The scale increases from the left to the right horizon-
tally, modulus is indicated vertically; and the subplot
boxs show the orientations from —90°, —67.5°, ...,
67.5°(top to bottom)
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Figure 4: Estimations for three natural textures D95,
D84, and D24 slanted 15°, 30°, 45°, 60°, and 75°.

isfy some constraints and reject the rest of points
as outliers. The selection of useful ridge points by
RANSAC can be found in [13)].

4. EXPERIMENTAL RESULTS

The complex texturs used in our experiments are
mainly synthesized from Brodatz’s album [6] and ob-
tained from MIT VisTex database. We first perform
a similar experiment as Turner’s [16] by our ridge
points consensus method. The estimated slant an-
gles are shown in Fig. 4. It is found that estimated
slant angles are not deviated from the true slant an-
gles too much even the slant angle is up to 75°. How-
ever, Turner’s results go down when the slant angle
is large and the textures become complex (See Fig.
8 in (16]).

In addition, another complex textures used for
experiments are shown in Fig. 5(al)-(11). It is seen
that the regular structures of these images are not
apparent. The estimated results can be found in [13].
The average error of tilt is within 4.46° and those of
slant angles using voting and curve fitting are within
2.56° and 3.89°, respectively. Subfigures 2 and 3
of Fig. 5 show some of the single ridges and the
inliers extracted from subfigures 1. Comparing each
pair of the single ridge and the inliers, it is observed
that the preserved information reveal the tendency
of frequency variations to some extent.

From the experimental results, we found that the
average errors for complex textures are larger than
those of strongly ordered textures [9][12]. But they
are still lower than 5° averagely. The most impor-
tance is that the estimation of surface orientation for
complex textures are become possible by the new yet
simple method.

5. CONCLUSIONS

We have proposed a new methods for estimating the
surface orientations of complex textures under the
perspective projection model. The dominate frre-
quency variations of complex texture are effectively
characterized by the ridge points consensus in the
CWT domain. The performance of our method had
been demonstrated on several complex images. It is
emphasized that the proposed method is simple and
powerful in dealing with complex textures without
using any techniques of reducing interference terms.
Compared with our previous results for strongly or-
dered textures [9], some results for complex textures
are inferior. But, this paper has at least made the es-
timation of surface orientation for complex textures
possible.
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