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Abstract

In this paper we show that the (efficient) Y -domination
problem is fixed-parameter tractable when restricted to
planar graphs. Furthermore, we show that the efficient
domination problem, a special case of the efficient Y -
domination problem, is fixed-parameter tractable when
restricted to t-degenerate graphs with fixed t.

1 Introduction

Let G = (V,E) be a graph. For a given a set Y of
integers a Y -assignment is a function f : V → Y such
that every closed neighborhood sum is at least one (i.e.,∑

y∈N [x] f(y) ≥ 1 for every vertex x ∈ V , where N [x]
is the closed neighborhood of x). A Y -assignment is
called efficient if every closed neighborhood sum is ex-
actly one.
Well known, and most studied examples of Y -
domination problems are the efficient domination
assignment (Y = {0, 1}), the minus assignment
(Y = {−1, 0,+1}) and the signed assignment (Y =
{−1,+1}) problems.

An algorithm for a fixed-parameter problem (I, k),
where I is an instance and k is the parameter, is uni-
formly polynomial if it runs in time O(f(k)|I|c), where
|I| is the size of I, for an arbitrary function f(k) and a
constant c independent of k. A fixed-parameter prob-
lem is fixed-parameter tractable if it admits a uniformly
polynomial algorithm.
As the parameter for the problems we consider in this
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paper, we chose the value, i.e., the number of vertices
with a positive number assigned to it. (We chose this
parameter quite arbitrarily and for many cases it seems
a natural choice. For many cases we could just as well
choose the weight as the parameter, i.e., the sum over
the vertices of all assigned values.)
We mention some definitions for the efficient domina-
tion, efficient minus domination and efficient signed
domination in the next section as examples of Y -
dominating problems. In this introduction we mention
some of the latest results on the complexity of these
special cases.

First of all, the efficient domination problem is W[1]-
hard (and in W[2]) as was shown in [10]. In this book,
the problem is referred to as the perfect code problem,
and the authors express their believe that the hardness
of the problem could be ”between” W[1] and W[2]. At
present, this is the only hardness result of this type we
are aware of for the three mentioned special cases.

We turn to the NP-completeness results of the three
variants for special graph classes, since this issue was
well-studied over the last few years. We mention some
results.
It is known that the efficient dominating set prob-
lem is NP-complete, even when restricted to chordal
graphs [20], chordal bipartite graphs [16], planar bipar-
tite graphs [16], and planar graphs of maximum degree
3 [13]. A polynomial algorithm for trees can be found
in [2].
Notice, that the efficient domination problem is the
same as the independent perfect domination problem.
An O(n3) algorithm for AT-free graphs can be found
in [6] (also for the the weighted version). (See also [18]).



In [8] an algorithm that runs in O(n2) for the sub-
class of cocomparability graphs (which are properly
contained in AT-free graphs) can be found.

For complexity results on the minus domination prob-
lem, (i.e., Y = {−1, 0,+1}) we refer to [11]. For exam-
ple, in this paper it is shown that the minus domination
problem is NP-complete for chordal graphs and chordal
bipartite graphs and a linear time algorithm is given for
the minimum minus dominating function on trees.
In [17] it is shown that the question whether there
exists an efficient minus domination problem is NP-
complete, even when restricted to chordal graphs,
chordal bipartite graphs, planar bipartite graphs, and
planar graphs with maximum degree 4. The method
they use to show NP-completeness is very simple and
was used earlier in the paper [11] to show that the
minus domination problem is NP-complete even when
restricted to bipartite graphs and chordal graphs by a
transformation from the dominating set problem. (The
idea used in [17] is to attach a P3 to each vertex of
the graph and transform the problem to the efficient
domination problem. The same method was used also
in [11]) In their paper [17] the authors also show that,
for trees this problem coincides with the ”ordinary”
efficient domination problem.

It is known that the efficient signed domination (i.e.,
Y = {−1,+1}) and the efficient minus domination
problem can be solved in linear time for special cases
of interval graphs (see [17]). In this paper linear time
algorithms are given for these special classes of inter-
val graphs (called ”chain interval graphs” defined as
those interval graphs for which every pair of minimal
separators have an empty intersection).

As far as we know, the complexity of the efficient mi-
nus domination, the minus domination and the efficient
signed domination problem are still open for AT-free
graphs, even for interval graphs.

In Section 4 of this paper we show a general method
that shows that the FP version of the efficient domina-
tion problem can also be solved for t-degenerate graphs
for fixed values of t. This class of graphs is very general
and contains for example bounded treewidth graphs,
chordal graphs with bounded clique number, graphs
with bounded bandwidth, cutwidth etc., general pla-
nar graphs, and many other classes.

We now turn to some remarks on the methods we use
to solve the Y -domination problem for planar graphs.

Recently it was shown in [1], that if the domination
number of a planar graph is at most k, then the
treewidth can be bounded by δ

√
k for some reasonably

small constant δ (for a detailed proof see [1]).
This result was used to improve a result by Downey and
Fellows [10], who showed that the domination num-
ber for planar graphs is in FPT and can be solved in
O(11kn) time.
The relation between planar domination and treewidth
as expressed above was used to obtain a new uniformly
polynomial time algorithm for the planar dominating
set problem which runs in time O(c

√
kn) for some rea-

sonable constant c [1] (for present best bounds on c we
refer to [1]).
The same method (as will be described in [7]) gives a
somewhat more direct method (at least to describe it)
with a similar (small) worst case constant d, but runs
in time O(d

√
kn2). This method uses the result of [19]

which gives an algorithm for the branchwidth of a
planar graph in O(n2) time. At the moment it is not
clear which of these two algorithms could be of more
practical use (if any of the two). Clearly, both algo-
rithms are not hard to implement and both have as
an output an approximate tree decomposition which is
then used to solve the problem. The advantage of the
latter one is that it gives a treewidth value which is
sure to be close to the optimal one whereas the first al-
gorithm gives only an approximate tree decomposition
of which the approximation factor is not guaranteed.

In this paper we show that this result can be used also
to obtain ”fast” FP algorithms for the Y -dominating
problem on planar graphs by simply applying the result
stated above.

2 Preliminaries

For detailed information on fixed parameter complexity
we refer to the recent work of Downey and Fellows [10].
Readers who are unfamiliar with treewidth can have a
look in [15]. For more information on special classes of
graphs and problems not defined here, we refer to [5].
In this section we define some of the problems that
have been mostly studied as special cases of the Y -
domination problem that were mentioned in the in-
troduction.
But we start with the most important results for the
problem in it’s full generality.
For a graph G = (V,E) and a vertex x ∈ V , we write
N(x) for the neighborhood of x and N [x] for its closed
neighborhood , i.e., N [x] = N(x) ∪ {x}. By the way,
in the rest of this paper, for convenience we turn to
the modern abbreviated style of writing this as N [x] =
N(x) + x. We use the same notation for sets, and also
we use A− x (if A is some set) for example instead of
the more cumbersome notation A \ {x}.



If f is an assignment of integers to the vertices of a
graph G = (V,E) and A ⊆ V then we use the notation
f(A) =

∑
x∈A f(x).

Definition 1 Let Y be a finite set of integers. The
Y -domination problem asks for an assignment f :
V → Y set Y of integers such that for each vertex
x, f(N [x]) ≥ 1.
The efficient Y -domination problem asks for such an
assignment with f(N [x]) = 1 for all vertices x ∈ V .

These problems were first described investigated in the
paper by [2]. We mention here the most important
results of this paper.
Two Y -dominating functions are equivalent if they
have the same closed neighborhood sum at every ver-
tex. D. W. Bange in his paper proved that G has an
efficient Y -dominating function if and only if all equiv-
alent Y -dominating functions have the same weight.
Furthermore, in this paper it is shown that if the closed
neighborhood matrix of G is invertible then G has an
efficient Y -dominating function for some set Y . This is
quite obvious, but unfortunately, the solution is in most
cases not integer. Special cases that would be interest-
ing to look at also from a point of view in coding the-
ory, are certain strongly regular graphs (see, e.g., [9]).
An analysis of the spectrum of the closed neighborhood
matrices should give some insight which of these graphs
are worth some detailed analysis. (For the moment we
only mention that strongly regular graphs for which
the ordinary adjacency matrix has smallest eigenvalue
at least -2 were characterized, and they all seem to
have efficient dominating sets.) We don’t go into cases
where the set Y also has values which are real or frac-
tional numbers. For some results of this type (i.e., real
numbers) the reader is referred to [14].
The problem of finding Y -assignments is of theoretical
interest at least and for various sets Y of great impor-
tance for many practical and important applications,
as was pointed out for example in [2, 17, 20] and in
many other papers.

The most researched cases of Y -assignments are listed
in the following definition.

• An efficient assignment is a {0, 1}-assignment f
of the vertices such that for every vertex x ∈ V ,
f(|N [x]) = 1.

• The minus domination problem asks for an
{0,−1,+1}-assignment of the vertices of the
graphs such that f(N [x]) ≥ 1 for every vertex x.

• The efficient minus domination problem asks for
an {0,+1,−1}-assignment f to the vertices such
that f(N [x]) = 1 for every vertex x.

• The efficient signed domination problem asks for
an {+1,−1}-assignment to all vertices such that
f(N [x]) = 1 for every vertex x.

Notice that not every graph has an efficient assignment.
A square may serve as a trivial example of this.
The parameterized version of these type of problems
we consider in this paper asks for an assignment with
value at most k, where k is the parameter of the FP
problem.

Definition 2 If Y is a set of integers then we define
the value of the Y -assignment f as || {x | f(x) >
0} ||. The weight of the Y -assignment is defined as∑

x∈V f(x).

Clearly, for many cases there is a close relation between
the weight and value of assignments. As a trivial exam-
ple we mention that these values coincide for efficient
and efficient signed domination.

Consider an Y -assignment f of a graph G = (V,E) and
let D = {x | f(x) > 0}. Clearly, by definition, D is a
dominating set, since every vertex must have at least
one vertex with a positive number assigned to it in it’s
closed neighborhood.
Unfortunately dominating set is W [2]-hard, (see,
e.g., [10]) and hence it is not expected that this prob-
lem has a fixed parameter solution. However, when
restricted to planar graphs, the problem is in FPT.
A proof of this appears for example in [10], and the
result was recently improved by [1], using graph sepa-
rator techniques (for more information and results on
graph separators, see the forthcoming book [7]).
The most important tool we use is the following the-
orem, which appeared in [1]. The technique used to
prove it will appear in a more general setting in [7].

Theorem 3 If a planar graph has a dominating set of
size at most k, then the treewidth is bounded by δ

√
k,

with some small constant δ. A constructive algorithm
finding an approximate tree decomposition with width
δ
√

k can be given in linear time.

At the moment the constant δ is already quite small
(smaller than 50), but work on it is under construction.
The proof of this theorem is based on methods that
will appear in [7], and a preliminary full proof can be
found in [1].

3 (Efficient) Y -domination on planar

graphs

In this section we show a uniformly polynomial time
algorithm for the efficient Y -assignment on planar
graphs.



Let k be the parameter, i.e., we try to find an effi-
cient Y -assignment f with value at most k in a planar
graph, (i.e., the number of vertices which are assigned
a positive value is at most k).
We mentioned already that if f is an Y -efficient assign-
ment with value at most k, then clearly it also must
have a dominating set with size at most k. Hence we
can apply Theorem 3 to find a tree decomposition with
width at most ` = δ

√
k for some reasonable constant

δ.
The following, somewhat surprising result shows that
we don’t have to worry about the actual weight of an
efficient or efficient minus or efficient signed dominating
set. The theorem below is due to [2] (and in fact a more
general result was proved in this paper; we state it in
this way, since it suffices for our purposes here).

Theorem 4 A graph G = (V,E) has an efficient Y -
dominating assignment if and only if all equivalent Y -
dominating functions have the same weight.

Hence if our algorithm finds an efficient Y -dominating
assignment then it’s weight is fixed.

Our algorithm first computes an approximate tree de-
composition of width at most c

√
k (see, e.g., [1, 7]).

For practical aplications we recommend to optimize the
treewidth from this approximation as much as possi-
ble with ad-hoc methods, since this could improve the
time bound of our algorithm considerably. At the mo-
ment we don’t have a general method to improve the
treewidth given by Theorem 3 but we feel that the ex-
act treewidth could be considerably smaller than the
approximate one given above. (Maybe for particular
cases of the Y -domination problem even some definite
improvements on the treewidth are possible.)

Let (T,S) be a tree decomposition with bounded width
` (where ` = c

√
k) as given output of the approxima-

tion algorithm mentioned in Theorem 3. (For the cur-
rent best value of the constant c, we refer to [1].) Here
S is a set of subsets Si, such that there is a one-to-one
correspondents with the vertices in the tree and the
subsets of S.
It is easy to see, (see, e.g., [15]) that we may assume
that a rooted tree decomposition can be made binary
and that the so-called ”bags” Si can be made of four
different types.

• An introduce node i; The node i in the tree has
only one child and the corresponding bag Si has
a ”new” vertex x which does not appear in the
bag corresponding with the child j of i. The rest
of the bag Si − x is exactly the same as the bag
corresponding with the bag Sj , i.e., Si = Sj + x.

• A forget node i; The node i in the tree has only
one child j and its bag Si is exactly the same as
the bag of its child except for one node that is
missing; i.e., Si = Sj − x.

• A join node i has two children p and q. The three
corresponding bags are exactly the same.

• A leaf node i; which is simply a leaf of the rooted
tree T . (If the root of T is also a pendant vertex,
it is not considered as a leaf.)

We use this tree decomposition to find an efficient dom-
inating set.

Definition 5 A Y -assignment fi to the vertices of a
bag Si is called feasible for a node i in the tree, if there
exists an extension f of fi to all vertices from all bags
corresponding to the nodes in the subtree of i such that
for every vertex x of a bag of a node in the subtree,
which is not in Si, |f(N [x])| = 1.

We use dynamic programming and work our way up in
the tree and keep track of all possible feasible assign-
ments with their respective values. Let us start with
the leaves. For a leaf node i we simply compute a table
of all possible assignments of the vertices in Si with
elements from Y and keep track of it’s value.

Now consider a join node i and let p and q be its chil-
dren. An assignemt at i is feasible if and only if it is
feasible for both it’s children p and q. The value of
a feasible assignment at i is simply the weight of the
assignments of the assignments at p and q, not double
counting the values at i of course.

Consider an introduce node i. Let x be the vertex be-
ing introduced. Consider all possible assignments of Si

which are feasible when restricted to Si and which are
feasible when restricted to the child j of i. If the as-
signment remains feasible within Si then this is added
to the table of feasible assignments of i. If x is as-
signed a positive value, then the value of this feasible
assignment is updated.

Finally consider a forget node i and let x be the ver-
tex which disappears from the child. Because we want
the final set to be efficient, we now must insist that
f(N [x]) = 1 for a feasible assignment f , since this value
cannot be changed when we go further up in the tree.
If this does not hold, the feasible assignment is not put
in the table of feasible assignments at node i (otherwise
it is again feasible for node i).

Our algorithm comes to an end when we reach the root
r of the subtree. At the root, we only have to compute
the feasible assignments, as described above, and make
a final check if the value is at most k.



Theorem 6 There exists an algorithm which runs in
time O(|Y |`n) to check if a planar graph G has an effi-
cient Y -assignment of value at most k. Here ` = c

√
k

for some small constant k.

Remark 7 In this section we have given the exact
description of the algorithm for the efficient Y -
domination problem, but it should be immediately
clear that only slight modifications are necessary to de-
scribe the algorithm for ”ordinary” y-domination.

4 Efficient domination of t-degenerate

graphs

In this section we present a uniformly polynomial-time
algorithm for solving the fixed parameter version of the
efficient domination problem on t-degenerate graphs (t
fixed).

Definition 8 A graph G is t-degenerate if there is a
linear ordering L of its vertices v1, v2, · · · , vn such that
each vi, 1 ≤ i ≤ n, is adjacent to at most t vertices
that succeed vi in L.

Equivalently, G is t-degenerate if every induced sub-
graph has a vertex of degree at most t. The class of
t-degenerate graphs contains many well-known classes
of graphs; for example, graphs embeddable on some
fixed surface, graphs of bounded treewidth, and graphs
that are H-minor free. For some recent results on t-
degenerate graphs, see [4].

The Efficient Domination k-Set problem asks
whether an input graph G contains an efficient domi-
nation set with k vertices. Recall that for any vertex
v of G, an efficient dominating set S contains exactly
one vertex in the closed neighborhood NG[v]. Further-
more, if a vertex v is in S then v is the only vertex of
S inside the closed neighborhood NG[NG[v]] of NG[v].

We now give our algorithm. First, we compute an or-
dering L = v1, v2, . . . , vn of the vertices of G that sat-
isfies the definition of a t-degenerate graph, which can
be done easily in linear time. Then we build a search
tree to search for an efficient dominating set S of size
k according to this ordering.

The root of the search tree is labeled by (∗, G). Each
of the remaining nodes in the search tree is labeled by
a pair (v,G), where v is the vertex selected to be in S
and G is the graph in which we search for the remaining
vertices of S.

As we mentioned, for a vertex vi, exactly one of the
vertices in NG[vi] belongs to S, and once a vertex vi is

in S no other vertices of NG[NG[v]] are in S. Therefore
we label the nodes of the search tree as follows: The
children of the root are labeled by (vi, Gi), where vi ∈
NG[v1] and Gi = G−NG[NG[v1]]. For a node labeled
by (vi, Gi), we pick the first vertex u of Gi in the linear
ordering L, and label its children by (vj , Gj), where
vj ∈ NGi

[u] and Gj = G−NGi
[NGi

[u]].

For each root-to-leaf path in the search tree, the set
of vertices in the labels is a candidate for an efficient
dominating set of size k. Therefore we need only build
the search tree up to depth k. Once we build the search
tree, we check for each such candidate if it is indeed an
efficient dominating set of G.

Since each node of the search tree has at most t +
1 children, each node takes O(tn) time, and checking
whether a candidate is an efficient dominating set takes
O(tn) time, the total running time of the algorithm is
O((t + 1)k+1n).

Theorem 9 The Efficient Domination k-Set
problem can be solved in O((t + 1)k+1n) time for t-
degenerate graphs.

5 Concluding remarks

Notice that a vast amount of problems remain open.
We only mention some of the most obvious ones.
As far as we know no complexity results are known for
the efficient minus and efficient signed domina-
tion problem for (classes of) AT-free graphs. It seems
not likely that the method of [6, 18] can be used also to
solve these problems in polynomial time, unless we re-
quire additionally that the separator sets have bounded
size.

As mentioned, all equivalent Y -dominating functions
have the same weight if and only if the graph has an
efficient Y -dominating function (see [2]). It would be
interesting to know if a similar statement can be made
for the value of efficient Y -dominating functions.

A final interesting open problem is the complexity of
the signed domination problem on planar graphs.
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