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Abstract

This paper gives a unified approach for solving the
Hamiltonian path, the Hamiltonian cycle problems and
their variants on Ptolemaic graphs. These algorithms
run in linear time.

1 Introduction

All graphs in this paper are finite, undirected, with-
out loops or multiple edges. Let G = (V,E) be a
graph with |V | = n and |E| = m. A connected graph
is called Ptolemaic if and only if for any four ver-
tices x, y, z, w of it we have the Ptolemaic inequality
d(x, y)d(z, w) ≤ d(x, z)d(y, w) + d(x, w)d(y, z). Prop-
erties and optimization problems of Ptolemaic graphs
have been studied in [2, 9, 15, 16, 20, 23, 18]. These
graphs are superclasses of block graphs and subclasses
of distance-hereditary graphs. A Hamiltonian path (re-
spectively, cycle) of a graph G is a simple path (respec-
tively, cycle) containing all vertices of G. The Hamil-
tonian path (respectively, cycle) problem is to deter-
mine whether a graph G has a Hamiltonian path (re-
spectively, cycle) or not. This two problems are NP -
complete for general graphs [13]. We will use the nota-
tions HC, HP , (HP, s) and (HP, s, t) as abbreviations
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for “Hamiltonian cycle”, “Hamiltonian path”, “Hamil-
tonian path with endpoint s” and “Hamiltonian path
with endpoints s and t”, respectively. Nicolai [20] pre-
sented the first polynomial-time algorithms for deter-
mining whether or not a Ptolemaic graph has an HP
in O(n2(n+m)) time, an (HP, s) in O(n(n+m)) time,
an (HP, s, t) in O(n + m) time, an HC in O(n + m)
time, for any s, t ∈ V , provided a d-extremal disman-
tling scheme is given (see [20] for definition). Whereas
computing a d-extremal dismantling scheme requires
O(n2) time [20] in a general graph. Though, most
recently Dragan and Nicolai [11] presented a linear-
time algorithm for computing such a d-extremal dis-
mantling scheme on Ptolemaic graphs. They first gave
an algorithm for the Hamiltonian cycle problem and
then solved the Hamiltonian path problems by reduc-
ing them to the Hamiltonian cycle problem. It seems
that exists a more efficient and unified algorithm for
these Hamiltonian problems on Ptolemaic graphs if we
avoid the use of d-extremal dismantling scheme and
exploit the structure of Ptolemaic graphs. In this pa-
per we give a unified approach to determine whether
or not a Ptolemaic graph G has a HC, HP , (HP, s)
or (HP, s, t) simultaneously in linear time. Our algo-
rithm sharpens Nicolai’s idea and does not use the d-
extremal dismantling scheme. Notice that a graph G
is Ptolemaic if and only if it is distance-hereditary and
chordal [2, 9, 15, 16]. A graph is distance-hereditary if
and only if every two vertices have the same distance in



every connected induced subgraph [2, 9, 14]. Distance-
hereditary graphs have been studied in [1, 2, 4, 5, 9,
10, 12, 14, 15, 16, 19, 21, 22, 23, 24, 6, 7]. A graph
is chordal if every cycle of length > 3 has a chord. A
graph is a cograph if there is no induced path containing
4 vertices.

2 Preliminaries

In this paper the terminology and notation of Bondy
and Murty [3] are followed. Suppose A and B are two
sets of vertices in a graph G = (V,E). G[A] denotes
the subgraph of G induced by A. The neighborhood
NA(B) of B in A is the set of vertices in A that are
adjacent to some vertex in B. The closed neighbor-
hood NA[B] of B in A is NA[B]

⋃
B. For simplicity,

NA(v), NA[v], N(B), and N [B] stand for NA({v}),
NA[{v}], NV (B), and NV [B], respectively. The dis-
tance dG(x, y) or d(x, y) between two vertices x and y
in G is the minimum length of an x-y path in G. The
hanging hu of a connected graph G = (V,E) at a ver-
tex u ∈ V is the collection of sets L0(u), L1(u),. . . ,
Lt(u) (or L0, L1,. . . , Lt if there is no ambiguity),
where t = maxv∈V dG(u, v) and Li(u) = {v ∈ V :
dG(u, v) = i} for 0 ≤ i ≤ t. For any 1 ≤ i ≤ t and
any vertex v ∈ Li, let N ′(v) = N(v)

⋂
Li−1. A vertex

v ∈ Li with 1 ≤ i ≤ t has a minimal neighborhood
in Li−1 if N ′(w) is not a proper subset of N ′(v) for
any w ∈ Li. For two disjoint vertex subsets X, Y of
a graph G = (V,E), they are said to be joint if each
vertex of X is adjacent to each vertex of Y .

Notice that a Ptolemaic graph is chordal and
distance-hereditary. In the following theorem several
characterizations of distance-hereditary graphs and
Ptolemaic graphs are stated, which are useful to our
algorithm

Theorem 1 [2, 9, 14] Suppose hu = (L0, L1, . . . , Lt)
is a hanging of a connected distance-hereditary graph
G at u.
(1) For any two vertices x, y ∈ Li, 1 ≤ i ≤ t, we have
that N ′(x) and N ′(y) are either disjoint, or one of the
two sets is contained in the other. Moreover, if G is
Ptolemaic then every N ′(x) induces a complete graph
of G.
(2) There exists a vertex v ∈ Li such that v has a mini-
mal neighborhood in Li−1. In addition, if v satisfies the
above condition then for every pair of vertices x and y
in N ′(v), we have NV −N ′(v)(x) = NV −N ′(v)(y).
(3) For every pair of vertices x, y ∈ Li, 1 ≤ i ≤ t, that
are in the same component of G[V − Li−1], we have
N ′(x) = N ′(y).
(4) Every Li induces a cograph in G.

The following observation is the base of our algo-
rithms: In Theorem 1, suppose t > 1, let Y be a
component of G[Lt] with |NLt−1(Y )| ≤ |NLt−1(B)| for
every component B in G[Lt]. Let X = NLt−1(Y ) and
Z = N [X]−(X∪Y ). It is clear that X, Y and Z are dis-
joint sets with N [Y ] ⊆ (X∪Y ) and N [X] ⊆ (X∪Y ∪Z).
¿From Theorem 1(3) and the choice of Y we note that
any vertex in Y has a minimal neighborhood in Lt−1,
meanwhile X and Y are joint. Therefore by Theorem
1(2) X and Z are joint. Moreover X will induce a
complete subgraph of G when G is a Ptolemaic graph.

3 Hamiltonian Problems

Throughout this section, X, Y , and Z will denote three
nonempty disjoint vertex subsets of a graph G = (V,E)
with N [Y ] ⊆ (X ∪ Y ) and N [X] ⊆ (X ∪ Y ∪ Z) such
that X and Y are joint, X and Z are joint, and X
induces a complete subgraph of G, Y induces a co-
graph. An HP (respectively, HC, (HP, s), (HP, s, t)
with |{s, t}∩Y | ≤ 1 is (X, Y )-canonical if it contains a
subpath that visits all vertices in Y and no vertices
in V − (X ∪ Y ). An hamiltonian path P which is
an (HP, s, t) having {s, t} ⊆ Y is (X, Y )-canonical if
P = P1P2P3 such that (i) P1 starts from s, (ii) P3

ends at t, (iii) P1 and P3 do not visit any vertex in
V − (X ∪ Y ), (iv) P2 does not visit any vertex in Y ,
and (v) either P1 or P3 has all its vertices in Y . For
a graph H, π0(H) denotes the minimum number of
pairwise disjoint paths covering H, π1(H, s) denotes
the minimum number of pairwise disjoint paths cover-
ing H such that s is endpoint of one of these paths,
and π2(H, s, t) denotes the minimum number of pair-
wise disjoint paths covering H such that s and t are
endpoints of two of these paths, or π2(H, s, t) = 1 if H
contains an HP with endpoints s and t. For notational
convenience we will use π0(Y ), π1(Y, s) and π2(Y, s, t)
to denote π0(G[Y ]), π1(G[Y ], s) and π2(G[Y ], s, t) re-
spectively. We say that a subpath P ′ of a path P is
an (X, Y )-path if P ′ starts from a vertex in X, ends
at a vertex in Y , and has all its vertices in X ∪ Y . A
subpath P ′ of a path P is (X, Y )-maximal if P ′ is an
(X, Y )-path and is not a proper subpath of any (X, Y )-
path of P . For a subset W of vertices of a graph G, we
say that a subpath P is a (W )-path if P has all its ver-
tices in W . A subpath P ′ of a path P is (Y )-maximal
if P ′ is a (Y )-path and is not a proper subpath of any
(Y )-path of P . Suppose P = p1p2 · · · pk is a path and
pi’s are vertices visited by path P in the ordering that
path P visits them. The reverse path of P , denoted by
P , is the path that visits vertices pi’s for all 1 ≤ i ≤ k
in the reverse ordering that path P visits them.



Lemma 2 If G has an (HP, s, t), then G has an
(X, Y )-canonical (HP, s, t).

Proof. Suppose P is an (HP, s, t) of G. If P has
no (X, Y )-path, then it starts from vertex s ∈ Y and
visits all vertices in Y before it visits any vertex not in
Y . Clearly, it is an (X, Y )-canonical (HP, s, t). Thus,
we assume that P has an (X, Y )-path. Let {P i

xy : 1 ≤
i ≤ k} be the set of all (X, Y )-maximal subpaths of
P. Without loss of generality, assume that t ∈ Y if
|Y ∩ {s, t}| ≥ 1. Then, there are four cases:
Case 1, P = PsP

1
xyP 1

xzP
2
xyP 2

xz . . . P k−1
xz P k

xyPt,
Case 2, P = P 1

xyP 1
xzP

2
xyP 2

xz . . . P k−1
xz P k

xyPt,
Case 3, P = PsP

1
xyP 1

xzP
2
xyP 2

xz . . . P k−1
xz P k

xy, and
Case 4, P = P 1

xyP 1
xzP

2
xyP 2

xz . . . P k−1
xz P k

xy.
Clearly, each path P i

xz starts from a vertex in X,
ends at a vertex in Z, and has all its vertices in V − Y
for all i, 1 ≤ i < k.
Case 1. Since we assume that t ∈ Y if |Y ∩ {s, t}| ≥
1, therefore s /∈ Y in this case. Otherwise, t ∈ Y
and hence Pt will contain an (X, Y )-maximal path, a
contradiction. Thus, both paths Ps and Pt do not visit
any vertex in Y , Ps ends at a vertex in Z, and Pt starts
from a vertex in X. Clearly the following path is an
(X, Y )-canonical (HP, s, t):

PsP
1
xyP 2

xyP 3
xy . . . P k

xyP 1
xzP

2
xz . . . P k−1

xz Pt.

Case 2. This case can be proved by arguments similar
to those for proving the above case.
Case 3. If s ∈ Y , then either Ps is a Y -path or Ps =
PyP ′ where Py is a Y -path, P ′ does not visit any vertex
in Y and P ′ ends at a vertex in Z. In both cases, the
following path is an (X, Y )-canonical (HP, s, t):

PsP
1
xzP

2
xz . . . P k−1

xz P 1
xyP 2

xyP 3
xy . . . P k

xy.

Case 4. Clearly, P 1
xy = PxP” where Px is an X-path

and P” starts from a vertex in Y . Let P ′ be the reverse
path of the following path:

P 1
xzP

2
xz . . . P k−1

xz .

Obviously, P ′ starts from a vertex in Z and ends at
vertex in X. Then, the following path is an (X, Y )-
canonical (HP, s, t):

PxP ′P”P 2
xyP 3

xy . . . P k
xy.

We use P − t to denote the subpath P ′ of P such
that P = P ′t and t is the last vertex visited by P . We
use P − P ′ to denote the subpath P” of P such that
P = P”P ′. Let P be an (X, Y )-canonical (HP, s, t)

of G. Suppose P has k (Y )-maximal paths. For 1 ≤
i ≤ k, let P i

x and P i
y be (X)-maximal and (Y )-maximal

path, respectively. For simplicity, we use P−(X ′∪Y ) to
denote the subpath of P obtained in all of the following
three cases.
Case 1, both s and t are in Y .

In this case, without loss of generality, we as-
sume that P = P 1

y PxxP 2
y P 1

x · · ·P k−1
y P k−2

x P k
y where

P 1
y starts from vertex s, P k

y ends at vertex t, Pxx

starts from a vertex in X and ends at a vertex in X,
does not visits any vertex in Y . Obviously one has
|X| ≥ k ≥ π2(Y, s, t). We use P − Y to denote path
PxxP 1

xP 2
x · · ·P k−2

x . Note that P − Y contains an (X)-
path that visits at least k − 1 vertices of X. We use
P − (X ′ ∪Y ) to denote the path obtained by removing
the last |X ′| vertices from path P − Y . Since X and
Z are joint, X and Y are joint, and X is a clique, we
may assume that X ′ is any subset of X with |X ′| less
than or equal to the number of vertices visited by path
P 1

xP 2
x · · ·P k−2

x . It is easy to see that P−(X ′∪Y ) starts
from a vertex in X and ends at a vertex in X.
Case 2, at most one of s and t is in Y .

Without loss of generality, assume that t ∈ Y . In
this case,
P = PwP 1

y P 1
xP 2

y P 2
x · · ·P k−1

y P k−1
x P k

y

where P k
y ends at vertex t, Pw starts from s, ends at a

vertex in X, does not visits any vertex in Y . Obviously,
k ≥ π1(Y, t) and |X| ≥ k ≥ π1(Y, t) ≥ π0(Y ). In this
case, we use P − Y to denote path PwP 1

xP 2
x · · ·P k−1

x .
Note that P − Y contains an (X)-path that visits at
least k vertices of X. We use P−(X ′∪Y ) to denote the
path obtained by removing the last |X ′| vertices from
path P −Y with |X ′| less than or equal to the number
of vertices visited by path P 1

xP 2
x · · ·P k−1

x . That is, P−
(X ′ ∪ Y ) = (P − Y ) − P ∗

x where the set of vertices
visited by P ∗

x is X ′.
Case 3, neither s nor t is in Y .

In this case,
P = P 1

wP 1
y P 1

xP 2
y P 2

x · · ·P k−1
y P k−1

x P k
y P 2

w

where P 2
w starts from a vertex in X, ends at vertex t,

P 1
w starts from s, ends at a vertex in X, neither P 1

w nor
P 2

w visits any vertex in Y . Obviously, k ≥ π0(Y ) and
|X| > k ≥ π0(Y ). In this case, we use P −Y to denote
path P 1

wP 1
xP 2

x · · ·P k−1
x P 2

w. Let P 1
w ends at x1 and P 2

w

starts from x2. Path x1P
1
xP 2

x · · ·P k−1
x x2 is an (X)-

path that visits at least k + 1 vertices. Let X ′ be the
last |X ′| vertices visited by path x1P

1
xP 2

x · · ·P k−1
x x2.

We use P − (X ′∪Y ) to denote the path obtained from
P − Y by removing the last |X ′| vertices from path
x1P

1
xP 2

x · · ·P k−1
x x2 where |X ′| ≤ k. That is,

P − (X ′ ∪ Y ) = (P 1
wP 1

xP 2
x · · ·P k−1

x − P ∗
x )P 2

w

where the set of vertices visited by P ∗
x is X ′.



The concept of P − (X ′ ∪ Y ) will be frequently used
in the proof of lemmas for developing our algorithm.

Lemma 3 (1) If G has an (HP, s), then G has an
(HP, s) such that at most one of its endpoint is in Y .
(2) If G has an HP and |X| > π0(Y ), then G has an
HP such that neither of its two endpoints is in Y .
(3) If |X| > π0(Y ), s /∈ Y , and G has an (HP, s),
then there exists an (HP, s) such that neither of its
two endpoints is in Y .

Proof. (1) Suppose P is an (HP, s) of G that starts
from s and ends at t. If t /∈ Y , then the lemma is true
already. In the following, we assume tht both s and
t are in Y . By Lemma 2, assume that P is (X, Y )-
canonical and P = PyPxzPxy where Py, Pxz, and Pxy

are subpaths of P, Py starts from s, Pxy ends at t, Pxy

is an (X, Y )-maximal path, Pxz starts from a vertex in
X, ends at a vertex in Z and does not visits any vertex
in Y . Clearly, PyPxyPxz is an (HP, s) such that its
endpoint other than s is not in Y .

(2) Suppose P is an HP of G such that P starts
from s and ends at t. If neither s nor t is in Y , then
this statement is true. By statement (1) of this lemma,
we may assume that P is an HP of G such that one
of its endpoint is in Y and the other of its endpoint
is not in Y . Without loss of generality, assume that
t ∈ Y and s /∈ Y . For notational convienence, let
k = π0(Y ). By Lemma 2, we may assume that P is
an (X, Y )-canonical HP . Thus, P = PsPxy where Pxy

is an (X, Y )-maximal path. Since Z 6= ∅, Ps ends at
a vertex z ∈ Z. Consider graph G[Pxy] which is the
subgraph of G induced by the vertices visited by path
Pxy. Suppose Ps visits a vertex in X. If s ∈ X, then
PxyPs in HP that starts from a vertex in X and ends
at a vertex in Z. Otherwise, let Ps = P 1

s P 2
s where P 1

s

ends at vertex in Z and P 2
s starts from a vertex in X

and ends at a vertex in Z. Then, P 1
s PxyP 2

s is an HP
whose endpoints are not in Y . In the following, we
assume that Ps does not visits any vertex in X. That
is, Pxy is an HP of G[X ∪ Y ]. Since |X| > π0(Y ),
there exists an HP, P ′, of G[X ∪ Y ] such that P ′ =
PxP 1

y x1P
2
y x2 · · ·P k

y xk is an HP of G[Pxy] where xi’s
are vertices in Pxy ∩ X for 1 ≤ i ≤ k and Px is an
(X)-path visits all vertices X−{xi : 1 ≤ i ≤ k}. Then,
PsP

′ is an HP of G whose endpoints are not in Y .

Though the following lemma is inspired by those
given in [20], it is slightly different from the original
form in [20] and leads to a more simple algorithm.

Lemma 4 Let X ′ ⊂ X and G′ = G− (X ′ ∪ Y ).
(1) If G has an HC, then |X| ≥ π0(Y ) + 1.
(2) If |X| ≥ π0(Y ) + 1 and |X ′| = π0(Y ), then G has
an HC iff G′ has an HC.

Proof. (1) Suppose C is an HC of G. Let k be The
number of (Y )-maximal paths in C. It is easy to see
that k ≥ π0(Y ). To connect these k (Y )-maximal paths
into an HC, there are at k (V −Y )-maximal paths in C.
These (V −Y )-maximal paths starts from a vertex in X
and ends at a vertex in X. In other words, each of these
(V −Y )-maximal paths visits at least one vertex in X.
Since Z 6= ∅, at least one of these (V − Y )-maximal
paths visits a vertex in Z. A (V − Y )-maximal path
that visits a vertex in Z visits at least two vertices in
X. Thus, |X| > k.

(2) Suppose G has an HC. It is easy to see that G
has an HP, denoted by P, that starts from a vertex
s ∈ Z and ends at a vertex t ∈ X where s and t are
adjacent in G. Obviously, P− (X ′∪Y ) is an HP of G′.
Hence G′ has an HC.

Conversely, suppse G′ has an HC. Then, G′ has an
HP, denoted by P∗ that starts from a vertex in x and
ends at a vertex in Z. By the definition of X and Y ,
there exists an HP, denoted by P ′, of G[X ′ ∪ Y ] that
starts from a vertex in X and ends at a vertex in Y .
Clearly, P ′P∗ is an HP of G. Since X and Z are joint,
G has an HC.

Now, we can explain the basic ideas of the algo-
rithms. If G is a cograph, then we can solve the HC
problem by the algorithm given in [8]. By Theorem
1, we can find vertex sets X, Y , and Z satisfying the
conditions given at the begining of this section. By
Lemma 4, we can solve the HC problem for G by solv-
ing the HC problem for G′ where the number of vertices
of G′ is less than that of G. By repeatedly applying
Lemma 4, eventually G′ becomes a cograph. This leads
to a polynomial time algorithm for the HC problem in
Ptolemaic graphs. The time complexity of this algo-
rithm depends on how fast we can find vertex sets X
and Y . Theorem 1 suggests a very efficient implemen-
tation for computing vertex sets X and Y by using a
hanging of G. A hanging of G can be computed in
O(n +m) time. Suppose G has a hanging hu at vertex
u such as L0(u), L1(u),. . . , Lt(u). Then, X will be
a subset of Lt−1(u) and Y will be a subset of Lt(u).
Since we delete vertices in X ′ and Y to obtain G′, we
can obtain a hanging for G′ from the hanging of G in
O(|X ′| + |Y |) time where X ′ is the set of vertices in
X that are removed to obtained G′. This leads to a
linear time algorithm for the HC problem in Ptolemaic
graphs. In the following, we prove lemmas necessary
for developing our algorithm for the HP, (HP, s), and
(HP, s, t) problems in Ptolemaic graphs by using the
same approach.

Lemma 5 Let X ′ ⊂ X, s′ ∈ X − X ′, and G′ = G −
(X ′ ∪ Y ).



(1) If G has an HP , then |X| ≥ π0(Y ).
(2) Suppose |X| = π0(Y ) and |X ′| = π0(Y )− 1.
Then, G has an HP iff G′ has an (HP, s′).
(3) Suppose |X| > π0(Y ) and |X ′| = π0(Y ).
Then, G has an HP iff G” has an HP .

Proof.
(1) This statement can be proved by arguments sim-

ilar to those for proving statement (1) of Lemma 4.
(2) Suppose P is an HP of G. By arguments similar

to those for proving statement (1) of Lemma 4, we can
prove that |X| > π0(Y ) if both endpoints of P is not
in Y . Thus, at least one endpoint of P is in Y . By
statement (1) of Lemma 3, we may assume that P has
one endpoint in Y and the other endpoint not in Y .
Withoout loss of generality, assume that P starts from
s and ends at vertex t in Y . By Lemma 2, we may
assume that P is (X, Y )-canonical. Thus, P−(X ′∪Y )
is an HP of G′. Besides, P−(X ′∪Y ) ends at a vertex in
X since |X ′| = π0(Y )−1. In other words, P−(X ′∪Y )
is an (HP, s′) of G′.

Conversely, suppose P ′ is an (HP, s′) of G′ and P ′
ends at vertex s′. Since |X ′| = π0(Y )−1 and X and Y
are joint, there is an HP , denoted by P ′′, of G[X ′ ∪Y ]
with both endpoints in Y . Thus, P ′P ′′ is an HP of G.

(3) Suppose P is an HP of G where P starts from
s and ends at t. By Lemma 3 (2), neither s nor t is in
Y . By Lemma 2, assume that P is (X, Y )-canonical.
Hence P − (X ′ ∪ Y ) is an HP of G′.

Conversely, suppose P ′ is an HP of G′. Since |X ′| =
π0(Y ), there is an HP , denoted by P”, of G[X ′ ∪ Y ]
with one endpoint in X ′ and the other endpoint in Y .
Since X − X ′ and Z are not empty, there is an edge
(x, z) in P ′ with x ∈ X and z ∈ Z. Let P ′ = P1P2

such that P1 ends at a vertex in Z and P2 starts from
a vertex in X. Then, P1P”P2 is an HP of G.

Lemma 6 Suppose G has an (HP, s).
(1) If s ∈ Y , then |X| ≥ π1(Y, s).
(2) If s ∈ X, then |X| > π0(Y ).
(3) If s ∈ V − (X ∪ Y ), then |X| ≥ π0(Y ).

Proof. This statement can be proved by arguments
similar to those for proveing statement (1) of Lemma
4.

Lemma 7 Let X ′ ⊂ X, s′ ∈ X − X ′, and G′ =
G− (X ′ ∪ Y ).
(1) Suppose s ∈ Y , |X| ≥ π1(Y, s) and |X ′| =
π1(Y, s)− 1.
Then, G has an (HP, s) iff G′ has a (HP, s′).
(2) Suppose s 6∈ (X ∪ Y ), |X| = π0(Y ) and |X ′| =

π0(Y )− 1.
Then, G has an (HP, s) iff G′ has an (HP, s, s′).
(3) Suppose s 6∈ Y , |X| ≥ π0(Y )+1 and |X ′| = π0(Y ).
Then, G has an (HP, s) iff G′ has an (HP, s).

Proof. (1) Suppose P is an (HP, s) of G. By Lemma
3 (3), we may assume that at most one endpoint of P is
in Y . Withoout loss of generality, assume that P starts
from t not in Y and ends at vertex s in Y . By Lemma
2, we may assume that P is (X, Y )-canonical. Thus,
P − (X ′ ∪ Y ) is an HP of G′. Since |X ′| = π1(Y, s)− 1
and P has at least π1(Y, s) (Y )-maximal paths, P −
(X ′ ∪ Y ) ends at a vertex in X. By the definition of
X, Y , and Z, we may assume that P − (X ′ ∪ Y ) ends
at vertex s′.

Conversely, suppose P ′ is an (HP, s′) of G′, P ′ starts
from s′ ∈ X−X ′, and |X ′| = π1(Y, s)−1. Since X is a
clique and X and Y are joint, there is an HP, denoted
by P ′′, of G[X ′ ∪ Y ] such that P ′′ starts from s, ends
at a vertex in Y . Thus, P”P ′ is an (HP, s) of G since
X and Y are joint.

(2) Suppose P is an (HP, s) of G. By Lemma 2, we
may assume that P is (X, Y )-canonical (HP, s), starts
from vertex s and ends at a vertex t. Path P has at
least π0(Y ) (Y )-maximal paths. Since |X| = π0(Y, s)
and Z 6= ∅, we have that t ∈ Y . Thus, P − (X ′ ∪ Y )
is an HP of G′. Since |X ′| = π0(Y ) − 1 and P has at
least π0(Y ) (Y )-maximal paths, P − (X ′ ∪ Y ) ends at
a vertex in X. By the definition of X, Y , and Z, we
may assume that P − (X ′ ∪ Y ) ends at vertex s′. In
other words, P − (X ′ ∪ Y ) is an (HP, s, s′) of G′.

Conversely, by arguments similar to those for proving
statement (1), we can show that if G′ has an (HP, s, s′),
then G has an (HP, s).

(3) Suppose P is an (HP, s) of G. By Lemma 3
(3) and 2, we may assume that P is (X, Y )-canonical
(HP, s) and neither of its endpoints is in Y . Hence
P − (X ′ ∪ Y ) is an (HP, s) of G′.

Conversely, suppose P ′ is an (HP, s) of G′. Since
Z 6= ∅, we have that P ′ = P1P2 such that P1 ends
at a vertex in Z and P2 starts from a vertex in X.
Since |X ′| = π0(Y ), there is an HP , denoted by P ′′, of
G[X ′ ∪ Y ] such that P” starts from a vertex in X and
ends at a vertex in Y . Thus, P1P”P2 is an (HP, s) of
G since X and Y are joint and X and Z are joint.

Lemma 8 Suppose G has an (HP, s, t).
(1) If {s, t} ⊆ Y , then |X| ≥ 2 and |X| ≥ π2(Y, s, t).
(2) If s ∈ Y and t 6∈ Y , then |X − t| ≥ π1(Y, s).
(3) If s ∈ X and t 6∈ Y , then |X − s− t| ≥ π0(Y ).
(4) If {s, t} ∩ (X ∪ Y ) = ∅, then |X| ≥ π0(Y ) + 1.

Proof. This statement can be proved by arguments
similar to those for proveing statement (1) of Lemma
4.



Lemma 9 Let X ′ ⊂ X, s /∈ X ′, t /∈ X ′, G′ =
G− (X ′∪Y ), and s′ and t′ be any two distinct vertices
in X −X ′.
(1) Suppose {s, t} ⊆ Y , π2(Y, s, t) = 1, |X| ≥ 2.
Then, G has an (HP, s, t) iff G[V − Y ] has an
(HP, s′, t′).
(2) Suppose {s, t} ⊆ Y , π2(Y, s, t) > 1, |X| ≥
π2(Y, s, t) and |X ′| = π2(Y, s, t)− 2.
Then, G has an (HP, s, t) iff G′ has an (HP, s′, t′).
(3) Suppose t ∈ Y , s 6∈ Y , |X − s| ≥ π1(Y, t), and
|X ′| = π1(Y, t)− 1.
Then, G has an (HP, s, t) iff G′ has an (HP, s, t′).
(4) Suppose {s, t}∩Y = ∅, |X| ≥ π0(Y )+1, |X−s−t| ≥
π0(Y ) and |X ′| = π0(Y ).
Then, G has an (HP, s, t) iff G′ has an (HP, s, t).

Proof. (1) Suppose P is an HP of G. By the defini-
tion of X and Y , we may let

P = P 1
y P 1

xxP 2
y P 2

xx · · ·P k−1
y P k−1

xx P k
y

where each P i
y is a (Y )-maximal path and each P i

xx

does not visits any vertex in Y , starts from a vertex
in X and ends at a vertex in X. It is easy to see that
P 1

xxP 2
xx · · ·P k−1

xx is an HP of G′ with both endpoints in
X which can be replaced by s′ and t′. Thus G′ has an
(HP, s′, t′). Conversely, suppose P ′ is an (HP, s′, t′) of
G′. Since π2(Y, s, t) = 1, there is an (HP, s, t), P ′′, of
G[Y ]. Let P ′′ = sP∗. Then, sP ′P∗ is an (HP, s, t) of
G, since X and Y are joint.

(2) Suppose P is an HP of G. By Lemma 2, we may
assume that P is an (X, Y )-canonical (HP, s, t). Path
P has at least π2(Y, s, t) (Y )-maximal paths. Since
|X ′| = π2(Y, s, t)−2, P− (X ′∪Y ) is an HP of G′ with
both endpoints in X −X ′ which can be replaced by s′

and t′. Thus G′ has an (HP, s′, t′).
Conversely, suppose P ′ is an (HP, s′, t′) of G′. Since
|X ′| = π2(Y, s, t) − 2, we can cover G[X ′ ∪ Y ] by two
vertex disjoint paths P1 and P2 with all their endpoints
in Y such that P1 starts from vertex s, and P2 ends at
vertex t. Thus, P1P ′P2 is an (HP, s, t) of G, since X
and Y are joint.

(3) Suppose G has an (HP, s, t). By Lemma 2, we
may assume that it is (X, Y )-canonical. Since |X ′| =
π1(Y, t) − 1, path P − (X ′ ∪ Y ) is an HP of G′ that
starts from vertex s, ends at a vertex in X which can
be replaced by vertex t′. In other words, P − (X ′ ∪ Y )
is an (HP, s, t′) of G′. Thus G′ has an (HP, s, t′).

Conversely, suppose P ′ is an (HP, s, t′) of G′ that
starts from vertex s and ends at vertex t′. Since |X ′| =
π1(Y, t) − 1, there is an (HP, t) P ′′ of G[X ′ ∪ Y ] with
both endpoints in Y . Thus, P ′P ′′ is an (HP, s, t) of G,
since X and Y are joint.

(4) Suppose G has an (HP, s, t). By Lemma 2, we
may assume that it is (X, Y )-canonical. Since {s, t} ∩

Y = ∅, and |X ′| = π0(Y ), P − (X ′ ∪Y ) is an (HP, s, t)
of G′.

Conversely, suppose P ′ is an (HP, s, t) of G′. Since
|X ′| = π0(Y ), there is an HP , denoted by P”, of
G[X ′∪Y ] that starts from a vertex in X and ends at a
vertex in Y . Note that there exist vertices x ∈ (X−X ′)
and z ∈ Z such that (x, z) is an edge of P ′, since
(X − X ′) and Z are not empty. Let P ′ = P1P2 such
that P1 ends at a vertex in Z and P2 starts from a
vertex in X. Thus, P1P”P2 is an (HP, s, t) of G, since
X and Y are joint.

In light of previous lemmas and theorem, we have
the algorithm shown in Figure 1. for the Hamiltonian
path problem on Ptolemaic graphs.

Theorem 10 Algorithm HP-pt solves the Hamilto-
nian path problem for Ptolemaic graphs in linear time.

Proof. In the algorithm shown in Figure 1, we build
the hanging hu by a breadth-first search, and use
bucket sort to sort F . Next, since all the three parame-
ters π0(H), π1(H, s) and π2(H, s, t) can be determined
in linear time for any cograph H [8, 17, 20]. Thus each
level Li is emptied during the i-th iteration of the “for”
loop in O(|Li| + |E(G[Li])|) time. So the linearity of
the whole algorithm follows. Finally, the correctness of
the algorithm follows from Lemma 5 to 9.

With the aid of previous lemmas and corollary, one
can easily modify algorithm HP-pt to conclude the fol-
lowing corollary.

Corollary 11 There exists a linear-time algorithm for
determining whether or not a Ptolemaic graph G has an
HC (respectively, (HP, s), (HP, s, t) for any vertices s,
t in G).
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Algorithm HP-pt. Determine whether or not a connected Ptolemaic graph has a HP .
Input: A connected Ptolemaic graph G = (V,E).
Output: Determine whether or not G has a Hamiltonian path.
Method.

C ← ∅; p← 0;
determine the hanging hu = (L0, L1, . . . , Lf ) of G at a vertex u;
for i = f to 1 step -1 do
{ let F = {A1, A2, . . . , Aj} be the components of G[Li];

sort F such that |NLi−1(Ai1)| ≤ |NLi−1(Ai2)| ≤ . . . ≤ |NLi−1(Aij
)|;

if i = 1 then { j ← 1; Ai1 ← L1 + u; }
for k = 1 to j do
{ Y ← Aik

; X ← NLi−1(Y );
Case 1: C = ∅

if i = 1 and π0(Y ) 6= 1 then GOTO (*);
if |X| < π0(Y ) then GOTO (*) else { if |X| = π0(Y ) then p← π0(Y )− 1 else p← π0(Y ); }
let X ′ be any subset of X with |X ′| = p and s′ ∈ (X −X ′);
if p = π0(Y )− 1 then C ← {s′};

Case 2: |C| = 1 (say C = {s})
if i = 1 then π1(Y, s) 6= 1 then GOTO (*);
if s ∈ Y then { if |X| < π1(Y, s) then GOTO (*) else p← π1(Y, s)− 1; }
if (s 6∈ Y and |X| < π0(Y )) or (s ∈ X and |X| = π0(Y )) then GOTO (*);
if s 6∈ (X ∪ Y ) and |X| = π0(Y ) then p← π0(Y )− 1;
if s 6∈ Y and |X| ≥ π0(Y ) + 1 then p← π0(Y );
let X ′ be any subset of X with |X ′| = p and t′ ∈ (X −X ′ − C);
if p = π1(Y, s)− 1 then C ← {t′} else { if p = π0(Y )− 1 then C ← {s, t′}; }

Case 3: |C| = 2 (say C = {s, t} and w.l.o.g. say s ∈ Y as |C ∩ Y | = 1)
if i = 1 and π2(Y, s, t) 6= 1 then GOTO (*);
if C ⊆ Y and (|X| < 2 or |X| < π2(Y, s, t)) then GOTO (*);
if |C ∩ Y | = 1 and |X − s− t| ≥ π1(Y, s) then GOTO (*);
if |C ∩X| ≥ 1 and C ∩ Y = ∅ and |X − s− t| ≥ π0(Y ) then GOTO (*);
if C ∩ (X ∪ Y ) = ∅ and |X| ≥ π0(Y ) + 1 then GOTO (*);
if C ⊆ Y and π2(Y, s, t) = 1 and |X| ≥ 2 then p← 0;
if C ⊆ Y and π2(Y, s, t) > 1 and |X| ≥ π2(Y, s, t) then p← π2(Y, s, t)− 2;
if |C ∩ Y | = 1 and |X − t| ≥ π1(Y, s) then p← π1(Y, s)− 1;
if C ∩ Y = ∅ and |X| ≥ π0(Y ) + 1 and |X − C| ≥ π0(Y ) then p← π0(Y );
let X ′ be any subset of X with |X ′| = p and s′, t′ ∈ (X −X ′ − C);
if p = 0 or p = π2(Y, s, t)− 2 then C ← {s′, t′} else { if p = π1(Y, s)− 1 then C ← {s′, t}; }

Li−1 ← Li−1 −X ′; }
}

print “G has Hamiltonian path”; exit;
(*)print “G has no Hamiltonian path”;

Figure 1: The algorithm for the Hamiltonian path on Ptolemaic grpahs


