
ON THE MAXIMUM CONNECTED INTERVAL SUBGRAPH OF

BLOCK GRAPHS AND CHAIN GRAPHS

Sheng-Lung Peng�, Hsiao-An Chao, Ruay-Shiung Chang

Department of Computer Science and information engineering,
National Dong Hwa University, Hualien, Taiwan, R.O.C.
Email:flung, m8721011, rschangg@csie.ndhu.edu.tw

Abstract

The maximum connected interval subgraph problem on
a graph G is the problem of �nding an induced sub-
graphH of G such that H is a connected interval graph
with the maximum number of vertices. It has been
shown that this problem is NP-hard and have no con-
stant ratio approximation on general graphs. In this
paper, we propose linear-time algorithms for solving
this problem on block graphs and chain graphs.

1. Introduction

Let G be a �nite and simple graph with vertex set V (G)
and edge set E(G). A graph G is an interval graph if
there exists a one-to-one correspondence between V (G)
and a family F of intervals of the real line such that
two vertices in V (G) are adjacent if and only if their
corresponding intervals in F overlap. Interval graphs
have many applications, among them scheduling, seri-
ation in archeology, medical diagnosis, behavioral psy-
chology, circuit design and most recently the Human
Genome Project [4{6,9,14].

a b

e

c d
a
b d

c
e

G F

Figure 1. An interval graph and its corresponding in-
terval family.

Recently, many researchers focus on �nding an interval
supergraph of the input graph with di�erent require-

�corresponding author: lung@csie.ndhu.edu.tw

ments [2,3,10,8,15]. In this paper, we deal with the
problem of �nding an interval subgraph of the input
graph with the maximum size. The maximum inter-
val subgraph problem (MISP for short) on G is the
problem of �nding a maximum interval subgraph of G
by deleting the minimum number of vertices of G. A
more generalized problem is referred as the node dele-
tion problem [11,12,17]. Similarly, the maximum con-
nected interval subgraph problem (MCISP for short)
on G is the problem of �nding a maximum connected
interval subgraph of G by deleting the minimum num-
ber of vertices of G. Note that the solution of MISP
may not contain the solution of MCISP for a graph.
For example, please see Figure 2.

(a) (b) (c)

Figure 2. (a) A graph G. (b) A solution of MISP. (c)
A solution of MCISP.

It has been shown that MCISP is NP-hard on general
graphs [16]. Furthermore, it has also been shown that
it is impossible to be approximated with ratio n1��, for
every � > 0, in polynomial time unless P = NP , where
n is the number of vertices in the input graph [13]. So
far, to our knowledge, there is no result for MCISP on
any special graphs.

In this paper, we solve this problem on block graphs
and chain graphs. On a block graph, we show that
this problem can be reduced to the problem of �nding
a maximum caterpillar (with a constraint) in its block
tree. On a chain graph, we show that this problem is
equivalent to the problem of �nding a maximum cater-
pillar of this graph. As a result, we propose linear-time
algorithms for solving this problem on above graphs.

1

The rest of this paper is organized as follows. In Sec-
tion 2, we give the de�nitions and notation used in this
paper. The main results on block graphs and chain
graphs are presented in Sections 3 and 4, respectively.
Finally, we give the concluding remarks in the last sec-
tion.

2. De�nitions and Notation

Let G be a connected, simple and �nite graph. Let
V (G) and E(G) be its vertex and edge sets, respec-
tively. Let n = jV (G)j and m = jE(G)j. Let N(v) =
fw j (v; w) 2 V (E)g denote the neighborhood of vertex
v. For a vertex set W � V (G), let G[W] denote the
subgraph of G induced by W . For two vertex sets X
and Y , XnY = fv 2 X j v =2 Y g. In the following,
\subgraph" means \induced subgraph."

A clique in a graph G is a complete subgraph of G.
A clique also refers to a set of vertices whose induced
subgraph is complete when there is no confusion in the
description. An independent set I in G is a vertex
subset of V (G) in which no two vertices are adjacent.
For a graph G, a sequence of vertices hv1; v2; :::; vri is
a path if (vi; vi+1) 2 E(G), 1 � i � r � 1.

For a tree T , a vertex with degree 1 is called a leaf
and a non-leaf vertex is called an internal vertex. A
tree T is called a caterpillar if V (T) can be partitioned
into two sets B and H such that vertices in B induce a
path and vertices in H induce an independent set. The
path is also called the backbone of this caterpillar. We
call a vertex in B (respectively, H) a backbone vertex
(respectively, hair vertex).

3. Block Graphs

In this section, we discuss MCISP on block graphs. For
any graph G, a vertex v is called a cut vertex if delet-
ing v increases the number of connected components.
A block is a maximal connected subgraph of G without
any cut vertex. A graph is called a block graph if and
only if its blocks are complete graphs and the intersec-
tion of two blocks is either empty or a cut vertex [7].
Note that trees form a subclass of block graphs. In the
following, G is treated as a connected block graph.

Suppose G has m blocks B1; B2; : : : ; Bm and n cut
vertices v1; v2; : : : ; vn. The block cut vertex struc-

ture TG is the tree with vertex set V (TG) =
fB1; B2; : : : ; Bm; v1; v2; : : : ; vng and edge set E(TG) =
f(Bi; vj) j 1 � i � m; 1 � j � n; vj 2 Big. Vertices Bi,
1 � i � m, are called block vertices and vertices vj ,
1 � j � n, are called cut vertices. For convenience, TG
is also called the block tree of G. For example, Figure 4
shows the block tree of the graph G depicted in Figure

9

14

1612

8

7 10

11

13

15 17
2

1

3

54

6

Figure 3. A block graph G with 17 vertices.

3. The block tree of a block graph can be constructed
in linear time by a depth �rst search [1]. For a block
vertex u in a block tree, let Bu denote its correspond-
ing block in G. Note that every leaf of a block tree is
a block vertex.

1B
2

1

3

54

3B
8

7

5

4B

9

10

118

11

15

7B

1411

13

6B

16

15

8B

15 179B

9

12

5B

6 5
2B

5 118

14 9B7B

6B

5B

4B3B

1B

2B 7

9

8B

(a) (b)

Figure 4. (a) The 9 blocks of G where a dark vertex
denotes a cut vertex. (b) The block tree of G.

For a block graph G, we assume that TG is a cater-
pillar. By the de�nition, TG can be partitioned
into two sets B and H . Without loss of gener-
ality, let B = hv10; v20; : : : ; vp0i be the backbone
of TG, where v10; v30; : : : ; vp0 are block vertices and
v20; v40; : : : ; v(p�1)0 are cut vertices. Note that every
vertex in H must be a block vertex. Therefore, it is
impossible to have a hair vertex who is adjacent to a
block vertex in B since TG is a caterpillar. Let di be the
number of the neighbors of vi0 in H for i 2 f1; : : : ; pg.
Let vi1; vi2; : : : ; vidi be the block vertices which are the
neighbors of vi0 in H . For a vertex u in G, we construct
an interval Iu as follows. If u is not a cut vertex and
belongs to block Bvij , let Iu = (lij ; lij + 0:5) where

lij =

8<
:

1 if i = 1
l(i�1)di�1

+ 1 if i 6= 1; j = 0
li(j�1) + 1 if i 6= 1; j > 0

Otherwise, u is a cut vertex. In this case, assume that
u = vi0 for some i. Then Iu = (l(i�1)0; l(i+1)0 + 0:5).

2

Let F = fIu j u 2 Gg. It is not hard to see that there
is a one-to-one correspondence between V (G) and F
such that u and w are adjacent if and only if their
corresponding intervals Iu and Iw intersect. That is, G
is a connected interval graph.

On the other hand, if TG is not a caterpillar, then G is
impossible to be an interval graph. Hence, we have the
following theorem.

Theorem 3.1 A block graph G is a connected interval

graph if and only if TG is a caterpillar.

According to Theorem 3.1, MCISP on a block graph G
is equivalent to the problem of �nding the maximum
subgraphG0 ofG such that TG0 is a caterpillar. In other
words, our problem can be reduced to the problem of
�nding a maximum caterpillar in TG such that every
hair vertex is a block vertex.

In the following, we treat TG as a rooted tree. A max-
imum caterpillar of a rooted block tree is also a maxi-
mum caterpillar of its underlying unrooted block tree.
For a rooted tree T and a vertex u, let T [u] denote
the subtree of T rooted at u. For convenience, we
use G[TG[u]] to denote the block graph with block tree
TG[u]. Therefore, if C is a caterpillar of TG, then G[C]
is the block graph with C being its block tree. For a
rooted caterpillar, we de�ne the following two types on
its backbone vertices u.

Type I: u has at most one child who is also a backbone
vertex.

Type II: u has exactly two children who are also back-
bone vertices.

Note that for a rooted caterpillar, there is at most one
backbone vertex which is Type II.

For a vertex u in TG, let type1(u) (respectively,
type2(u)) denote jV (G[C])j if there is a maximal cater-
pillar C in TG[u] with u being a Type I (respectively,
Type II) vertex. In the case that u cannot be a Type
II vertex, we let type2(u) = 0. Algorithm MCISB
(Figure 5) �rst computes (type1(u),type2(u)) for ev-
ery vertex u in TG from leaves to the root and then
�nds the maxv2V (TG)ftype1(v); type2(v)g which is the
number of vertices of the maximum connected interval
subgraph of G.

By the de�nitions, for a leaf u in TG, type1(u) = jBuj
and type2(u) = 0. Furthermore, for an internal vertex
u, if u has just one child, then type2(u) = 0. Oth-
erwise, we have the following lemmas for an internal
block vertex.

Algorithm: MCISB;
Input: A rooted block tree TG with root u;
Output: The number of vertices of the maximum connected
interval subgraph of G;

1. initially, every vertex v in TG, label(v) = (0; 0);

2. label(u) = compute block tree label(u);

3. �nd a vertex v such that either type1(v) or type2(v) is
maximum;

4. Output= maxftype1(v); type2(v)g;

Function: compute block tree label(vertex:u)

1. if u is a leaf then label(u) = (jBuj; 0);

2. else =� u is not a leaf �=

3. for all vertices vi; 1 � i � d, the d children of u, do

4. label(vi) = compute block tree label(vi);

5. next i
6. if u is a block vertex then
7. let (a1; b1); (a2 ; b2); :::; (ad; bd) be the labels of

v1; v2; :::; vd, with a1 � a2 � ::: � ad;

8. type1(u) = a1 � 1 + jBuj;

9. if d = 1 then type2(u) = 0

10. else type2(u) = a1 + a2 � 2 + jBuj;

11. else = � u is a cut vertex �=

12. let (a1; b1); (a2 ; b2); :::; (ad; bd) be the labels of
v1; v2; :::; vd, with a1 � jBv1 j � a2 � jBv2 j � ::: �
ad � jBvd j;

13. type1(u) = a1 +
P

i2f2;3;:::;dg
(jBvi j � 1);

14. if d = 1 then type2(u) = 0

15. else type2(u) = a1 + a2 � 1 +P
v2 N(u)nfv1;v2g

(jBvj � 1);

16. end if
17. label(u) = (type1(u); type2(u));

18. end if
19. return label(u);

Figure 5. Algorithm MCISB.

Lemma 3.1 If u is an internal block vertex of a block

tree TG, (a1; b1); (a2; b2); : : : ; (ad; bd) are the labels of

v1; v2; : : : ; vd, the d children of u, where a1 � a2 �
: : : � ad, then type1(u) = a1 � 1 + jBuj.

Proof. By the de�nition, type1(u) = jV (G[C])j where
C is the maximal caterpillar in TG[u] including u as a
Type I vertex. If u is a block vertex, then V (G[C]) con-
sists of two sets, V (G[Ci]) and V (Bu) for some i, where
G[Ci] is the maximum caterpillar, in TG[vi] including
vi as a Type I vertex. Therefore,

type1(u) = maxfjV (G[Ci]) [V (Bu)jg

= maxfjV (G[Ci])j � 1 + jV (Bu)jg

= maxfai � 1g+ jBuj

= a1 � 1 + jBuj

ut

Lemma 3.2 If u is an internal block vertex of a block

tree TG, (a1; b1); (a2; b2); : : : ; (ad; bd) are the labels of

3

v1; v2; : : : ; vd, the d children of u, where a1 � a2 �
: : : � ad, d > 1, then type2(u) = a1 + a2 � 2 + jBuj.

Proof. By the de�nition, type2(u) = jV (G[C])j where
C is the maximum caterpillar in TG[u] which includes
u as a Type II vertex. Because there are more than
one child, the backbone of C must have a subpath
hvi; u; vji, where vi and vj are two children of u. If u is a
block vertex, V (G[C]) consists of three sets, V (G[Ci]),
V (G[Cj]) and V (Bu) for some i and j, where Ci (re-
spectively, Cj) is the maximum caterpillar in TG[vi]
(respectively, TG[vj] including vi (respectively, vj) as a
Type I vertex. Therefore,

type2(u) = maxfjV (G[Ci]) [V (G[Cj]) [V (Bu)jg

= maxfai � 1 + aj � 1g+ jBuj

= a1 + a2 � 2 + jBuj

ut

Using a similar argument, we have the following lem-
mas for a cut vertex.

Lemma 3.3 If u is a cut vertex of a block tree

TG, (a1; b1); (a2; b2); : : : ; (ad; bd) are the labels of

v1; v2; : : : ; vd, the d children of u, where a1 � jBv1 j �
a2 � jBv2 j � � � � � ad � jBvd j, d > 1, then type1(u) =
a1 +

P
u2fv2;v3;:::;vdg

(jBuj � 1)

Lemma 3.4 If u is a cut vertex of a block tree

TG, (a1; b1); (a2; b2); : : : ; (ad; bd) are the labels of

v1; v2; : : : ; vd, the d children of u, where a1 � jBv1 j �
a2 � jBv2 j � � � � � ad � jBvd j, d > 1, then type2(u) =
a1 + a2 � 1 +

P
v2N(u)nfv1;v2g

(jBvj � 1).

An example for Algorithm MCISB is presented in Fig-
ure 6.

(5,0)

(7,8)
(7,0)

(10,15)
(10,0)

(11,0)

8

9

4B

3B(5,0)
5

1B

(2,0)
7 (2,0)

2B

(3,0)

6B

(6,9)
11 (4,0)

7B (3,4)
14(2,0)

8B

(2,0)

9B

5B

8

4B

3B
5

1B

6B

11

7B

14

8B 9B

(a) (b)

Figure 6. (a) An example of the labeling on a block
tree. (b) The maximum caterpillar.

Lemma 3.5 For a block graph G, Algorithm MCISB

correctly computes the number of vertices of the maxi-

mum connected interval subgraph of G in linear time.

Proof. The correctness of Algorithm MCISB is di-
rectly from Lemmas 3.1, 3.2, 3.3 and 3.4. It is not hard
to see that the Step 1 of MCISB takes O(n) time. Since
the label of each vertex u in TG can be computed ac-
cording to the labels of its children, it takes O(deg(u))
time. Therefore, totally, it takes O(n) time to compute
all the labels. That is, the Step 2 of MCISB takes O(n)
time. By using a standard search algorithm, Step 3 of
MCISB can be done in O(n) time. Hence, we have that
the time complexity of MCISB is O(n). ut

Once the labels of vertices in TG are computed, we
can use them to identify the maximum caterpillar C.
First, we �nd the vertex v with the maximum in
ftype1(v); type2(v)g. Then, by a backtracking traver-
sal on TG[v], we can identify C. Finally, G[C] can be
found. This procedure also runs in linear time. Con-
clusively, we have the following theorem.

Theorem 3.2 A maximum connected interval sub-

graph of a block graph can be computed in linear time.

4. Chain Graphs

In this section, we consider MCISP on chain graphs.
Let G = (X;Y;E) be a connected bipartite graph with
X = fx1; x2; : : : ; xpg and Y = fy1; y2; : : : ; yqg. The
graph G is called a chain graph if and only if the neigh-
borhoods of the vertices of X form a chain, i.e., the
neighborhoods of the vertices of X can be ordered such
that N(x1) � N(x2) � � � � � N(xp). It is not hard to
see that the neighborhoods of vertices in Y also forms
a chain (N(y1) � N(y2) � � � � � N(yq)) [17]. For ex-
ample, see Figure 7. By de�nition, N(x1) = Y and
N(yq) = X .

1x 2x 3x 4x

4y3y2y 5y1y

Figure 7. A chain graph.

If a chain graph has at most three vertices, the maxi-
mum connected interval subgraph is this chain graph.
In the following, we only consider the connected chain
graphs with more than three vertices.

Theorem 4.1 A chain graph G is a connected interval

graph if and only if G is a caterpillar with at most two

internal vertices.

4

Proof. First, it is not hard to see that if G is not a
caterpillar, then G is not an interval graph. Therefore,
we consider that G is a caterpillar. If G = (X;Y;E)
has at most two internal vertices, it is also not hard to
check that G is an interval graph. If G contains more
than two internal vertices, then at least two vertices
appear in one partite. Without loss of generality, we
assume that xi and xj are internal vertices in X and
N(xi) � N(xj) and fyk; ylg � N(xj). Then the ver-
tices fxi; yk; xj ; ylg forms a 4-cycle. This contradicts
that G is a caterpillar. Similarly, if at least two internal
vertices appear in Y , then we also get a contradiction.
Hence, this lemma holds. ut

According to Theorem 4.1, our problem on a chain
graph G becomes to the problem of �nding the maxi-
mum caterpillar ofG with at most two internal vertices.

Lemma 4.1 For a chain graph G = (X;Y;E) with

X = fx1; x2; : : : ; xpg and Y = fy1; y2; : : : ; yqg, there
exists a maximum connected interval subgraph which

contains the edge (x1; yq).

Proof. Let G1 = (X1; Y1; E1) be a maximum con-
nected interval subgraph of G. By Theorem 4.1, G1

is a caterpillar with at most two internal vertices. We
have the following cases.

Case 1: G1 has two internal vertices. Without loss
of generality, let these two vertices be xi and yj for
some i and j. If i 6= 1, then let G2 = (X2; Y2; E2)
where X2 = (X1nfxig) [fx1g, Y2 = Y1 and E2 =
f(x; y) j x 2 X2; y 2 Y2; (x; y) 2 Eg. It is not hard to
check that G2 is a caterpillar and jV (G1)j = jV (G2)j.
Therefore, G2 is also a solution of MCISP. Similarly, if
j 6= q, then we can obtain a graph G3 = (X3; Y3; E3)
from G2 with X3 = X2, Y3 = (Y2nfyjg) [fyqg and
E3 = f(x; y) j x 2 X3; y 2 Y3; (x; y) 2 Eg. It can be
checked that G3 is a caterpillar and jV (G3)j = jV (G2)j.
That is, G3 is also a solution of MCISP with desired
condition.

Case 2: G1 has one internal vertex. Without loss of
generality, suppose that xi is the internal vertex for
some i. Then X1 = fxig and Y1 = Y . Let G2 =
(fx1g; Y; f(x1; y) j y 2 Y g). Since N(xi) � N(x1),
jV (G2)j � jV (G1)j. That is, G2 is also a solution of
MCISP which contains the edge (x1; yq).

Note that it is impossible for G1 to have no internal
vertex since jV (G)j = p + q > 3. Hence, this lemma
holds. ut

A solution of the graph depicted in Figure 7 is pre-
sented in Figure 8. By using Lemma 4.1, we have an
algorithm to solve the MCISP on chain graphs (Figure
9).

Lemma 4.2 For a chain graph G = (X;Y;E) with

1x 3x 4x

3y2y 5y1y

Figure 8. A maximum connected interval subgraph of
the chain graph depicted in Figure 7.

Algorithm: MCISC;
Input: a chain graph G = (X; Y;E) with X = fx1; x2; : : : ; xpg
and Y = fy1; : : : ; yqg;
Output: a maximum connected interval subgraph of G;

1. add a dummy vertex xp+1 in X and let N(xp+1) = fyqg;

2. for i = 2 to p+ 1

3. wi = (i� 2) + (jN(xi)j � 1);

4. next i
5. let wk = min2�i�p+1fwig;

6. if k > 2 then S = fx2; :::; xk�1g [(N(xk)nfyqg)

7. else S = N(x2)nfyqg;

8. Output G[V (G) n S];

Figure 9. Algorithm MCISC.

X = fx1; x2; : : : ; xpg and Y = fy1; y2; : : : ; yqg, the

number of vertices in a maximum connected interval

subgraph of G is p + q + 3 � min2�i�p+1fi+ jN(xi)jg
where xp+1 is a dummy vertex and N(xp+1) = fyqg.

Proof. Let �G = (�X; �Y ; �E) be a maximum connected
interval subgraph of G satisfying Lemma 4.1. That is,
(x1; yq) 2 �E. Let �X = fx1; x�1 ; x�2 ; : : : ; x�rg where

1 < �1 < � � � < �r � p. Let X̂ = �Xnfx1g and Ŷ =
�Y nfyqg. Because �G is an interval graph, there is no

edge between X̂ and Ŷ . Therefore, N(x�i) \ Ŷ = ;,
for i 2 f1; : : : ; rg. Since N(x�1) � N(x�2) � � � � �
N(x�r), we only consider N(x�1) \ Ŷ = ;. We have
the following equations:

Ŷ � (Y nN(x�1))) jŶ j � q � jN(x�1)j
1 < �1 < � � � < �r � p) �1 + r � 1 � p

jV (�G)j = jX̂ [Ŷ [fx1; yqgj

= jX̂ j+ jŶ j+ 2
� r + q � jN(x�1)j+ 2
� p� �1 + 1 + q � jN(x�1)j+ 2
� p+ q + 3� �1 � jN(x�1)j

It is not hard to see that the maximum occurs in �1 +
jN(x�1)j = min2�i�p+1fi+ jN(xi))jg. This completes
our proof. ut

The correctness of Algorithm MCISC is due to Lemma

5

4.2. It is not hard to see that the time complexity of
MCISC is linear. Conclusively, we have the following
theorem.

Theorem 4.2 A maximum connected interval sub-

graph of a chain graph can be computed in linear time.

5. Concluding Remarks

In this paper, we have proposed linear-time algorithms
for the maximum connected interval subgraph problem
on block graphs and chain graphs.

It has been shown that both the maximum interval
subgraph problem and the maximum connected inter-
val subgraph problem are NP-hard and have no con-
stant ratio approximation. For the maximum interval
subgraph problem, Yannakakis showed that it remains
NP-hard on bipartite graphs [17]. Therefore, it is inter-
esting to decide whether the maximum connected inter-
val subgraph problem on bipartite graphs is NP-hard
or not. Besides, it is also interesting to study the max-
imum connected interval subgraph problem on other
special graphs such as permutation graphs and chordal
graphs (or even the split graphs). On the other hand,
it is still unknown that the maximum interval subgraph
problem is solvable on block graphs and chain graphs.

REFERENCES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, M.A., 1974.

2. H.L. Bodlaender. A partial k-arboretum of graphs
with bounded treewidth. Theoretical Computer

Science, 209:1{45, 1998.
3. H.L. Bodlaender and T. Kloks. EÆcient and

constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms,
21:358{402, 1996.

4. A. Brandstadt, V.B. Le, and J.P. Spinrad. Craph

Classes: A Survey. SIAM, 1999.
5. P.W. Goldberg, M.C. Golumbic, H. Kaplan, and

R. Shamir. Four strikes against physical mapping
of dna. Journal of Computational Biology, 2:139{
152, 1995.

6. M.C. Golumbic. Algorithmic Graph Theory and

Perfect Graphs. Academic Press, New York, 1980.
7. F. Harary. A characterization of block graphs.

Canadian Mathematic Bull, 6:1{6, 1982.
8. H. Kaplan, R. Shamir, and R.E. Tarjan. Tractabil-

ity of parameterized completion problems on
chordal, strongly chordal, and proper interval
graphs. SIAM Journal on Computing, 28:1906{
1922, 1999.

9. R.M. Karp. Mapping the genome: some combina-
torial problems arising in molecular biology. 25th

Ann. Sympos. on Theory and Computing, pages
278{285, 1993.

10. L.M. Kirousis and C.H. Papadimitriou. inter-
val graph and searching. Discrete Mathematics,
55:181{184, 1985.

11. M.S. Krishnamoorthy and N. Deo. Node-deletion
NP-complete problems. SIAM Journal on Com-

puting, 8:619{625, 1979.
12. J.M. Lewis and M. Yannakakis. The node-deletion

problem for hereditary properties is NP-complete.
Journal of Computer and System Sciences, 20:219{
230, 1980.

13. C. Lund and M. Yannakakis. The approximation
of maximum subgraph problems. Proc. 20th Inter-

national Colloquium on Automata, Languages and

Programming, pages 40{51, 1993.
14. I. Pe'er and R. Shamir. Realizing interval graphs

with side and distance constraints. SIAM Journal

on Discrete Mathematics, 10:662{687, 1997.
15. S.L. Peng, M.T. Ko, C.W. Ho, T. s. Hsu, and

C.Y. Tang. Graph searching on some subclasses
of chordal graphs. Algorithmica, 27:395{426, 2000.

16. M. Yannakakis. The e�ect of a connectivity re-
quirement on the complexity of maximum subgraph
problems. Journal of the Association for Comput-

ing Machinery, 26:618{630, 1979.
17. M. Yannakakis. Node-deletion problems on bipar-

tite graphs. SIAM Journal on Computing, 10:310{
327, 1981.

6

