
BOTTLENECK INDEPENDENT DOMINATION ON SOME CLASSES OF
GRAPHS1

William C. K. Yen
Dept. of Graphic Communications & Technology, Shih Hsin University,

Taipei, Taiwan, R.O.C.

�����������������������������
�This research was supported by National Science Council, R.O.C., under contract number NSC-89-2213-E-
159-001.

ABSTRACT

Let G(V, E, W) be a graph with vertex-set V and edge-set E,
and each vertex v is associated with a positive cost W(v).
The bottleneck cost of any subset V′ of V is defined to be
max{W(x) x ∈  V′}. This paper resolves the Bottleneck
Independent Dominating Set problem (the BIDS problem)
which determines an independent dominating set of G with
the minimum bottleneck cost.

The BIDS problem has been proven to be NP-hard on
general bipartite graphs. This paper major discusses the
problem on two hierarchies of graphs: chordal graphs and
bipartite graphs. It first proves that the problem is NP-hard
on chordal graphs, but linear-time solvable on weighted
split graphs by the greedy approach. Second, it shows that
the problem is still NP-hard on planar-bipartite graphs and
a linear-time algorithm on weighted convex-bipartite graph
is proposed. Finally, an O(n) time algorithm of the BIDS
problem on weighted cographs is designed. The later
linear-time algorithms are designed by the dynamic
programming strategy.

Keywords: bottleneck cost, independent
     dominating set, chordal graph, split
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1. INTRODUCTION

Let G(V, E, W) be a connected and undirected graph with
vertex-set V and edge-set E, and each vertex v is associated
with a positive cost W(v). Assume that  V  = n and  E  =
m hereafter. The concept of dominating sets of G arises
naturally from various facilities locating problems in
Operations Research and many practical applications such
as communication systems and computer networks. A
subset Q of V dominates V if there exists u ∈  Q such that
(v, u) ∈  E for each v ∈  (V - Q) and Q is called a
dominating set of G [18, 19]. Many types of dominating
sets on graphs have been proposed and studied for years,
such as connected dominating sets [5, 20, 31], independent
dominating sets [12, 13, 21, 23], total dominating sets [4, 6,

22, 29, 30], and perfect dominating sets [26, 32, 33]. Most
of these previous studies emphasize to find a set D of

certain type of dominating sets such that ∑ ∈ Dx
xW )(  is

minimized. This paper considers another important cost
measurement. For any H ⊆  V, the bottleneck cost is
defined as max{W(x) x ∈  H}. This cost measurement is so
important and practical when building services facilities or
resources in real world. This paper concentrates on
independent dominating sets (ID sets) of G. A subset H of
V is independent if no two vertices in H are adjacent. An
independent dominating set (ID set) of G is a subset of V
which is both an independent set and a dominating set of G.
The problem considered in this paper is defined precisely
as follows:

The Bottleneck Independent Dominating Set problem
(The BIDS problem): Given an undirected and connected
graph G(V, E, W), find an ID set S ⊆  V such that
max{W(x) x ∈  S} ≤ max{W(x) x ∈  H}, for all ID sets H.

Fig. 1 illustrates an input instance of the BIDS problem.
The sets {a, e, h} and {a, f} are both ID sets of G. The set
{a, f} is an ID set with the minimum bottleneck cost, 2,
which is equal to max{W(a), W(f)} = max{1, 2} = 2.

b, 5
c, 4

d, 6

e, 7 f, 2

h, 3

a, 1

Fig. 1. An instance of the BIDS problem.

In [34], the BIDS problem has been proven to be NP-hard
on general bipartite graphs. It is worthy to examine the
borderline between polynomial time and NP-completeness
on a given graph problem for various classes of graphs [11,
15]. This paper examines the hierarchies of chordal graphs
and bipartite graphs. It first proves that the BIDS problem
is NP-hard on chordal graphs, but linear-time solvable on
weighted split graphs. This result is quite interesting since
few problems have this property [26]. In [34], an O(nlog2n)
time algorithm was proposed for the BIDS problem on
weighted permutation graphs. Therefore, the BIDS
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problem on weighted bipartite-permutation graphs can be
solved at most in O(nlog2n) time. This paper shows that
the problem is still NP-hard on planar-bipartite graphs.
Then, a linear-time algorithm on weighted convex-bipartite
graphs is proposed. Finally, an O(n) time algorithm of the
BIDS problem on weighted cographs is designed.

2. SEPARATION IN COMPLEXITIES OF SPLIT
GRAPHS FROM CHORDAL GRAPHS

2.1 NP-hardness on Chordal Graphs

To analyze the complexity about the BIDS problem, a
decision problem corresponding to the BIDS problem and
a variant of it are defined, respectively.

The Bottleneck Independent Dominating Set decision
problem (The BIDS decision problem): Given a graph
G(V, E, W) and a real constant η, determine whether an
independent dominating set S ⊆  V exists such that
max{W(x) x ∈  S} ≤ η.

The Constrained Independent Dominating Set decision
problem (The CIDS decision problem): Given an
undirected and connected graph G(V, E) and a set of
vertices V′ ⊆  V, determine whether there exists an
independent set S ⊆  (V - V′) which also dominates V′.

The following lemma has been established in [34].

Lemma 1: The BIDS decision problem is polynomially
equivalent to the CIDS decision problem.

Now, to prove that the BIDS decision problem is NP-
complete [15], it suffices to show that the CIDS decision
problem is NP-complete. The technique used here is
similar to that used in [25]. First, a known NP-complete
problem is introduced [15].

The Monotone Three Satisfiability problem (The M3SAT
problem): Given a set of Boolean clauses with the
conjunctive normal form in which each clause can contain
either only positive literals, say xi

′s, or only negative

literals, say xi
′s, and each literal contains exactly three

literals, determine whether the given Boolean formula is
satisfiable or not.

For any graph G(V, E), an edge is called a chord of a cycle
if it connects two nonconsecutive vertices of the cycle. G is
called a chordal graph [16] if each cycle with length
greater than three has a chord.

Lemma 2: The CIDS decision problem is NP-complete on
chordal graphs.

Proof. It is clearly observable that the CIDS decision
problem belongs to the NP class. We now show that the
M3SAT problem can be polynomially reduced to the CIDS
decision problem on chordal graphs. Suppose that there is
an instance of the M3SAT problem with h variables x1, ...,
xh and r clauses c1, ..., cr. Assume that P represents the set
of clauses that contain only positive literals and N
represents the set of clauses that contain only negative
literals, respectively. Meanwhile, in the case that will not
cause any ambiguity, the literal-set of any clause ci, 1 ≤ i ≤
r, will also be denoted by ci hereafter. Now, a graph G(V,
E) is constructed as follows: V = {c1, ..., cr} ∪  {x1, ..., xh}
∪  {a1, ..., ah, b1, ..., bh, d1, ..., dh, q1, ..., qh}; E = {(cs, xi) 

cs contains xi} ∪  {(ct, xi )   ct contains xi } ∪  {(cs, ct) 
for all clauses cs and ct} ∪  E′, where E′ is obtained by the
following loop.

E′ = empty set; /* initialization */
for i = 1 to h do
    E′ = E′ ∪  {(xi, ai), (xi, bi), (ai, bi),

    (ai, di), (ai, qi), (ai, xi ), ( xi , qi),

    (bi, di), (di, qi)};
    E′ = E′ ∪  {(bi, qi)};
endfor
for each pair cs ∈  P and ct ∈  N do

    let ct = { xt1
, xt2

, xt3
};

    for j = 1 to 3 do
        if xt j

 ∈  ct E′ = E′ ∪  {(ai, ct)};

    endfor
endfor

Fig. 2 and Fig. 3 depict the edges added by each iteration
of the first loop and the second loop, respectively.

xi
xi

bi

ai

di

qi

Fig. 2. The edges added by the ith iteration.

The time-complexity of the above construction procedure
can be easily proved to be O(h +  P   *  N  ). To show
that the graph G is a chordal graph, let X = {x1, ..., xh} and

X = { x1, ..., xh }. Suppose that a cycle Ω with length

greater than three exists. Assume that  the cycle is v1   v2

  ...   vp   v1, p ≥ 4, i.e., its vertex-set is {v1, v2, ..., vp}.
For the simplicity on explanation, the cycle Ω will be
represented by v1   v2   ...   vp   v1 and {v1, v2, ..., vp}
alternatively hereafter. Based on the construction
procedure of G, it is easily verifiable that one of the
following cases could occur.
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xi

cs bi

ai

di

qi ct

xi

Fig. 3. Two edges (cs, ai) and (at, ct) are added if cs

contains xi and ct contains xi .

Case 1. Ω ⊆  {cj} ∪  {xi, ai, xi , bi, di qi}, for some cj: In

this case, Ω must have the form either cj   ai   ...   bi

  xi   cj or cj   ai   ...   qi   xi    cj. The edge (xi,

ai) and (ai, xi ) is a chord of the two cases, respectively.

Case 2. Ω ⊆  V - (P ∪  N): In this case, Ω must be a cycle

within a subgraph induced by {xi, ai, xi , bi, di , qi}, for

some i. Checking that a chord exists in Ω is simple.
Case 3. Ω ⊆  P ∪  X: Since all vertices in X are independent,
Ω must contain at least one subpath as cs   xi   ct such
that cs, ct ∈  P. This case is depicted in Fig. 4. In this
situation cs ∩ ct = {xi} ≠ ∅ . From the construction rule of
G, we can make sure that (cs, ct) is a chord of this cycle.

Case 4. Ω ⊆  X  ∪  N: This case is symmetrical to Case 3.
Case 5. Ω - (P ∪  N) ≠ ∅ : In this case, three possibilities
must be considered.
Case 5.1. Ω contains a subpath cs   xi   ct, where cs, ct ∈
P: As the discussions in Case 3, cs ∩ ct = {xi} ≠ ∅ , (cs, ct)
is a chord of this cycle.

Case 5.2. Ω contains a subpath cs   xi   ct, cs, ct ∈  N: It

is symmetrical to Case 5.1.
Case 5.3. All subpaths in Ω have the form neither cs   xi

  ct, where cs, ct ∈  P nor cs    xi   ct, where cs, ct ∈  N:
Since Ω - (P ∪  N) ≠ ∅ , Ω ∩ P could contain exactly one
vertex, say cs, and Ω ∩ N also contain exactly one vertex,
say ct. All other vertices in Ω must belong to V - (P ∪  N).
It is easy to see that (cs, ct) is a chord of Ω.

Let V′ = {c1, ..., cr, a1, ..., ah, d1, ..., dh}. Then, (V - V′) =
{x1, ..., xh, x1 , ..., xh , b1, ..., bh, q1, ..., qh}. The remaining

task is to show that there exists an independent set of (V -
V′) which dominates V′ in G iff the given Boolean formula
c1 •  ... •  cr is satisfiable.
1. Assume that there is an assignment which satisfies the
Boolean formula. Let it be xz1

 = ... = xzα
 = True and

xw1
= ... = xwε

 = False, where α + ε = h. Then, zi ≠ wj,

for any i and j. Put S = { xz1
, qz1

..., xzα
, qzα , xw1

,

bw1
 ..., xwε

, bwε
} ⊆  (V - V′). Verifying that S is an

independent set of (V - V′) and S dominates all of the
vertices in V′ is an easy task.

2. Assume that S ⊆  (V - V′) is an independent set and also

dominates V′. First, we claim that for each pair {xi, xi },

either xi ∈  S or xi  ∈  S, i.e., the case that both xi and xi

belong to S can not occur. If both xi and xi  belong to S,

then based on the construction rule of G, bi ∉  S and qi ∉  S
and no vertex in S can dominate di. A contradiction occurs.

Now, let Q = { xz1
, ..., xzα

, xw1
, ..., xwε

} be the set of

vertices corresponding to literals contained in S. Assign the
literals corresponding to the vertices in Q to be True, i.e.,
assign xz1

 = ... = xzα
 = True and xw1

= ... = xwε
 = False.

Ascertaining that this assignment satisfies the given
Boolean formula is simple.

From the discussions so far, there exists an independent set
of (V - V′) dominating V′ in the chordal graph G if and
only if the given Boolean formula is satisfiable. Therefore,
the CIDS decision problem is NP-complete on chordal
graphs. ■

Theorem 1: The BIDS problem is NP-hard on chordal
graphs.

2.2 An O(m) Time Algorithm on Weighted Split
Graphs

A graph G(V, E) is called a split graph [14] if V can be
separated into two disjoint sets K and I such that K forms a
clique and I is an independent set. Let SG(V, E) denote a
split graph with the vertex-set V = K ∪  I = {k1, ..., ks} ∪
{i1, ..., it}. For a vertex set H of SG, let β(H) represent the
bottleneck cost of H, that is, β(H) can be expressed as
maxv∈ H{W(v)}. For the sake of clear presentation, denote
δ(SG) to be the value of the bottleneck cost of an optimal
solution of the BIDS problem on SG, i.e., δ(SG) =
min{β(H)   H is an ID set of SG}.

Since K is a clique, for any ID set of SG, at most one
vertex in K can be included. Let V0 be any ID set of SG.
Then, either K ∩ V0 = {kj}, for some kj, or K ∩ V0 = ∅ .
The following two new problems are introduced and
Formula (2.1) can be easily obtained.

•
•
•

•
•
•

ct

xi

cs

xh

x1

(1) cs   xi   ct is a subpath of Ω.
(2) (cs, ct) is a chord.

Fig. 4. The cycle Ω ⊆  P ∪  X.
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(P0) Compute δK(SG) = min{β(H)   K ∩ H = {kj}, for
some kj,  and H is an ID set}.
(P1) Compute δK′(SG) = min{β(H)   K ∩ H = ∅  and H is
an ID set}.

δ(SG) = min{δK(SG), δK′(SG)} -- (2.1)

Let us first consider the problem (P0). For any vertex kj in
K, define Neighbor_I(kj) = {iq ∈  I (iq, kj) ∈  E}. The set
Neighbor_K(iq) can be defined similarly, for any vertex iq

∈  I. The following property can be easily obtained.

Property 1: For any optimal solution V* of the problem
(P0), it must contain all vertices belonging to I –
Neighbor_I(kj), when kj ∈  V*.

Property 1 indicates that an optimal solution of the
problem (P0) can be found by examining each vertex kj in
K, all vertices in I, as well as each edge once. Verifying
that the time-complexity needed is O(m) is a simple task.

Lemma 3: The problem (P0) can be solved in O(m) time.

Now, turn to the problem (P1), i.e., find a subset V* of I
with the minimum bottleneck cost. If H is a proper subset
of I, then the vertices in I - H are not dominated by H.
Thus, if H is an ID set of SG and K ∩ H = ∅ , then H must
be equal to I. Therefore, in order to solve the problem (P1),
the only task is to check whether every vertex in K is
adjacent to at least one vertex in I and the time-complexity
is only O(n). Now, the following lemma can be easily
derived.

Lemma 4: The problem (P1) can be solved in O(n) time.

Theorem 2: The BIDS problem can be solve in O(m) time
on weighted split graphs.

3.  COMPLEXITIES ON PLANAR-BIPARTITE AND
CONVEX-BIPARTITE GRAPHS

3.1 NP-hardness on Planar-Bipartite Graphs

As stated in Section 2.1, we also show that the CIDS
decision problem is NP-complete here. The NP-Complete
problem for reduction is also the M3SAT problem.

A graph G(V, E) is called a bipartite graph if V can be
partitioned into two disjoint sets X and Y such that both X
and Y are independent sets. A bipartite graph will be
denoted by G(X ∪  Y, E) herein. Meanwhile, any graph G is
said to be planar if we can draw it into the plane such that
all edges intersect only at end vertices [17]. A planar-
bipartite graph is a bipartite graph which is also planar.

The following theorem states the necessary and sufficient
conditions for testing the planarity of graphs [17].

Theorem 3 (Kuratowski′′′′s Theorem): A graph G is
planar if and only if G contains no subgraph
homeomorphic with K5 or K3,3.

Lemma 5: The CIDS decision problem is NP-complete on
planar-bipartite graphs.
Proof. We now show that the M3SAT problem can be
polynomially reduced to the CIDS decision problem on
planar-bipartite graphs. Suppose that there is an instance of
the M3SAT problem with h variables x1, ..., xh and r
clauses c1, ..., cr. In Boolean algebra, c •  c = c, for any
clause c, so we can assume that ci ≠ cj for all i ≠ j, i.e., ci

and cj can not contain the same three literals. Let P =
{ ci1

, ..., cia
} be the set of clauses that contain only

positive literals and N = { c j1
, ..., c jb

} be the set of

clauses that contain only negative literals. For the reason of
clear presentation hereafter, denote X1 = {x1, ..., xh} and X2

= { x1 , ..., xh }. First, a bipartite graph G(X ∪  Y, E) is

constructed as follows: X = X2 ∪  P; Y = X1 ∪  N; V = X ∪  Y;

E = {(xi, cs)   cs contains xi.} ∪  {( xi , ct)   ct contains xi .}

∪  {(xi, xi )   1 ≤ i ≤ h}. It is easy to see that no subgraph

in G is homeomorphic with K3,3 or K5. Based on
Kuratowski′′′′s Theorem, the constructed graph is a planar-
bipartite graph.

It is easy to ascertain that the time-complexity of the above
transformation procedure is polynomial. Now, let V′ =

{c1, ..., cr}. Then, (V - V′) is the set {x1, ..., xh, x1 , ..., xh }.

The task left is to show that there exists an independent set
of (V - V′) which dominates V′ if and only if the given
Boolean formula c1 •  ... •  cr is satisfiable.
1. Assume that there is an assignment which satisfies the
Boolean formula. Let it be x p1

 = ... = x pk
 = True and

xq1
= ... = xqs

 = False, where k + s = h. Then, pi ≠ qj, for

any i and j. Put S = { x p1
, ..., x pk

, xq1
, ..., xqs

} ⊆  (V -

V′). Verifying that S is an independent set of (V - V′) and S
dominates all of the vertices c1, ..., cr is an easy task.

2. Assume that S = { x p1
, ..., x pk

, xq1
, ..., xqs

} ⊆  (V -

V′) is an independent set and also dominates V′. A true
assignment can be easily derived by assigning the literals
corresponding to the vertices in S to be True.

From the discussions so far, an independent set of (V - V′)
dominating V′ exists in the planar-bipartite graph iff the
given Boolean formula is satisfiable. Therefore, the CIDS
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decision problem is NP-complete on planar-bipartite
graphs. ■

Theorem 4: The BIDS problem is NP-hard on planar-
bipartite graphs.

3.2 A Linear-Time Algorithm on Weighted Convex-
Bipartite Graphs

This section proposes a linear-time algorithm for the BIDS
problem on weighted convex-bipartite graphs by the
dynamic programming strategy [3, 28]. This technique has
been applied to solve some other dominating set problems
[27, 32].

A bipartite graph G(X ∪  Y, E) is called convex if the
vertices in Y can be arranged to a linear ordering (Y, <)
such that N(x) consists of consecutive vertices of Y, for
each x ∈  X [11]. Given a convex-bipartite graph G(X ∪  Y,
E), assume that X = {x1, ..., xε} and Y = {y1, ..., yη}
hereafter. Some definitions are made in the following.

Definition 1: For any x ∈  X, let N(x) = {yj, ..., yj+α}. Define
L(x) = j and U(x) = j + α.

Definition 2: For any x1, x2 ∈  X, the two new relations on
X, <r and =r, are defined as follows, respectively. (1) x1 <

r

x2 iff L(x1) < L(x2) or (L(x1) = L(x2) and U(x1) < U(x2)); (2)
x1 =

r x2 iff L(x1) = L(x2) and U(x1) = U(x2).

Definition 3: Let RX ⊆  X and RY ⊆  Y. If the graph obtained
from any convex-bipartite graph by removing the vertices
belonging to RX ∪  RY and all edges incident with them is
still a convex-bipartite graph, then reindex the vertices in X
- RX and Y - RY, respectively, and the graph obtained is

denoted by CB
R

R
X

Y

. Based on this definition, the original

convex-bipartite graph is just CB∅
∅  and simply denoted

by CB.

Without a loss of generality, we will assume that all
vertices in X are sorted into non-decreasing order under the
relations defined in Definition 2 in the rest of this paper. In
another, RX and RY denote any two subsets of X any Y,
respectively, satisfying the property stated in Definition 3

hereafter. For any RX and RY, let δ( CB
R

R
X

Y

) be the value of

the minimum bottleneck cost of an optimal solution of the

BIDS problem on the subgrarph CB
R

R
X

Y

, i.e., δ( CB
R

R
X

Y

) =

min{β(D)   D is an ID set of CB
R

R
X

Y

}. The BIDS problem

is to compute δ(CB).

For each xi, any optimal solution of the BIDS problem
either includes xi or not. This leads us to introduce the
following two new related problems (P2) and (P3) and
Formula (4.1) holds directly.

(P2) Compute  δ
xi

(CB) = min{β(D)   xi ∉  D and D is an

ID set of CB}.
(P3) Compute δxi

(CB) = min{β(D)   xi ∈  D and D is an

ID set of CB}.

  δ(CB) = min{ δ
xi

(CB), δxi
(CB)} (4.1)

First, consider the boundary case in which X = {x1} and Y
= {y1, ..., yη}. Since the input graph is assumed to be
connected, x1 is adjacent to all vertices y1, ..., yη in this
situation. Therefore, {x1} and {y1, ..., yη} are the two only
ID sets of CB. It is easy to verify that δ

x1
(CB) =

W y j
j

( )
=
∑

1

η

 and δx1
(CB) = W(x1). δ(CB) is now equal to

min{W(x1), W y j
j

( )
=
∑

1

η

} in this boundary condition.

Consider the cases in which X = {x1, ..., xε} and Y = {y1, ...,
yη}, ε, η ≥ 2. A useful property about N({yq, ..., yq+β}) for
all q and β can be easily verified as follows:

Property 2: If N({yq, ..., yq+β}) = { xπ1
, ..., x

tπ }, then

xπ1
≤r ... ≤r x

tπ .

Consider the problem (P2) in which no feasible solution
includes x1. Assume that N(x1) = {yj, ..., yj+α}. From the
definition of ID sets, an optimal solution of the problem
(P2) must contain at least one vertex belonging to {yj, ...,
yj+α}. Suppose that some yi, j ≤ i ≤ α, must be included. In
this situation, all vertices in N(yi) can not be included. The
following lemma can be easily established.

Lemma 6: CB
R

R

i
X

i
Y

 are still convex-bipartite graphs for all

Ri
Y = {yi} and Ri

X = N(yi).

Now, the correctness of the following formula can be
easily ascertained.

  δ
x1

(CB) = min j≤i≤α{δ( CB
R

R

i
X

i
Y

)}  (4.2)
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Formula (4.2) indicates that the cases where yi, j ≤ i ≤ α,
must be included are dealt with, respectively.

Next, consider the problem (P3) in which x1 must be
included in any optimal solution. In this case, all vertices
in N(x1) can not be included in any optimal solution. Also,
each vertex xh in which U(xh) ≤ j + α must be included
because N(xh) ⊆  N(x1). The following lemma can be
directly derived from Property 2.

Lemma 7: CB
R

R
X

Y

 is still a convex-bipartite graph, where

RX = {xh   U(xh) ≤ j + α} and RY = N(x1).

 The following formula can then be obtained.

 δx1
(CB) = max{max{W(x)   x ∈  RX}, δ( CB

R

R
X

Y

)}  (4.3)

Let T(P2, CB) and T(P3, CB) represent the time-
complexities for solving the problems (P2) and (P3) on CB
with X = {x1, ..., xε} and Y = {y1, ..., yη}, respectively.
From the discussions so far, the following formula can be
derived.

  T(BIDS, CB) = T(P2, CB) + T(P3, CB)  (4.4)

  T(P2, CB) = T
R

R

i j
i
X

i
Y

( , )BIDS CB
=
∑

α

, where Ri
Y = {yi}

and Ri
X = N(yi).  (4.5)

  T(P3) = O( RX ) + T(BIDS, CB
R

R
X

Y

), where RX =

{xh U(xh) ≤ j + α} and RY = N(x1). (4.6)

The boundary conditions yields the following formula,
where CBb denotes the convex-bipartite graph with the
vertex-set X ∪  Y in which X = {x1} and Y = {y1, ..., yη}.

 T(P2, CBb) = T(P3, CBb) = T(BIDS, CBb) = O(η + 1)
(4.7)

It is easy to check that each edge is examined in constant
time. Now, from Formula (4.1) to (4.7), it is simple to
derive that T(BIDS, CB) = O(m).

Theorem 5: The BIDS problem can be solved in O(m)
time on weighted convex-bipartite graphs.

4. AN O(n) TIME ALGORITHM ON WEIGHTED
COGRAPHS

The final class of graphs considered is the class of
cographs [1, 2, 7, 37], which arises in a wide spectrum of
applications. A cograph is defined recursively in the

following way [7, 37]: (1) A single vertex is a cograph. (2)
If G1, G2, ..., Gk are cographs, then so is their union G1 ∪
G2 ... ∪  Gk. (3) If G is a cograph, then so is its complement

G . A cograph has a tree representation called cotree [7,
10]. The leaves of a cotree represent the vertices of its
corresponding cograph, and its internal nodes are labeled
with either 0 or 1. The root is labeled with 1 if the cograph
is connected, and 0 otherwise. Two vertices x and y in a
cograph are adjacent iff the lowest common ancestor of
their corresponding nodes in the cotree is a 1-node. Since a
general tree can be easily interpreted as a binary tree [24],
only binary cotrees are considered herein. An O(m + n)
time algorithm has been developed to recognize a cograph
and to construct its cotree representation [9, 10]. In the rest
of the paper, given a cograph G and its corresponding
cotree T, let r be any internal node of T. The subcotree
rooted at r is denoted to be T(r) and the cograph induced
by the leaves of T(r) is denoted to be G(r).

Many efficient algorithms solve many problems on
cographs, such as isomorphism, coloring, clique-detection,
minimum weight dominating set, maximum matching,
searchlight guarding [7, 8, 9, 35, 37]. Indeed, the class of
cographs is a proper subset of the class of permutation
graphs [36]. By the result of [34], an O(nlog2n) time
algorithm exists for the problem on weighted cographs.
This section improves the result to O(n) by working on the
cotree of the original cograph. The strategy used is the
dynamic programming strategy.

Given a cograph G with costs on vertices and its
corresponding cotree T, for any non-leaf node r of T,
denote the subcotree rooted at r to be T(r) and the
subcograph induced by the leaves of T(r) to be G(r).
Denote δ(r) to be the value of the bottleneck cost of an
optimal solution of the BIDS problem on the cograph G(r),
i.e., δ(r) = min{β(H)   H is an independent dominating set
of G(r), where β(H) is the bottleneck cost of H}.

From the definition of cographs, any non-leaf node r
should be either a 1-node, denoted by r1, or a 0-node,
denoted by r0. Let u1 and u2 be its two children. The
following considers the two cases for any non-leaf node r.

Case 1. 0-node, r0: In this case, no vertex in G(u1) is
adjacent to any vertex in G(u2), i.e., G(r0) is just the union
of G(u1) and G(u2). An optimal solution on G(r0) is merely
the union of any optimal solutions on G(u1) and G(u2),
respectively, i.e., the BIDS problem on G(u1) and G(u2)
can be solved independently and recursively. Therefore,
the minimum bottleneck cost under this case, denoted by
δ(r0), is equal to max{δ(u1), δ(u2)}.
Case 2. 1-node, r1: In this case, all vertices in G(u1) are
adjacent to all vertices in G(u2). Let the vertices of G(u1),
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V(G(u1)) = X = {x1, ..., xm} and the vertices of G(u2),
V(G(u2)) = Y = {y1, ..., yn}. Based on the definition of
cographs, G(r1) is constructed from the union of G(u1) and
G(u2) with additional new edges connecting all pairs (xi, yj).
The subgraph induced by the new edges connecting X and
Y forms a complete-bipartite graph.

If any vertex in G(u1), say xi, is included in any optimal
solution of G(r1), then all vertices in G(u2) must be
excluded since they are all dominated by xi. Similarly, if
any vertex in G(u2), say yj, is included in any optimal
solution of G(r1), then all vertices in G(u1) must be
excluded. Therefore, the minimum bottleneck cost under
this case, denoted by δ(r1), can be easily proved to be
equal to min{δ(u1), δ(u2)}.

From the above discussions, an optimal solution can be
identified by examining each internal node once from the
root r after δ(r) has been computed, and its time-
complexity is O(n).

Theorem 6: The BIDS problem can be solved in O(n) time
on weighted cographs.

5. THE CONCLUSIONS

This paper discusses the Bottleneck Independent
Dominating Set problem on graphs with positive costs on
vertices. The results achieved in this paper can be
summarized in Table 1.

Some directions are worthy to continue in the future.

1. The approach used in this study can be easily applied to
solve this problem on other classes of graphs, such as
interval graphs and block graphs.
2. Identify other types of dominating sets, e.g., perfect
dominating sets and connected dominating set, etc., with
minimum bottleneck costs on weighted graphs.
3. Find out the relationships between bottleneck problems
and summation problems on weighted graphs. This is a
very interesting and practical research direction.

Table. 1. The complexities of the BIDS problem achieved
in this paper.

Class of graphs Complexity Strategy
Chordal Graphs NP-hard --

Weighted Split Graphs O(n + m) Greedy
Planar-Bipartite Graphs NP-hard --

Weighted Convex-Bipartite
Graphs

O(m) Dynamic Programming

Weighted Cographs O(n) Dynamic Programming
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