
A Variation of Minimum Latency Problem

Yung-Hui Huang� Yaw-Ling Liny Chuan-Yi Tangz

Abstract

In this paper we study the variation of the minimum

latency problem(MLP) [2]. The MLP is to �nd a walk
tour on the graph G(V;E) with a distance matrix di;j .
Where di;j indicate the distance between vi and vj . Let
`(vi) is the latency length of vi, de�ned to be the dis-
tance traveled before �rst visiting vi. The minimum la-
tency tour is to minimize

Pn

i=1 `(vi). In some message
broadcast and scheduling problem [8] the vertex also
has latency time and weight. Those problem need to
extend the objective function of the minimum latency
tour as

Pn

i=1 `(vi)w(vi). The de�nition is equivalent
to the MLP with no edge distance but vertex latency
time and vertex weight. We give an linear algorithm
for the unweighted full k-ary tree or k-path graphs,
and O(n log n) time for general tree graphs. The time
complexity in trees is the same as Adolphson's result;
however, the algorithm given here is not only simpler,
easier to understand, but also more
exible and thus
can be easily extended to other classes of graphs.

Keywords: minimum latency problem, linear ordering,
broadcast network, trees, k-path graphs

1 Introduction

Consider a worker (a processor,or a repairman) facing
a set of jobs with precedence and the latency time to
initialize before job start(latency of edges), each of jobs
is a vertex with latency time and weight(latency and
weight of vertices). The worker must schedule its visits
so as to minimize the total latency time the jobs wait
before being complete. (We assume that the walk back
latency of completed jobs are zero.) This is a simple
and natural combinatorial optimization problem faced
in realistic world, and may be formalized as follows.

In mobile environment, users retrieve information
by portable devices. Since the mobile devices usually
have limited power, the issue of minimization the data
access latency is important. Periodic broadcasts of fre-
quently requested data can thus reduce the traÆcs in

�Department of Computer Science, National Tsing-Hua Uni-

versity, Taiwan, R.O.C. E-mail: yeong@cs.nthu.edu.tw.
yDepartment of Computer Science and Information Manage-

ment. Providence University. E-Mail: yllin@pu.edu.tw. This

work was partially supported by NSC 89-2213-E-126-003.
zDepartment of Computer Science, National Tsing-Hua Uni-

versity, Taiwan, R.O.C. E-mail: cytang@cs.nthu.edu.tw.

the air and save the powers of the mobile devices. How-
ever, users need to wait for the required data to appear
on the broadcast channel. It follows that the more
time they wait then the more power devices have to
consume. Finding the minimum latency tour can thus
help us in solving this kind of problem.

Several variations of this problem was focused on
index and data allocation in a single broadcast chan-
nel using conventional techniques [4, 5]. In general
trees, this problem was solved in O(n log n) time [1].
The issue of multiple broadcast channels is addressed
in [7], and the problem becomes NP-hard [6]. Further,
there are discussion using prune strategies for multi-
ple broadcast channel and heuristic answers form single
broadcast channel [6].

Given a directed acyclic graph G with a set of job
vertices v1 : : : vn with weight w(vi), latency time t(vi)
and latency edges e1 : : : em with distance d(ej). Let T
be a tour which completes the job vertices in prece-
dence order. If the vertex vi wants to be completed, at
least one ancestor of vi must be �nished before. Fur-
ther, because the walk back cost is zero, T does not
need to include the walk back edge and job vertex al-
ready been �nished. Let the latency `(vi) of a vertex
vi be the sum of the edge and vertex latency time of
the tour from the staring point to vi. We can de�ne
the total latency L(T) =

Pn

i=1 `(vi)w(vi). We say that
a tour Ti is the minimum latency tour if L(Ti) has the
smallest value among all possible tours of G.

In this paper, we investigate tree graphs, tree, full k-
ary trees and k-path graphs. We propose a polynomial
time algorithm for general trees to get the optimal solu-
tion in O(n logn) using a greedy manner, a linear time
DFS-like algorithm for full k-ary tree and a O(n log k)
time algorithm for k-path graphs. Figure 1 gives an
example of the dags and its minimum latency tour.

2 Basic Notations and Proper-

ties

Intuitively, we would want to place the heaviest vertex
at the front of visited tour as early as possible. How-
ever, at least one ancestors of the heaviest vertex must
be placed before, and it might not be wise exploring
these vertices too early. This simple observation sug-
gests that we would like to explore the properties of
the tree graphs, for short, in a bottom-up manner.

Without loss of generality, we can add the weight
w(v) and latency time t(v) of vertex v into all edges

1

BA

C D

E

GF

2. Work Time of vertices t(vi) is zero.
3. All edge delay d(ej) is 1

Result:
T = {A,C,E,G,F,B,D}
L(T) = 1*30+2*45+3*42+4*101+5*65+6*0+7*50

= 1325

1. Weight of vertices

A B C D E F G

w(vi) 30 0 45 50 42 65 101

Figure 1: The minimum latency tour of dags

which incident to v. Let w(e) = w(v) and d(e) = d(e)+
t(v).

Given a tree T , we say a subtour Tk = hei; : : : ; eji
is inseparable if and only if there exists a minimum
latency tour on T containing this subsequence Tk con-
tiguously. That is, Tk � T , and all adjacent edges of Tk
are also adjacent to each other in T . Let d(Tk) denote
the sum of distances d(e)'s for each edge e in Tk, and
w(Tk) donate the sum of weights w(e)'s. Further, we

de�ne the ratio cost of TK by c(Tk) =
w(Tk)
d(Tk)

. By de�-

nition, each edge e of G is initially inseparable subtour

and have c(e) = w(e)
d(e) .

The idea here is to iteratively glue the child and
parent vertices and �nd its minimum latency tour for
the new sub-graph. Taking advantage of the nice prop-
erties of trees, we can glue the inseparable subtour that
has the maximum ratio cost with its parent such that
edges of the trees are grouped into a new inseparable
subtour. If an inseparable subtour T 0k is the root edge
and has maximum ratio cost then T 0k can be output
directly.

From above idea, we found that there are some in-
teresting properties of trees. Section 3 introduce the
O(n log n) algorithm for tree graph, and provides some
properties for trees. Those properties are also used in
Section 4 to provide a DFS-like algorithm for the spe-
cial case "full k-ary tree". The algorithm in Section 4
is O(n). After the tree and its special case, we discuss
another case called "k-path graphs" in Section 5.

3 Algorithm for General Trees

In this section we prove some property of general tree
graphics. According to those properties an O(n logn)
time algorithm for tree naturally evolves.The idea here

is iterative select a maximum ratio cost edge and shrink-
ing with is parent or output the selected subtour until
all vertex is be output; totally it will spend O(n) time
to obtain a Fibonacci heap. Second, we uses O(log n)
time to extract maximum and decrease the ratio cost
of the parent edge exactly n times. The output result
is then the minimum latency tour.

First we show when to glue two inseparable sub-
tours into one:

Lemma 3.1 Let a and b be two inseparable subtours

of G, and a is the parent of b. Further, b has the largest

ratio cost among all others. It follows that ab is insep-

arable subtour.

Proof. By contradiction, assume that there is a nonempty
subsequence � of edges of the trees such that L(a�b) <
minfL(�ab); L(ab�)g. First we assume c(�) < c(ab).
Note that d(a); d(b) > 0 and c(a) � c(b), we have

c(�) < c(ab)

<
w(a) + w(b)

d(a) + d(b)

<
d(a)c(a) + d(b)c(b)

d(a) + d(b)

�
d(a)c(b) + d(b)c(b)

d(a) + d(b)

= c(b) (1)

then

L(ab�)� L(a�b)

= L(b�)� L(�b)

= d(b)[c(�)d(�)] � d(�)[c(b)d(b)]

= d(b)d(�)[c(�) � c(b)]

By equation (1), it follows that L(ab�) < L(a�b), con-
tradicting the assumption.

Similarly, for the other case that c(�) � c(ab), we
get that L(�ab) < L(a�b), which also contradicts the
assumption. �

So, if c(a) � c(b) then we can shrink a and b into
inseparable subtour ab. Based on Lemma 3.1, we claim
that if an inseparable subtour has the maximum ratio
cost among all others. It can glue with its parent.

Lemma 3.2 If T 0k is inseparable subtour with maxi-

mum ratio cost among all others, It can glue with its

parent or if T 0k is the root edge, then T 0k can be output

directly.

Proof. First from the Lemma 3.1, we can say that
the inseparable subtour has maximum ratio cost must
be the maximum child of its parent and can always be
shrink with its parent. Second, if T 0k is a root edge and
inseparable with maximum ratio cost. According to
Lemma 3.1, no nonempty subsequence � can separate
T 0k. Further T

0
k is the root edge, so we can easily claim

that all other nonempty subsequence will be traversed
after T 0k is completed. �

2

Algorithm TreeMLT(T)

Input: A tree T .

Output: Minimum latency tour.

Data Structure: Consist each edge e(u; v) and vertex
v pair into one data node. Each node E = (e; v) have
the following data:

� d: The latency time of e and v.

� w: The weight of v.

� cr: The cost ratio of inseparable subtour form E.

� parent: The parent edges.

� next: The next node of inseparable subtour.

Initial: Build each edge and vertex pair. Let each

Ei:cr
w(e)
d(e) , and set all other variable by it de�nition.

Step 1: Build a Fibonacci heap F for all Ei by the
key Ei:cr.

Step 2: If F is empty then stop the job else let e is
the node returned from the extract-max from F .

Step 3: If e is the root edge than output the insepa-
rable subtour starting from e following the e:next link
to get all member for output. Continue the Step 2.

Step 4: If e is not root edge, then we modify the
parent's edge e0:w e0:w + e:w, e0:d e0:d+ e:d and
re-compute the e0:cr e0:w

e0:d
. Continue the step 2.

End of TreeMLT

Figure 2: Algorithm for �nding minimum latency tour
in tree.

Theorem 3.3 The minimum latency tour can be found

in O(n logn) time for tree case.

Proof. From the Lemma 3.1 and Lemma 3.2, we can
propose an algorithm with O(n logn) time. The al-
gorithm is shown in Figure 2. Note that Step 1 of
the algorithm takes O(n) time to build a Fibonacci
heap structure. Clearly Step 2 will be execute O(n)
times. Because every time the Step 2 execute, one node
been deleted. Each time Step 2 execute will perform an
Extract-Max action. This action need O(logn) time.
Further, Step 3 can be done in O(n) time, too. The
reason is every node will be output only once. Finally,
Step 4 perform an increase key of Fibonacci heap. The
key increasing action only cost O(1). Base on the anal-
ysis above, we can prove that the minimum latency
tour of tree case can be found in O(n logn) time.

4 Algorithm for Full k-ary Trees

We say that a tree T is a full k-ary tree if each in-
ternal node of T has exactly k children. Within the
given tree T , we distinguish two kinds of vertices: let
I = fi1; i2; : : : ; ijIjg be the set of internal nodes and
D = fd1; d2; : : : ; djDjg be the set of leaf nodes. In this
section, we provide a linear time algorithm for full k-
ary tree T where each internal edge has a constant
weight and latency w(I); d(I) and each leaf edge has
w(D); d(D).

First we consider the case that c(I) � c(D). This
case is trivial because we can easily traverse all internal
node by any order and visit every leaf nodes sequen-
tially. Clearly, it only need O(n). If c(I) < c(D), than
we must to show two things, one is every subtree of full-
ary tree is inseparable so we can propose a top-down
algorithm. Another is if a subtree have more internal
node, it ratio cost must small than subtree have less in-
ternal node. Form this two result, we can easily provide
a linear time algorithm and prove its correctness.

Let wI = x;wD = y; d(I) = u; d(D) = v.

Lemma 4.1 Given a full k-ary tree T with ratio cost

cI and cD and cI < cD. Any sub-tree T 0i of full k-ary

tree T is inseparable.

Proof. Since T is a full k-ary tree ,every subtrees are
de�ned recursively. If Ti has i internal nodes Tj has j
internal nodes, then Ti has ki � i + 1 leaf and Tj has
kj � j +1 respectively. We want to prove that for any
sub-tree T 0i is inseparable, then

c(T 0i) � lim
i!1

(ki� i+ 1)y + ix

(ki� i+ 1)v + iu

=
ky + x� y

kv + u� v
(2)

Since c(I) < ky+x�y
kv+u�v < c(D), we can conclude that

c(I) < c(T 0i) for all i. Let T 0n be a subtree of T , and
the root of T 0n be �. Let T 0n have m inseparable unit
T 0a1 ; T

0
a2
:::T 0am , where T

0
ai

denote a subtree with ai in-
ternal nodes. Assume that if i < j c(Tai) > c(Taj).

We prove the induction basis by shrinking the �

with an inseparable unit T 0a1 with maximum ratio cost
within fT 0a1 ; T

0
a2
; : : : ; T 0amg. After the shrinking pro-

cess, we have

c(�T 0a1) =
(ka1 � a1 + 1)y + (a1 + 1)x

(ka1 � a1 + 1)v + (a1 + 1)u
�

ky + x� y

kv + u� v
(3)

Since k � 2, and c(I) < c(D), we can easily prove
that Equation(3) holds. Again, now we have c(�T 0a1) �
ky+x�y
kv+u�v and c(T 0aj) �

ky+x�y
kv+u�v82 � j � m; we can

iterative shrinking the next subtrees. Let Am = a1 +
a2 + : : : + am.Assume that the following equation is
hold.

c(�T 0a1 :::T
0
am�2

)

=
(kAm�2 �Am�2 +m� 2)y + (Am�2 + 1)x

(kAm�2 �Am�2 +m� 2)v + (Am�2 + 1)u

3

�
ky + x� y

kv + u� v
(4)

where T 0a1 :::T
0
am�2

has m� 2 subtrees of T 0n.
By induction, we must show that after shrink T 0am�1

and c(�T 0a1 :::T
0
am�2

). The c(�T 0a1 :::T
0
am�1

) � ky+x�y
kv+u�v

c(�T 0a1 :::T
0
am�2

T 0am�1
)

=
(kAm�1 �Am�1 +m� 1)y + (Am�1 + 1)x

(kAm�1 �Am�1 +m� 1)v + (Am�1 + 1)u

�
ky + x� y

kv + u� v

Because c(Tam�1
) > ky+x�y

kv+u�v and k � 2, we can prove
that a root of any subtree can iterative shrink all sub-
tree. Further, we can say any subtree of full k-ary tree
is inseparable. �

Lemma 4.2 Given a full k-ary tree T with ratio cost

cI and cD and cI < cD. Denote the sub-tree of T with

i internal nodes by Ti. It follows that c(Ti) > c(Tj) if
i < j.

Proof. According to Lemma 4.1,the c(Ti) can be eval-
uated reasonable with full subtree node. If i < j then

c(Ti)� c(Tj)

=
((ki� i+ 1)y + ix

(ki� i+ 1)v + iu
�

(kj � j + 1)y + jx

(ki� j + 1)v + ju

=
(yu� xv)(j � i)

((ki� i+ 1)v + iu)((ki� j + 1)v + ju)

> 0

Since cI < cD and i < j, then c(Ti) > c(Tj). Thus, if
i < j and cI < cD then c(Ti) > c(Tj). �

Theorem 4.3 The minimum latency tour can be found

in linear time, if G is full k-ary tree with constant ratio

cost.

Proof. According lemma 4.1, we can propose an al-
gorithm with linear time. The algorithm is shown in
Figure 3. Note that Step 1 of the algorithm takes O(n)
time to compute internal node number of each subtree.
Clearly Step 2 and Step 3 can be done in O(n) time.
Step 4 is a depth �rst search that traverse each node
and output it in O(n) time [3].

5 Algorithm for k-Path Graphs

In this section, we will discuss some properties of the k-
path graph and propose an O(n log k) time algorithm.
If k is a constant, the problem is linear time solvable.

A graph G(V;E) is called the k-path if G is a star
graph which central vertex has degree k. To solve this
kind of graph, we have some observations in k-path.
First, after the starting point been visited, G split into
k paths. Next, because we need not to compute the

Algorithm kTreeMLT(T)

Input: A full k-ary tree with constant internal node
weight x, latency time u and leaf node weight y, latency
time v where x

u
< y

v
.

Output: Minimum latency tour.

Data Structure: Each node of Tree have a value
Vi:internal indicate the internal node number of sub-
trees rooted by Vi, and a priority queue Vi:queue.

Initial: Vi:internal=0 and Vi:queue is empty.

Step 1: Use a recursive function to compute inter-
nal nodes number of each sub-trees. And keep it in
Vi:internal.

Step 2: Use a radix sort function to sort all node by
Vi:internal.

Step 3: By the sorting result R, scan R form minimum
to maximum and add itself into the priority queue of
its parent.

Step 4: Use a depth-�rst search and use priority queue
Vi:queue of each node to choose next child to be visited.
Output the chose node.

End of kTreeMLT

Figure 3: Algorithm for �nding minimum latency tour
in full k-ary tree.

walk back cost, we can always choose a best subpath
to visit and then choose another subpath without any
extra cost. Those observations construct the skeleton
of k-Path algorithm. To simplify the discussion below,
we give some de�nitions about the k-path graphG. Let
P be a path of G and � = h�1; �2 : : : ; �di be a path
partition of P . Where the �i is the i-th path partition
of �. By the de�nition in Section 2, each � has a
ratio cost called c(�). We call a subpath � = �a�b is
Right-Skew if and only if the ratio cost for the pre�x �a
is always smaller than the ratio cost of the remaining
subpath �b. We also call a � is Decreasing Right-Skew

if each �i is right-skew and c(�i) > c(�j) for all i; j
and i < j .

Observation 5.1 Let a; b; c be the real numbers and

c > a+b
2 . If a > b then c+a

2 > b

Here we �rst show that all single path P can be
partition into Decreasing Right-Skew.

Lemma 5.2 Let P be a path, there exist a partition �

is Decreasing Right-Skew.

Proof. Let P = v1; v2 : : : vn. The valid partition can
be found by the following step. First, for all i from
1 to n, compute the c(v1 : : : vi). Assume c(v1 : : : vj)
be the maximum ratio cost among all i. Let �1 =
v1 : : : vj . Next, eliminate the pre�x v1 : : : vj from P and

4

V1 V2 V3 V4 V5 V6 V7

Figure 4: The example of the path partition

Algorithm pathPartition(T)

Input: A path P = v1; v2 : : : ; vn.

Output: A path partition.

Initial: i n� 1; j n;V vn.

Step 1: Set vj V and set vi as the parent of vj .

Step 2: if vj has no parent and c(vj) � c(vj+1) then
shrink vj+1 to vj .

Step 3: if vj has no parent then stop the algorithm
and return the partition.

Step 4: If c(vi) � c(vj) then shrink vj to vi and set
V vivj .

Step 5: If c(vi) > c(vj) and c(vj) � c(vj+1) shrink
vj+1 to vj and set V vjvj+1.

Step 6: If c(vi) > c(vj) and c(vj) > c(vj+1) set V
vi.

Step 7: Goto Step 1.

End of pathPartition

Figure 5: Algorithm to partition path

repeat the �rst step to �nd the next sub-path �. In this
phrase we can easily prove that c(�i) > c(�j) because if
c(�i) � c(�j) then c(�i�j) > c(�i) (Observation 5.1)
contradict the �rst step.

Further, because c(�i) > c(�j) for all i; j, where
i < j has been proved. From the Observation 5.1, if
�1 is not the right-skew then there exist a pre�x of �1
has larger ratio cost. Contradict the assumption of �rst
step. The �1 is right-skew. If �i+1 is not the right-
skew then �i may concatenate the pre�x of �i+1 to
enlarge the ratio cost of �i. Contradict the assumption
of �rst step. The �i+1 is right-skew. Thus, we can
prove that given a path P , we always can partition it
into Decreasing Right-Skew.

Algorithm to prove Lemma 5.2 costs O(n2) times.
In Algorithm 5, we will use a bottom-up manner to
reduce the time complexity to linear time. �

Lemma 5.3 Algorithm 5 is correct and the time com-

plexity is O(n).

Proof. Consider the Algorithm 5. The V denote the
current working pointer initially at the end vertex of
P . Every times from Step 1 to Step 6 will cause the
V move to v1 at least one vertex or shrink at least one
vertex. After the linear step, the path will be partition
into Decreasing right-skew. Because each step only cost

constant time. The time complexity of Algorithm 5
is linear. To prove the correctness of Algorithm 5,
assume the result path partition is � = h�1; �2 : : : ; �di
and there exist c(�i) < c(�j); i < j or �i is not right-
skew. Base on the shrink condition in Step 2,4,5. Each
�i must be right-skew. If c(�i) < c(�j); i < j then
c(�i) > c(�j) when V = �j . If c(�j) � c(�j+1) then
�j will shrink the �j+1 into �j and set the V as the
new �j and repeat the step until the c(�j) > c(�i)
or c(�j) > c(�j+1). If c(�j) > c(�i) contradict the
assumption. If c(�j) > c(�j+1) the V will move to �i
and then c(�i) > c(�j) also contradict the assumption.
�

Lemma 5.4 Given k paths. We denote the partition

as �i = h�i1; �i2 : : : ; �idi. If c(�i1) > c(�j1) then in

optimal solution �i1 must placed in front of �j1.

Proof. Assume in optimal solution �j1 placed in front
of �i1. We compare the case which �i1 be placed in
front of �j1.

`j`ic(�i1)� `i`jc(�j1)

= c(�i1)� c(�j1)

> 0

Since c(�i1) > c(�j1), we can change the position be-
tween �i1 and �j1 to get better solution. Contradiction
the original assumption.

Theorem 5.5 If G is a k-path graph, the minimum

latency tour can be done in O(n log k) time.

Proof. Base on Lemma 5.3, we can partition all the
k path into several Decreasing Right-Skews in linear
time. We denote as �i = h�i1; �i2 : : : ; �idi. Then ac-
cording to the Lemma 5.4, we can initial build a heap
from �i1; : : : ; �k1 node. And iterative extract the max-
imum right-skew �ij form heap and insert the �i(j+1)
into heap. After the iterative we get a sequence of walk
tour. From the Lemma 5.4, we prove the output walk
tour is a minimum latency tour for G. �

6 Lower Bound

In this section, we prove that
(n logn) and
(n) are
lower bounds for general tree , full k-ary tree with con-
stant weight, and k-path graphs respective.

Theorem 6.1 Lower bound of the variation minimum

latency problem is
(n logn) even for binary tree.

Proof. Given a set of nonnegative real values fN0; N1;

: : : ; Nng, we construct a binary tree illustrated by Fig-
ure 6. Note that all internal nodes and one leaf node
have a very large weight, say 1. Because w(Dn+1) =
1, we �rst shrink fI0; I1; : : : ; In; Dn+1g into one in-
separable supper node. After this, a comparison sort-
ing is required for determining the output sequence

5

N0

N1

N2

Nn8

Figure 6: The worst case for general tree graph

of fN0; N1; : : : ; Nng. Note that
(n logn) time is the
lower bound for comparison sorting. Thus, we can say
the lower bound of the minimum access latency prob-
lem of general tree is
(n logn) time. �

Theorem 6.2 Algorithm kTreeMLT is optimal in terms

of time complexity.

Proof. Obviously the lower bound is
(n) since the
size of the output set is exactly the input size n for the
full k-ary tree. It follows that algorithm kTreeMLT is
optimal for the full k-ary tree. �

7 Concluding Remarks

In this paper, we de�ne a variation of original mini-
mum latency problem. In the new problem, the weight
and latency cost of vertices been de�ned additionally
and we ignore the walk back cost to make the problem
more realistic in some real problem. This variation is
only de�ned in trees and some simpler graphs, like full
k-ary tree. In this paper, we propose three versions of
algorithms for di�erent graphs. Let n denote number
of vertices in the given graph. We �nds an O(n logn)
time algorithm for general trees with weighted vertices
and weighted edges, and anO(n) time algorithm for full
k-ary tree with constant ratio costs of each vertex. For
general case, previous results [1] show that O(n logn)
is optimal, but our algorithm seems more intuitive and
easily to implement. Two topics concerning the mini-
mum latency problem will be addressed in the future.
One is the problem in dags, we believe that is NP or
NP �Hard, another is to consider an eÆcient on line
algorithm to immediately re
ect the weight change.

For the case of direct acyclic graph, we didn't �nd
an polynomial time algorithm yet. It will be interesting
to know whether the time complexity of the algorithm
on dags can be solved in polynomial time. Another in-
teresting problem is about the starting point. In our
de�nition, the starting point is given and never change.
If the starting point is online changed. Can we get the
new minimum latency tour eÆcient? If the starting
point is unde�ned, where the best starting point is?

Those problems still remain open. Of course, the ulti-
mate open problem is whether the variant of minimum
latency problem can be eÆciently solved in dags.

References

[1] D. Adolphson and T. C. Hu. Optimal linear order-
ing. SIAM J. Appl. Math., 25:403{423, 1973.

[2] A. Blum, P. Chalasani, D. Coppersmith, B. Pulley-
blank, P. Raghavan, and M. Sudan. The minimum
latency problem. Proc. 26th Annu. ACM Sympos.

Theory Comput., pages 163{171, 1994.

[3] T. Corman, C. Leiserson, and R. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[4] T. Imielinski, S. Viswanathan, and B.R. Badrinath.
Power eÆcient �ltering of data on air. 4th Inter-

national Conference on Extending Database Tech-

noloy, pages 245{258, March 1994.

[5] T. Imielinski, S. Viswanathan, and B.R. Badrinath.
Data on air: Organization and access. IEEE Trans.

on Knowledge and Data Engineering, 9(3):353{372,
May 1997.

[6] Shou-Chih Lo and Arbee L.P. Chen. Index and data
allocation in multiple broadcast channels. IEEE

Interantion Conference on Data Engineering 2000,
pages 293{302, 2000.

[7] N. Shivakumar and S. Venkatasubramanian.
Energy-eÆcient indexing for information dissemi-
nation in wireless systems. ACM, Journal of Wire-

less and Nomadic Application, 1996.

[8] M. Chen P. Yu and K. Wu. Indexed sequential data
broadcasting in wireless mobile computing. IEEE

Interantional Conference on Distributed Computing

Systems, pages 124{131, 1997.

6

