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ABSTRACT 

 
The Euclidean p-median problem is to locate p 
facilities and allocate n fixed demand points 
each to one and only one of these facilities so 
that the weighted sum of the distances between 
the facilities and the demand points is minimal.  
In the conventional version of this problem, the 
p facilities are to be located simultaneously. This 
problem is known to be NP-complete. An on-
line version of this problem requires the solution 
to be spread over p steps.  In each step, a new 
facility is added and is to be located without 
relocating the existing facilities whereas some 
demand points may have to be reallocated.  In 
this paper, it is first shown that a greedy on-line 
algorithm for this problem has no finite 
competitive ratio. An on-line algorithm with 
competitive ratio 2n is then proposed. 
 
 

1  INTRODUCTION 
 
The Euclidean p-median problem is to locate a 
set of p facilities and allocate a set of n fixed 
demand points each to one and only one of these 
facilities.  Each of the demand points has a 
weight of demand.  The objective is to minimize 
the sum of the weighted distances (product of the 
weight and Euclidean distance) between the 
demand points and the nearest facilities they are 
assigned to.  This problem has a wide realm of 
applications.  For example, (facilities, demand 
points) may be the (servers, clients) in a 
computing environment, (schools, students’ 
homes) in a district for a school board, 
(hospitals, households) in a community for 
medical services, (managers, programmers) in a 
software house, etc. Many exact and heuristic 

algorithms for solving this problem exist in the 
literature [2, 3, 4, 11, 12, 14, 16].  However, 
since the problem is the NP-hard, all the exact 
algorithms require exponential computation 
time.  Although the heuristics cost much less 
time, none of them can guarantee a theoretical 
bound on the quality of the solution. 
 
The on-line version of the Euclidean p-median 
problem has a similar objective but 
accommodates a different situation where the p 
facilities are to be allocated one after another. 
For some reasons (such as budget constraint, 
outcome of the sum obtained for the facilities 
already located, etc.), whether or not a new 
facility is to be added will be decided only after 
all the previous facilities have been located. In 
other words, the solution process is divided into 
p steps. In each step, one additional facility is to 
be located without relocating those facilities 
already located while possibly reallocating some 
of the demand points to the newly-added facility. 
Note that, in each step, no information (such as 
number of future facilities) about the future steps 
is available.  The objective is to minimize the 
sum of the weighted distances of the demand 
points in every step.   
 
In an on-line environment, the solution at each 
step is affected by the initial data, the data 
provided at the current step, and all the partial 
solutions obtained in the previous steps. In 
general, an on-line algorithm, if not carefully 
designed, may give very good results at some 
steps but extremely bad results the others. A 
good result at one step may adversely affect the 
results of many subsequent steps. Also, an on-
line algorithm is supposedly designed for 
handling all possible values of the data given 
initially and at all steps, Therefore, while trying 



to optimize the total cost at individual steps, the 
main overall strategy is to avoid outrageously 
unacceptable solutions at any step for all 
possible given data.   
 
One frequently-used measure for the overall 
performance of on-line algorithms is a quantity 
called competitive ratio. Roughly, it is defined as 
an upper bound on the ratio of the optimal 
solution for current step over the non-on-line 
optimal solution for all the steps up to and 
including the current step. 
 
Several related on-line problems have been 
studied in the literature. In the on-line 
assignment problem [1], the number and 
locations of the facilities are known in advance 
and the demand points appear one after another 
in steps. The problem is to assign each demand 
point to an appropriate facility immediately in a 
manner that will balance the load on the 
facilities.  It has been proved that the general 
greedy algorithm has the best possible 
competitive ratio that can be achieved by any 
deterministic on-line algorithm. Another related 
on-line k-server problem [13] is to plan the 
motion of k mobile facilities such that the total 
distance moved by the facilities (the facilities 
must move to the demand point for providing the 
service) is minimized.  Also, the demand points 
appear one after another and the service must be 
provided immediately. 
 
In this paper, an algorithm is proposed for 
solving the on-line version of the Euclidean p-
median problem. To the best of our knowledge, 
this is the first on-line algorithm for this 
problem. Our algorithm has a competitive ratio 
2n. In general, a competitive ratio of O(n) cannot 
be considered as a good result.  However, at this 
state of the arts, the best results of most of the 
on-line algorithms for many other problems are 
at this order of performance.  For example, the 
best possible competitive ratio for the on-line 
directed Steiner tree problem is n [17].  
Furthermore, in this paper, we will show that a 
greedy algorithm cannot even achieve a finite 
competitive ratio for this problem. 
 
 
 
 

Formal Presentation of Problems: 
 
The locations of a given a set D of n demand 
points with weights {ω1,…, ωn} are fixed in the 
Euclidean plane. The locations of a set of p 
facilities, where p < n, are to be determined. The 
off-line and on-line Euclidean k-median 
problems (k ≤ p) can be formally described as 
follows: 
 
Problem OFF-LINE(k, D): 
 
Determine simultaneously the locations of the k 
facilities and allocate each of the demand points 
to one and only one of these k facilities in such a 

way such that the total cost opt(k) = k
j

n

j jl∑ =1
ω  is 

minimum, where k
jl  is the Euclidean distance 

between jω  and its nearest facility. 
 
Problem ON-LINE(k, D): 
 
At step k, assume that problem ON-LINE(k - 1, 
D) has been solved.  Determine the location of a 
new facility k and reallocate some of the demand 
points to facility k so that c(k) is minimum, 

where c(k) = k
j

n

j j l∑ =1
ω  and k

jl  is the Euclidean 

distance between jω  and its nearest facility. 

 
Notations (In the following, index k is for step, i 
is for facility and j is for demand point): 
 

jω : the weight of demand point j. When there 

is no confusion, we also refer jω  as 

demand point j. 

jel : fixed distance between demand point j 

and demand point e. Note that ejl = jel . 

opt(k): optimal solution value of OFF-LINE(k, 
D). 

k
io : location of facility i in the optimal 

solution for OFF-LINE(k, D). 
k
jl :  distance between demand point j and its 

closest facility in the optimal solution for 
OFF-LINE(k, D). 



k
iG : the group of demand points allocated to 

facility i in the optimal solution for OFF-
LINE(k, D). 

k
in : the number of demand points in group 

k
iG . 

opt( k
iG ): cost of group k

iG  based on the optimal 

solution for OFF-LINE(k, D).  Note that 
opt(k) = opt( kG1 )+opt( kG2 )+…+ opt( k

kG ). 

c(k): total cost for ON-LINE(k, D), i.e., c(k) = 
k
j

n

j j l∑ =1
ω . 

c( jω ): cost of jω  based on the solution for ON-

LINE(k, D), i.e., the weighted distance 
between jω  and its closest facility in the 

solution for ON-LINE(k, D). Note that 
c( jω ) ≤ ijjlω  for any i. 

c(X): cost of the set of demand points X based 
on the solution for ON-LINE(k, D), i.e., 

∑ ∈X j
j

c
ω

ω )( . 

 
Definition 1 The competitive ratio ρ of an on-
line algorithm is an upper bound on the ratio 
between the on-line solution value and the 
optimal off-line solution value over all steps and 
for all possible weights and distributions of the 
demand points. That is, for any weights and 
distribution of the demand points and 1 ≤ k ≤ p, 

ρ≤
)(

)(

kopt

kc . 

 
We emphasize the fact that the bound spreads 
over all steps of the solution process. The 
following lemma was proved in [6] and will be 
used later in this paper. 
 
Lemma 1 Let {( kG1 , ko1 ),…, ( k

kG , k
ko )} be the 

optimal solution for OFF-LINE(k, D), where D 
= k

k
k GG ∪∪ ...1  and the demand points in k

iG  

are assigned to the facility located at k
io   for i = 

1,…, k. For any k ′ , where 1 ≤ k ′ ≤ k, let D′  be 
the union of any k ′ of the k groups. That is, 
without loss of generality, D′ = k

k
k GG ′∪∪ ...1 . 

Then, {( kG1 , ko1 ),…, ( k
kG ′ , 

k
ko ′ )} is an optimal 

solution for OFF-LINE(k', D'). 

2 ON-LINE ALGORITHMS 
 

To show that our algorithm is non-trivial, let us 
first solve ON-LINE(k, D) by adopting a greedy 
strategy widely used for solving many other 
problems). The main idea of a greedy algorithm 
is to reduce as much as possible the sum of 
weighted distances at each step from of the 
previous step. 

 
For many other on-line problems [1, 8, 9, 10, 15, 
17], a greedy algorithm has the best possible 
competitive ratio. For ON-LINE(p, D), however, 
the following observation and example confirm 
that this is indeed not the case. 
 
Observation: Algorithm GREEDY for solving 
ON-LINE(p, D) has no finite competitive ratio. 
 
Example: Figure 1 illustrates our observation.  
Consider 7 demand points whose weights 
satisfy: *

11 ωω = = 2ω = *
2ω = 3ω = *

3ω >> 4ω =ε. The 

distance between 1ω  and *
1ω , 2ω  and *

2ω  and 

3ω  and *
3ω  are all ε. : 1ω , 2ω , 3ω  are at the 

vertices of an equilateral triangle and 4ω  is at its 
center.  Obviously, Algorithm GREEDY will 
locate facility 1 at 4ω since this is the optimal 
location for OFF-LINE(l, D).  Then, no matter 
where the facilities are located in the next two 
steps, the total cost c(3) at step 3 is at least 
2 11lω . However, the optimal solution for OFF-
LINE(3, D) is to locate the 3 facilities at the 
three vertices separately and the optimal value 

Algorithm GREEDY 
for solving problem ON-LINE(k, D) 

 
Input:  A set D of n demand points and 

k - 1 facilities which have been 
located already.  

Output: The location of the new facility 
k and the reallocation of 
demand points. 

Method: Locate the new facility k and 
reallocate the n demand points 
in such a manner that c(k) is 
minimized. (Note: Any method 
(e.g., Drezner [7]) achieving 
this goal can be used.) 

 



should be around 1l ε + 3ε.  Hence, 

ε

ω

)3(

2

)3(
)3(

1

11

+
=

l

l

opt
c

 → ∞ as ε → 0. 

 
                                  *

11 ωω  
 

 
                                          1l  
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             2ω           *

2ω                   3ω            *
3ω  

 
Figure 1. For explaining Observation. 

    
 
The above example shows that, if we place a 
facility with the aim of minimizing the sum of 
the weighted distances of the demand points at a 
certain step, we run the risk of providing a very 
bad result at some future steps. The main 
strategy of on-line algorithms is to avoid such a 
possibility.   
 
Our algorithm Algorithm MWD follows a 
similar strategy. The main idea is, at each step, 
to locate the new facility at a demand point 
which has the biggest weighted distance to its 
closest existing facility. 

Computationally, Algorithm MWD is relatively 
simple.  The difficulty lies in proving that it has 
a finite performance ratio as stated in the 
Theorem 2.                           
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Figure 2. For proving Theorem 2 in the case p=1. 

 
 
 

 
Theorem 2 Let c(k) be the solution value 
obtained by Algorithm MWD for ON-LINE(k, D) 
and opt(k) be the optimal solution value for 

OFF-LINE(k, D).  Then, 
)(

)(

kopt

kc
 ≤ 2n for 1 ≤ k ≤ 

p and any possible weights and distribution of 
the demand points. 
 
Proof. We will apply mathematical induction on 
p. Figure 2 illustrates the case p = 1. Without 
loss of generality, let o be the optimal location of 
the facility for OFF-LINE(l, D) and 1ω  be the 
demand point with maximum weight.  Algorithm 
MWD locates the first facility at 1ω . The 
solution value c(1) is 

Algorithm MWD (Maximum Weighted 
Distance) for problem ON-LINE(p, D) 

 
Input:   A set D of fixed demand points with 

weights { nωω ,...,1 }. 
Output: The locations of k facilities and the 

allocation of the n demand points. 
Method: 

1. For k = 1, locate the first facility at the 
demand point with maximum weight, say 

1ω . Allocate all demand points to this 
facility. 

2. For 1 < k ≤ p, without loss of generality, 
suppose the first k - 1 facilities are 
located at the demand points 11 ,..., −kωω

when solving ON-LINE(i, D), i = 1, 2,..., 
k - 1. 
(a) For j = k,..., n, let d( jω ) be the 

weighted distance between jω  and 

its closest facility located at one of  
the points in the set { 11 ,..., −iωω }, i.e.,              

d( jω ) = )(min 11 jekej l−≤≤⋅ω . 

(b) Locate the new facility k at the 
demand point jω  whose d( jω ) is 

maximum over k ≤ j ≤ n. Without loss 
of generality, let this demand point 
be kω . 

(c) Reallocate those demand points to 

kω  if kω  is the facility closest to 
them. 
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Assume that Theorem 2 is true for p = k - 1. 
That is, Theorem 2 is true for any problem with 
at most k - 1 facilities and any weights and 
distribution and number of demand points.  We 
shall prove Theorem 2 for p = k. Let Ψ = 
{ kk ωωω ,,..., 11 − } be the sequence of demand 
points where the first k facilities are located in 
the first k steps.  Without loss of generality, let 

k
kk G∈ω . Theorem 2 will be proved in two 

cases: | k
kG  ∩Ψ| = 1 and | k

kG  ∩Ψ| ≥ 2.   
 

Case 1, where | k
kG  ∩ Ψ| = 1: 

 
Consider the new p-median problem over the set 
D′ of demand points, where D′ = D\ kk

k GG 1=  
k
k

k GG 12 ... −∪∪∪ . Let c′(k - 1) be the solution 
value obtained by Algorithm MWD for ON-
LINE(k - 1, D′) and opt'(k - 1) be the optimal 
solution value for OFF-LINE(k – 1, D′). Then, 
since Theorem 2 is true for p = k - 1, we have 
 

c′(k - 1) ≤ 2( k
knn − ) ⋅ opt′(k - 1)                   (2) 
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kl  
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Case where | k

kG  ∩ Ψ| = 1  
Figure 3.a. Illustration of Theorem 2 when p = k. 
 
By Lemma 1, if  {( kG1 , ko1 ),…, ( k

kG , k
ko )} is an 

optimal solution for OFF-LINE(k, D), then 
{( kG1 , ko1 ),…,( k

kG 1− , k
ko 1− )} is an optimal solution  

for OFF-LINE(k-1, D′).  That is, ∑
−

=
′

1

1
)(

k

i

k
iGopt  

= ∑
−

=

1

1
)(

k

i

k
iGopt . This is the same as 

 
        opt′(k - 1) = opt(k) – opt( k

kG )                  (3)   
 
Since k

kG ∩Ψ = { kω }, kω  is the only element in 

Ψ removed together with k
kG . Next, we are 

going to show that Ψ′ = Ψ\{ kω } ={ 1ω ,…, 1−kω } 
is the sequence of locations obtained by 
Algorithm M for the first k - 1 facilities for ON-
LINE(k - 1, D′). According to Algorithm MWD, 
since 1ω  is maximum over D and D′ ⊂ D, 1ω  is 
also maximum over D′. That is, the first facility 
will be located at 1ω  when solving ON-LINE(k 
–1, D′). Again, according to Algorithm MWD, 
the second facility will also be located at a 
demand point with maximum weighted distance 
to 1ω  over D′. Since 2ω  has the maximum 
weighted distance to 1ω over D (note that the 
second facility for ON-LINE(k, D) is located at 

2ω ) and D′ ⊂ D, obviously the second facility 

for ON-LINE(k - 1, D′) will also be located at 

2ω . By similar argument, we can prove that, for 
ON-LINE(k - 1, D′), Algorithm MWD locates 
the facilities at the sequence Ψ′. 
 
Next, we consider the total allocation cost for the 
demand points in D′ for two cases. In the first 
case, Ψ′ is the locations of the first k-1 facilities 
for ON-LINE(k - 1, D′) with total cost c′(k - 1). 
In the second case, Ψ is the locations for the first 
k facilities for ON-LINE(k, D′) (the total cost is 
denoted as c(k, D')). Since Ψ contains one more 
facility than Ψ′ for allocation purpose, we have 
c(k, D') ≤ c’(k - 1). This is the same as 
 

)1()(
1

1

−′≤∑
−

=

kcGc
k

i

k
i                          (4) 

 
By Inequalities 2, 3 and 4, we have 
 

))()()((2)(
1

1

k
k

k
k

k

i

k
i GoptkoptnnGc −−≤∑

−

=

      (5) 

 
 
 



Next, we try to prove )(2)( k
k

k
k

k
k GoptnGc ≤ . 

 
According to Algorithm MWD, we have 
 

kekjhj ll ωω ≤                                    (6) 

 
where kikike ll 1min −≤=  and  jikijh ll 1min −≤=  

 
Consider those k

kj G∈ω . (Note that k
kk G∈ω ). 

If kj ωω ≤ , then (Figure 3.a) 
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ωω

ωωω
                 (7) 

 
If jk ωω ≤ , we consider c( jω ) for two subcases.  

In the subcase where jkjh ll ≤ , we have 

jkjhjkkh llll 2≤+≤ . By Inequality 6, we get 

 

     

)(2

22)(2
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k

k
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k
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k
k

k
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jkkkhkkekjhjj

Gopt

llll

llllc

≤

+≤+≤

≤≤≤≤

ωωω

ωωωωω

  (8) 

 
In the subcase where jhjk ll ≤ , we have jhkh ll 2≤ . 

By Inequality 6, we have  
 
           khkjhj ll ωω ≤  and kj ωω 2≤ . 

 
For similar reasons as with Inequality 7, we have 
 

)(2)( k
kj Goptc ≤ω .                         (9) 

 
By Inequalities 7, 8 and 9, we have  
 
          )(2)()( k

k
k
kG j

k
k GoptncGc k

kj
≤= ∑ ∈ω

ω .  

 
Adding this to Inequality 5, we have  
  
           )(2)( koptnkc ⋅≤ . 
 
 
 
 
 
 

Case where 2≥Ψ∩k
kG : 

 
Without loss of generality, let ,...,{ g

k
kG ω=Ψ∩  

}kω , where g < k. Since there are k groups, at 

least one of the groups, say k
fG , does not contain 

any element of Ψ, i.e., φ=Ψ∩k
fG .  
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                jhl            kdl                    

              jω            kω               k
gl                gω  
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Case where | k

kG  ∩ Ψ| ≥2 
Figure 3.b. Illustration of Theorem 2 when p = k.  
 
By Inequality 2, Lemma 1 and similar argument 
as with Inequality 5, we have 
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Next, we try to prove the inequality )( k

fGc ≤ 

)(2 k
k

k
f Goptn . In Figure 3, let jikijh ll <= min , 

kikike ll <= min  and kigikd ll <= min . Obviously, d 

< g. Consider those k
fj G∈ω . In case gk ωω ≤ , 

we have 
 

)(

)(

)(

k
k

k
gg

k
kk

k
g

k
kk

kgkkekjhij

Gopt

llll

lllc

≤

+≤+≤

≤≤=

ωωω

ωωωω

      (10) 

 
In case kg ωω ≤ , we consider )( jc ω  for two 

subcases. In the subcase where kdkg ll ≤ , since 

gdgkdk ll ωω ≤  and 2≤=
kd

gd

g

k

l

l

ω

ω
, we have 

gk ωω 2≤ . By similar argument as for 

Inequality 10, we have )(2)( k
kj Goptc ≤ω . In 



the subcase where kgkd ll ≤ , we have kggd ll 2≤ . 

Hence, by Algorithm MWD, we get 
 

)(222

)(22

)(
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k

k
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k
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gdgkdkkekjhjj

Goptll

lll
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ωω

ωω

ωωωωω

    

 

For similar reasons as in the case 1=Ψ∩k
kG , 

we get )(2)( koptnkc ⋅≤ .  
 
3. Conclusion and Future Research 
 
We have proposed an on-line algorithm with 
competitive ration 2n for solving the p-medium 
problem where the facilities are provided one 
after another and the demand points are fixed. 
Though, as far as we know, it is the only 
available on-line algorithm for solving this 
problem and the competitive ratio is at the same 
order as the on-line algorithms for many other 
problems, we believe that it can be further 
improved.  
 
There is the need for further research for several 
cases, such as the case where new facilities can 
be added and existing facilities can be deleted, 
the case where the demand points can be 
increased or decreased at various steps, etc. 
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