
A Simple Tree Pattern-Matching Algorithm
Hsiao-Tzu Lu, Wuu Yang

Department of Computer and Information Science,

National Chiao Tung University, Hsinchu, Taiwan, ROC.

E-mail: wuuyang@cis.nctu.edu.tw

Abstract|Tree pattern matching occurs as a crucial step
in a number of programming tasks. We propose a new al-
gorithm to solve the tree pattern-matching problem. The

algorithm may be viewed as an extension of the Knuth-
Morris-Pratt string-matching algorithm to the tree pattern-

matching problem. In the new algorithm, the times of each
node in the subject tree needs to be traversed is bounded
by their level. Therefore, the time complexity of the simple

tree pattern-matching is bounded by O(n � log n), where n
is the number of nodes in the subject tree. The worst case

occurs when the frequency of the same content of the pat-
tern's root in the subject tree is high. But we need an extra
preprocessing time of the pattern. The time complexity of

the pattern preprocessing is bounded by O(m� logm), where
m is the number of nodes in the pattern. The worst case
occurs similarly when the frequency of the same content of

the root in the pattern is high. By using indirection, the
space complexity will be down to O(n+m).

I. Introduction

Tree pattern matching is an interesting special problem
which occurs as a crucial step in a number of program-
ming task. It occurs frequently in the context of tree re-
placement systems and has applications in di�erent areas
of computer science, including automatic implementation
of abstract data types, code optimization, automatic proof
systems, syntax-directed compilation and evaluations for
programming languages such as LISP [3] [4]. And the tree
replacement approach is very convenient for producing in-
terpreters for implementing experimental languages.
Tree pattern matching is an extension to the problem of

pattern matching in strings. We extend the Knuth-Morris-
Pratt string-matching algorithm to tree patterns. Simi-
larly, we need to preprocess the pattern �rst in order to
speed up the matching method and reduce the number of
times that nodes need to be compared. And in our method,
the sibling nodes in the tree are ordered (i.e. the subject
tree and the pattern are ordered trees). We take Fig. 1 for
example. We cannot �nd out a full match of the pattern
of Fig. 1(a) in the subject tree of Fig. 1(b), though the
pattern in Fig. 1(a) and the subject tree in Fig. 1(b) are
similar.

II. Existing Approaches to Tree Pattern

Matching

Ho�mann and O'Donnell [3] proposed several algorithms
to solve the tree pattern-matching problem. Their al-
gorithms may be classi�ed into two categories: one is
a bottom-up approach, and the other is a top-down ap-
proach. While the bottom-up method generalizes string
matching, the top-down method reduces tree matching to
a string-matching problem.

a

b

d c

a

b

d c
(a) (b)

Fig. 1. (a)The pattern. (b)The subject tree.

The key idea of the bottom-up matching algorithms in [3]
is to �nd, at each point in the subject tree, all patterns and
all parts of patterns which match at this point. When the
pattern forest F is simple (a simple pattern forest is a set
of trees that contains no independent subtrees), Ho�mann
and O'Donnell can construct the subsumption graph for it
and set the tables via the subsumption graph. We can see
an example of the subsumption graph in Fig. 2.

v

b a(v,v)

a(a(v,v),b) a(b,v)

Fig. 2. An example of the immediate subsumption graph.

a

b v

a

c

2

2

3

b, c, 1, 2
a

a

a

2

1

a c
1

2

b
c

b

c

a(a)

(b)

Fig. 3. (a)A pattern. (b)The associated matching automaton.

The top-down matching algorithm uses a matching au-
tomaton, and we can see an example in Fig. 3. In Fig. 3,
the automaton is associated with the pattern of the exam-
ple in Fig. 3(a). Accepting states are circled twice and are

labeled with the length of the accepted path string [3]. The
top-down matching algorithm is slower than the bottom-up
matching algorithms, but has shorter preprocessing time.
Rational patterns are used to specify recognizable tree

languages. Simon [4] proposed an eÆcient tree pattern
matching algorithm and applied it on nets. The algorithm
solves the tree pattern matching in O(jpj � jtj) steps where
there is some match of rational pattern p in t.

III. Our Approach

A. Extension of the KMP String-Matching Algorithm

The basic concept of the KMP string-matching algorithm
are discussed in [5] and [6]. The auxiliary table next in the
KMP string-matching algorithm may be shown pictorially.
Take TABLE I for example, Fig. 4 is also a representation
and the arcs represent the next pointers.
One of the basic concept in the KMP string-matching al-

gorithm is precomputation of the shifts, as in tree pattern-
matching problem, we can preprocess the pattern and pre-
compute the shifts which is called back in our algorithm.
The di�erence is that we shift the pattern not only to move
the pattern horizontally right or left but also move it verti-
cally up or down. We show the complete algorithm in the
following sections.

pattern a b a a b a b a a b a a b a b a a

Fig. 4. The other presentation of TABLE I.

B. A Simple Tree Pattern-Matching Algorithm

B.1 Presentation

The level of a node in the tree is de�ned as follows. The
root is at level 1. If a node is at level l, then its children are
at level l+1 [2]. Fig. 5 shows the levels of all nodes in that
tree. The height of a tree is de�ned to be the maximum
level of any node in the tree [2].
We use a numbering scheme to represent a binary tree

in memory. Suppose we number the nodes in a complete
binary tree starting with the root on level 1, continuing
with the nodes on level 2, and so on. Nodes on any level are
numbered from left to right. The numbering representation
can clearly be used for all binary trees, though in most
cases there will be a lot of unutilized space [2]. We can see
the number of each node of the tree in Fig. 5. The number
labeled in the circle is the index of a node in our numbering
presentation.
Since the nodes are numbered from 1 to n, we can use

a one-dimensional array to store the nodes. Using LEMMA

1

2 3

4 5 6 7

11 12 15

LEVEL

1

2

3

4

Fig. 5. A sample tree.

2 we can easily determine where the parent, the left child,
and the right child of any node are in the binary tree [2].
LEMMA 1 [The maximum number of nodes in a binary tree]
[1] [2]
(1) The maximum number of nodes on level i of a binary
tree is 2i�1, i � 1.
(2) The maximum number of nodes in a binary tree of
height k is 2k � 1, k � 1.
LEMMA 2 If a complete binary tree with n nodes is rep-
resented sequentially, then for any node with index i,
1 � i � n, we have [2]
(1) parent(i) is at bi=2c if i 6= 1. If i = 1, i is at the root
and has no parent.
(2) LeftChild(i) is at 2i if 2i � n. If 2i > n, then i has
no left child.
(3) RightChild(i) is at 2i+ 1 if 2i+ 1 � n. If 2i+ 1 > n,
then i has no right child.
We use the numbering representation in order to show

our idea more clearly, and to determine the relationship
between nodes more easily. We will show the complete
algorithms in section B.2 for pattern preprocessing and in
section B.3 for searching the pattern in the subject tree.

B.2 Pattern Preprocessing

In our algorithm, we need to record information about
the pattern. In particular, we need to record the content,
nextnode and back of each node. The content �eld is the
content of this node. The content can be a character, a
digit, a symbol, etc. The nextnode �eld is the next node's
index in the left-to-right breadth-�rst traversal of the pat-
tern. The back �eld records the index of the node that
should be compared subsequently when a mismatch oc-
curs. Consequently, the pattern is stored in an array of
the structure fcontent; nextnode; backg. The steps of pat-
tern preprocessing are shown in Fig. 6. For convenience,
we divide the algorithm into three parts: part I is for ini-
tialization, part II is the preprocessing, and part III is the
Descend procedure used in part II.
As we initialize the data structure for the pattern, we

�rst initialize the content and nextnode �elds of the pattern.
We record the content of each node in the content �eld.
The nextnode �eld of a node as mentioned before is the
next node's index in the left-to-right breadth-�rst traversal
of the pattern. But the nextnode �eld of the last node
in the left-to-right breadth-�rst traversal is recorded as 0,
because there is no other node follows it. The back �eld
of a node is initialized as 0 when the content �eld of the

TABLE I

The sample table of the KMP string-matching algorithm.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pattern[j] a b a a b a b a a b a a b a b a a

next[j] 0 1 0 2 1 0 4 0 2 1 0 7 1 0 4 0 2

node is not equal to the content �eld of pattern's root, and
as 1 otherwise. The initialization steps were shown in Part
I of Fig. 6. We will take the example in Fig. 7 as the
pattern and show the result of initialization in TABLE II.
In TABLE II, some nodes' �elds are empty. In fact, those
nodes don't exist in the tree. Those nodes waste our space,
and we provide a solution to save the space. We will discuss
the solution later.

Part I
index:=1;
base:=1;
initialize the content and nextnode �elds of pattern;
for (i := 1; i 6= 0; i := P [i]:nextnode)
f

// initialize back �eld of pattern nodes //
if P [i]:content = P [1]:content then P [i]:back := 0
else P [i]:back := 1;

g

Part II
for (i := 2; i 6= 0; i := P [i]:nextnode)
f

if P [i]:content = P [1]:content then
f

base := i;
Descend(i,1);
// �nd the most repeated region //

g
g

Part III
Descend(i,index)
// compare for descendants, if the corresponding //
// nodes' contents are the same, then continue //
// comparing to �nd the most repeated region. //
f

index := P [index]:nextnode;
temp := blog2 indexc;
k := 2temp � (base� 1) + index;
// compute the corresponding node //
if P [k]:content 6=null then

if P [k]:content 6= P [index]:content
then if P [k]:back < index

then P [k]:back := index
// �nd the most repeated region //

else Descend(k,index);
// continue comparing next node //

g

Fig. 6. Algorithm of pattern preprocessing.

a

b a

c b a

b c

b

Fig. 7. A sample tree.

TABLE II

The initialization result of the pattern structure in Fig. 7

index content nextnode back
1 a 2 0
2 b 3 1
3 a 4 0
4 c 5 1
5 b 6 1
6 b 7 1
7 a 12 0
8
9
10
11
12 b 13 1
13 c 0 1

De�nition 1. Let t be a tree, v and u be two nodes of t
where v is an ancestor of u. We show the tree t pictorially
as Fig. 8.
(1) The subtree of t with root v is called the v -subtree of
t.
(2) The subtree of the v-subtree where u is the last node in
the left-to-right breadth-�rst traversal is called the v -u part
of t. The v-u part of t is essentially the v-subtree of t with
all nodes whose indices are greater than u's index removed.

v

t

v-u part

u

v

t

v-subtree

Fig. 8. The v-subtree and the v-u part.

De�nition 2. Let t and s be two trees, u be the node of t,

t[i] be the node of t whose index is i, and s[k] be the node
of s whose index is k.
(1) When we want to search t in s, �rst we need to �nd
out a node u of s that its content is the same as the root
in t and we can possibly �nd out t in u-subtree of s. We
call the node u the headnode.
(2) When the node u of s is the headnode, the node u of
s and the root of t which is t[1] are corresponding nodes.
The corresponding node of t[i] is s[k], if and only if s[k] is
at the same relative position in u-subtree with t[i] in t.
For example, if t[i] and s[k] are corresponding nodes, then
t[i]'s left (or right) child and s[k]'s left (or right, respec-
tively) child are corresponding nodes. In Fig. 9, root of
tree t corresponds to node c of tree s. Therefore, node c
of tree s is the corresponding headnode of tree t. Node 7
of tree t is at the same relative position with node n of
c-subtree, so the corresponding node of node 7 is node n.
The dotted lines in Fig. 9 denote the pairs of corresponding
nodes.

1

2 3

4 7

13

6
f b

v u k n

q k

a

c d

h

p

m

t s

Fig. 9. Corresponding nodes.

After initialization, we need to �nd out the most appro-
priate back value for each node. We traverse the pattern in
the left-to-right, breadth-�rst order. Only the descendants
of the nodes whose contents equal the content of pattern's
root need to be compared. The steps of computing back
are shown in the Descend procedure of Fig. 6.
In the Descend procedure, we need to compute the in-

dices of the corresponding nodes. We will prove the cor-
rectness of the index computation in LEMMA 3. Besides,
we must prove that the value of the back �eld we compute
is correct and is the largest, and the proofs are shown in
LEMMA 4 and LEMMA 5.

LEMMA 3. Let P be tree, P [base] be the node of P whose
index is base , P [index] be the node of P whose index is
index, and P [k] be the node of P whose index is k. When
the headnode is P [base], P [index]'s corresponding node is
P [k], where

k = 2blog2 indexc � (base� 1) + index

Proof :
We want to �nd corresponding nodes between two subtrees
: P [1]-subtree and P [base]-subtree
P [1]'s corresponding node is P [base];

P [base]:content = P [1]:content;
P [index] is a node of P [1]-subtree, its corresponding node
in P [base]-subtree is P [k];
The level of P [index] in the P [1]-subtree is blog2 indexc+1;

:
:
: P [index]'s corresponding node P [k] is also on the same

level of P [base]-subtree,
and P [index],P [k] are at the same relative position;
:
:
: index� 2blog2 indexc = k � base� 2blog2 indexc

:
:
: k = 2blog2 indexc � (base� 1) + index 2

The numbering scheme we use has some characteristics.
One is that the leftmost node on level i is numbered as
2i�1 [1] [2].

LEMMA 4. Let P be a tree pattern. When P [k]:back =
i, we can �nd a subtree of P [base]-P [k] part of pattern
that is isomorphic to fP [1]-P [i] part�P [i]g where P [base]
is the corresponding headnode of P [1]-subtree and base =

k�i

2blog2 ic + 1.

Proof :
We number the nodes in P [1]-P [i] part from node1 to
nodej+1 i.e. there are (j + 1) nodes in P [1]-P [i] part and
their corresponding nodes of subtree in P [base]-P [k] part
from k(1) to k(j+1);

:
:
: P [k

(1)] represents P [base]; � � � ; P [k(j+1)] represents P [k];
LEMMA 1 assures that we can �nd correct corresponding
nodes.
And k(i) = 2blog2 nodeic � (base� 1) + nodei 8i � (j + 1)
According to our algorithm, when P [k]:back = i :
P [node1]:content = P [k(1)]:content
P [node2]:content = P [k(2)]:content

...

P [nodej]:content = P [k(j)]:content
But P [nodej+1]:content 6= P [kj+1]:content

:
:
: fP [k

(1)]; P [k(2)]; : : : ; P [k(j)]g is the same structure of
tree as fP [node1]; P [node2]; : : : ; P [nodej]g,
and each corresponding node pair's contents are the same;

:
:
: fP [k

(1)]; P [k(2)]; : : : ; P [k(j)]g is isomorphic with
fP [node1]; P [node2]; : : : ; P [nodej]g;
:
:
: fP [k(1)]; P [k(2)]; : : : ; P [k(j)]g is a subtree of P [base]-P [k]

part of the pattern P ;

:
:
: We can �nd a subtree of P [base]-P [k] part isomorphic

with fP [1]- P [i] part � P [i]g: 2

LEMMA 5. The value of the back �eld is the largest, i.e.,
we cannot �nd any other back value that is greater and
satis�es LEMMA 4.

Proof :
Suppose P [k]:back = i;
Assume that we can �nd i0 which i0 > i and i0 can sat-
isfy LEMMA 4, i.e., we can �nd a new corresponding root
P [base0];
Let Li0 represents the level of node P [i

0], Li represents the
level of node P [i].
:
:
: i0 > i

:
:
: Li0 = (2blog2 i

0c + 1) � (2blog2 ic + 1) = Li
:
:
: base = k�i

Li
+ 1

base0 = k�i0

L
i0

+ 1

:
:
: base

0 < base
According our algorithm, P [base0] should be compared ear-
lier than P [base]
and P [k]:back = i0;
When P [base] be the headnode,
:
:
: i < i0

:
:
: P [k]:back unchanged.

:
:
: We cannot �nd another i0 greater than i and satisfy

LEMMA 4. 2

TABLE III

The result of preprocessing pattern in Fig. 7

index content nextnode back
1 a 2 0
2 b 3 1
3 a 4 0
4 c 5 1
5 b 6 1
6 b 7 1
7 a 12 0
8
9
10
11
12 b 13 4
13 c 0 1

We show the result of pattern preprocessing in TA-
BLE III for the example in Fig. 7. Note that the back �eld
of the node whose index is 12 is 4, because fP [1]; P [2]; P [3]g
is isomorphic to fP [3]; P [6]; P [7]g, and the nextnode �eld
of P [3] is 4. The corresponding node of P [4] is P [12]
with headnode P [3], but their contents are not equal and
P [12]:back = 1 < index = 4. Therefore, P [12]:back := 4.
When a mismatch occurs at P [12], we can continue com-
paring P [P [12]:back] (i.e. P [4]) subsequently. TABLE III
may be shown pictorially as in Fig. 10. The thin edges
represent the back pointers. Some nodes in Fig. 10 don't
have back pointers, because their back value is 0 and their
back pointers is NULL.

a

b a

c b a

b c

b

Fig. 10. The pattern after preprocessing.

The times that each node in the pattern needs to be
visited is bounded by their level. The time complexity

TABLE IV

The indirection structure of the tree in Fig. 7

index number
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 12
9 13

of the preprocessing step is bounded by O(m � log2m),
where m is the number of nodes in the pattern. The worst
case may occur when there are many nodes in the pattern
that have the same content as the root. For example, if
the ancestors of node P [k] in the pattern have the same
content as the root, then node P [k] may need to be visited
at most blog2 kc times.
The space complexity is dependent with the structure of

the pattern. When the pattern is skew and has m nodes,
the space complexity is O(2m); when the pattern is a com-
plete binary tree and has m nodes, the space complexity is
O(m). Therefore, the space complexity is from O(2m) to
O(m).
However, we can use indirection to save the space. We

use an extra array of structure findex; numberg for the
tree. The index is the number of the node's sequence in
the left-to-right breadth-�rst traversal, and the number is
the index of the node in the numbering scheme we adopt.
We can show it more clearly with the example in Fig. 7 in
TABLE IV. Therefore the space needed for a binary tree
will be down to O(m) no matter what kind of structure the
tree is.
Adopting the indirection into our algorithm, we need an

extra searching algorithm. No matter what kind of the tree
structure the pattern is, we know that number � index.
We can use binary search, and the worst case in binary
search takes O(logm) time complexity. Therefore, the time
complexity of our algorithm in Fig. 6 with indirection will
be O(m � log2m) where m is the number of nodes in the
pattern.

B.3 Searching a Pattern in a Subject Tree

For the subject tree, we need to record the content,
nextnode, flag and match of each node. The nextnode
�eld is the next node's index in the left-to-right breadth-
�rst traversal of the subject tree. The flag �eld is either 0
or 1, and we initialize it as 1 in the beginning. When the
node is visited as a headnode, we set its flag �eld as 0 to
avoid the repeated comparison. The match �eld is either
0 or 1, and we initialize it as 0 in the beginning. When
we �nd a full match in the subject tree, we set the match
�eld of the headnode in the full match as 1. Consequently,

the data structure of the subject tree is an array of the
structure fcontent; nextnode; flag;matchg.
The algorithm of searching the pattern in the subject tree
is shown in Fig. 11.

Part IV
head := 0; // the corresponding headnode //
index := 1;
initialize the content and nextnode �elds of nodes of the
subject tree;
for (i := 1; i 6= 0; i := S[i]:nextnode)
f // initial the flag and match �elds of subject nodes //

S[i]:match := 0;
S[i]:f lag := 1; //
ag=0 means to stop searching //

g

Part V
for (i := 1; i 6= 0; i := S[i]:nextnode)
f

if S[i]:f lag 6= 0 then
// skip nodes that have been searched //
f

Com Des(i,1,index,head);
// compare descendants //
if (index 6= 0 and P [index]:nextnode = 0)
// Match //
then S[head]:match := 1;
else index := 1;
// back to the root of the pattern //

g
g

Part VI
Com Des(i,j,index,head)
f

if S[i]:content = P [j]:content then
f

head:=Base(i,j);
// compute the corresponding head node index //
index := j;
do
f

index := P [index]:nextnode;
// next node of the pattern//
if index 6= 0 then // check if the last node //
f

k := 2blog2 indexc � (head� 1) + index;
// �nd corresponding node //
if S[k] =null then index := 0
else Compare(S[k],P[index],index,head);

g
g
until (index = 0 or P [index]:nextnode = 0);

g
g

Part VII
Compare(m,n,index,head) // compare nodes //
f

if m:content 6= n:content then
do
f

index := n:back; // check back //
if index 6= 0 then head:=Base(k,index);
n := P [index];

g
until (m:content = n:content or index = 0);

g

Part VIII
int Base(x,y) // �nd the corresponding head node //
f

while y 6= 1 do
f

x := bx2 c; // �nd parent(x) //
y := by2 c; // �nd parent(y) //

g
k := x;
S[k]:f lag := 0; // set the headnode's
ag as 0 //
return(k);

g

Fig. 11. Algorithm for searching the pattern in the subject tree.

TABLE V

The initialization result of the subject tree structure in

Fig. 7

index content nextnode f lag match
1 a 2 1 0
2 b 3 1 0
3 a 4 1 0
4 c 5 1 0
5 b 6 1 0
6 b 7 1 0
7 a 12 1 0
8
9
10
11
12 b 13 1 0
13 c 0 1 0

Part IV of Fig. 11 shows the initialization Part V is the
main code for searching patterns in the subject tree. Part
VI, Part VII and Part VIII are related procedures. In Part
IV of Fig. 11, we �rst initialize the content and nextnode
�elds of the subject tree. The initialization is similar to
Part I of Fig. 6. The flag �eld is initialized as 1. The
match �eld is initialized as 0. We show the result of the
initialization of the subject tree of Fig. 7 in TABLE V.
Similarly as TABLE II, some nodes' �elds are empty in
TABLE V. Those nodes don't exist in the tree and waste
space.
In Part V of Fig. 11, we traverse the nodes in the left-

to-right breadth-�rst order. Only nodes whose content

�elds equal to the content �eld of pattern's root may lead
a match and has the need to compare their descendants.
When a mismatch occurs, we know which node of the pat-
tern should be compared to the node in the subject tree or
just skip it. The index of a node in the pattern that should
be compared subsequently comes from the back �eld of the
pattern. When the value of the back �eld is 0, we skip the
node in the subject tree because there is no chance to �nd
the pattern with this node.

Procedure Com Des of Part VI in Fig. 11 computes the
index of a node's corresponding node and compares if their
contents are equal. Procedure Compare used in procedure
Com Des handles the situation when a mismatch occurs
at the node. We can immediately know the next node of
the pattern should be compared subsequently. Procedure
Base used in procedure Com Des and Compare is for the
computation of the headnode's index in the subject tree.

When we �nd a corresponding headnode in the subject
tree, we continue to compare the descendants to determine
if there is any chance to �nd the pattern in the subject
tree. The steps are shown in procedure Com Des. When
a mismatch occurs, we handle it with procedure Compare
and we must compute the index of the new correspond-
ing headnode by procedure Base. Similar to the pattern
preprocessing part, we must compute the index of the cor-
responding node. And the computation is similarly with
LEMMA 3, we apply it to two di�erent trees.

In Part V of Fig. 11, we visit each node in the subject
tree as the headnode in the left-to-right breadth-�rst order.
Therefore, we won't miss any chance to lead a match. The
times of each node in the subject tree needs to be visited
depends on the frequency of its ancestors' contents equal
to the content of the pattern's root. Therefore, the times
that each node in the subject tree needs to be visited is
bounded by their level. The time complexity of the simple
tree pattern-matching is bounded by O(n� log2 n), where
n is the number of nodes in the subject tree. The worst
case may occur when there are many nodes in the subject
tree that have the same content as the root of the pattern.

The space complexity is dependent with the structure of
the subject tree. When the subject tree is skew and has
n nodes, the space complexity is O(2m); when the subject
tree is a complete binary tree and has n nodes, the space
complexity is O(n). Therefore, the space complexity is
from O(2n) to O(n).

However, we can similarly use indirection to save the
space. We use an extra array of structure findex; numberg
for the tree. The index is the number of the node's se-
quence in the left-to-right breadth-�rst traversal, and the
number is the index of the node in the numbering scheme
we adopt. Therefore the space needed for a binary tree will
be down to O(n).

Adopting the indirection into our algorithm, we need an
extra searching algorithm. We can use binary search, and
the worst case in binary search takes O(log n) time com-
plexity. Therefore, the time complexity of our algorithm in
Fig. 11 with indirection will be O(n � log2 n) where n is
the number of nodes in the subject tree.

IV. Conclusions and Future Work

A. Conclusions

In our simple tree pattern-matching algorithm, each
node in the subject tree needs to be traversed is bounded
by their level. Therefore, the time complexity of the simple
tree pattern-matching is bounded by O(n� logn), where n
is the number of nodes in the subject tree. The worst case
may occur when there are many nodes in the subject tree
that have the same contents as the root of the pattern.

And we need an extra step to preprocess the pattern.
The times of each node needs to be visited when we prepro-
cess the pattern depends on the frequency of its ancestors'
contents equal to the content of the pattern's root. There-
fore, the times that each node in the pattern need to be
visited is bounded by their level. The time complexity of
the preprocessing step is bounded by O(m� logm), where
m is the number of nodes in the pattern. The worst case
may occur when there are many nodes in the pattern that
have the same content as the root.

The space complexity depends on the structures of the
pattern and the subject tree. The worst case occurs when
the subject tree and the pattern both are skewed, the space
complexity is O(2n +2m), where n is the number of nodes
in the subject tree and m is the number of nodes in the
pattern. The best case is O(n+m) when both pattern and
the subject tree are complete binary trees. However, we
can use indirection to save the space. Therefore the space
complexity will be down to O(n +m).

We can reduce the pattern to be stored in an array
of structure fnumber; content; backg in the left-to-right
breadth-�rst order and the subject tree to be stored in
an array of struture fnumber; content; flag;matchg in the
left-to-right breadth-�rst order. The number �eld is the in-
dex of the node in our numbering representation. We don't
need to memorize the nextnode of each node, because the
nextnode of P [i] is P [i + 1], and the nextnode of S[k] is
S[k + 1], 8 0 < i < m, 8 0 < k < n. But we do need an
extra searching algorithm when we are visiting the nodes.

The simple tree pattern-matching algorithm shown in
Fig. 6 and Fig. 11 can be applied only to binary trees.
If we want to apply this algorithm to general trees, we
must �nd out the largest degree of the trees and extend
our numbering scheme accordingly. With this method, we
only need to change the computation of the indices of the
parent or children nodes in our algorithm.

TABLE VI summarizes the time complexity for the pat-
tern preprocessing and matching techniques in [3] and our
approach. The complexities in TABLE VI are expressed in
terms of [3]

patno the number of di�erent patterns involved.
patsize the size of the pattern forest (when patno=1, pat-
size is the number of the pattern nodes).
subsize the size of the subject tree.
ht the height of a speci�c tree which is constructed as
part of preprocessing.
sym the number of symbols in the alphabet �.
rank the highest rank of any symbol in �.

TABLE VI

The time complexity for the preprocessing and matching techniques.

Method Restrictions Preprocessing time Matching time

Na�ive algorithm None None O(subsize� patsize)

Bottom up with Al- Simple pattern forest O(patsize2 � rank + ht� O(subsize+match)

gorithm A and B [3] sym� patsizerank)

Bottom up with Al- Simple binary forest O(patsize� ht2) O(subsize� ht2 +match)

gorithm C [3]

Top down with Al- Pattern are full trees O(patsize) O(subsize� patno)

gorithm D [3] None O(patsize) O(subsize� suf)

Our approach For binary trees and O(patsize� ht) O(subsize� log subsize)

patno = 1

Our approach for patno = 1 O(patsize� ht) O(subsize� log subsize)

general trees

Our approach with For binary trees and O(patsize� ht2) O(subsize� log2 subsize)

indirection patno = 1

suf the maximum suÆx number of the path string of
the tree pattern.
match the number of matches which are found.

When we restrict the pattern and the subject tree be
binary trees and patno = 1, our algorithm has shorter pre-
processing time than bottom up algorithms listed in the
TABLE VI. But we cann't evaluate which one has shorter
matching time, excepting when ht = patsize, our algo-
rithm may have shorter matching time than the method
of Bottom up with Algorithm C. The method of top down
with Algorithm D has better performance than our algo-
rithm, no matter in preprocessing time or matching time.
But when the suf is large enough (i.e. suf is equal to
the height of the subject tree), our algorithm can have the
same performance as the method of top down with Algo-
rithm D.

B. Future Work

The pattern preprocessing method we use in our ap-
proach is not eÆcient and complete. In the part of pattern
preprocessing in the Knuth-Morris-Pratt string-matching
algorithm, the next[j] comes from f [j] and f [j] is the
largest i less than j such that pattern[1] � � � pattern[i�1] =
pattern[j� i+1] � � �pattern[j�1]. Each node in the string
needs to be visited once. So as our algorithm, if each node
in the subject tree needs to be visited at most twice, the
complexity of matching time can be down to O(n), where
n is the number of nodes in the subject tree (i.e. the size
of the subject tree). But the tree structure is more compli-
cated than string, we should keep on trying to �nd out an
eÆcient and correct method to handle the pattern prepro-
cessing. And we should �nd out the proper data structure
for the trees.
However, our simple tree pattern-matching algorithm re-

stricts the pattern number be 1, that means our approach
cannot apply on pattern forest. When the pattern num-
ber is largest than 1, the time complexities of pattern pre-
processing and matching techniques will be multiple even
though the pattern forest has no independent subtrees and

there are close relationships between the patterns. In [3],
Ho�mann and O'Donnell proposed the subsumption graph
and other concepts to handle the simple pattern forest.
Our future work should contains this part of pattern forest
handling.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1996.

[2] E. Horowitz, and S. Sahni. Fundamentals of Data Structure in
Pascal. Computer Science Press, 1976.

[3] C. M. Ho�mann, and M. J. O'Donnell. Pattern Matching in
Trees. JACM 29, Vol. 29, No. 1, pp. 68{95, January 1982.

[4] H. U. Simon. Pattern Matching in Trees and Nets. ACTA Infor-
matica, pp.227{248, 1983.

[5] C. M. Ho�mann, and M. J. O'Donnel. Fast Pattern Matching in
Strings. SIAM J. COMPUT., Vol. 6, No. 2, pp. 323{350, June
1997.

[6] E. M. Reingold, K. J. Urban and D. Gries. K-M-P string match-
ing revisited. Information Processing Letters, Vol. 64, pp. 217{
223, 1997.

[7] D.S. Hirschberg. A Linear Space Algorithm for Computing Max-
imal Common Subsequences. Communications of the ACM, Vol.
18, No. 6, pp. 341{343, June 1975.

[8] J. W. Hunt and T. G. Szymanski. A Fast Algorithm for Com-
puting Longest Common Subsequences. Communications of the
ACM, Vol. 20, No. 5, pp. 350{353, May 1997.

[9] D. S. Hirschberg. Algorithms for the Longest Common Subse-
quence Problem. JACM, Vol. 24, No. 4, pp. 664{675, October
1977.

[10] K.Z. Zhang. The Editing Distance Between Trees: Algorithms
and Applications. Technical Report, New York University, July
1989.

[11] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
MA, 1974.

