ON-LINE COMPUTATION FOR THE EUCLIDEAN P-MEDIAN PROBLEMS

Zuo Dai To-yat Cheung
Department of Computer Science, City University of Hong Kong, Hong Kong
Email: cscheung@cityu.edu.hk.

Abstract

The Euclidean p-median problem is to locate p facilities and allocate n fixed demand points each to one and only one of these facilities so that the weighted sum of the distances between the facilities and the demand points is minimal. In the conventional version of this problem, the p facilities are to be located simultaneously. This problem is known to be NP-complete. An online version of this problem requires the solution to be spread over p steps. In each step, a new facility is added and is to be located without relocating the existing facilities whereas some demand points may have to be reallocated. In this paper, it is first shown that a greedy on-line algorithm for this problem has no finite competitive ratio. An on-line algorithm with competitive ratio $2 n$ is then proposed.

1 INTRODUCTION

The Euclidean p-median problem is to locate a set of p facilities and allocate a set of n fixed demand points each to one and only one of these facilities. Each of the demand points has a weight of demand. The objective is to minimize the sum of the weighted distances (product of the weight and Euclidean distance) between the demand points and the nearest facilities they are assigned to. This problem has a wide realm of applications. For example, (facilities, demand points) may be the (servers, clients) in a computing environment, (schools, students' homes) in a district for a school board, (hospitals, households) in a community for medical services, (managers, programmers) in a software house, etc. Many exact and heuristic
algorithms for solving this problem exist in the literature $[2,3,4,11,12,14,16]$. However, since the problem is the NP-hard, all the exact algorithms require exponential computation time. Although the heuristics cost much less time, none of them can guarantee a theoretical bound on the quality of the solution.

The on-line version of the Euclidean p-median problem has a similar objective but accommodates a different situation where the p facilities are to be allocated one after another. For some reasons (such as budget constraint, outcome of the sum obtained for the facilities already located, etc.), whether or not a new facility is to be added will be decided only after all the previous facilities have been located. In other words, the solution process is divided into p steps. In each step, one additional facility is to be located without relocating those facilities already located while possibly reallocating some of the demand points to the newly-added facility. Note that, in each step, no information (such as number of future facilities) about the future steps is available. The objective is to minimize the sum of the weighted distances of the demand points in every step.

In an on-line environment, the solution at each step is affected by the initial data, the data provided at the current step, and all the partial solutions obtained in the previous steps. In general, an on-line algorithm, if not carefully designed, may give very good results at some steps but extremely bad results the others. A good result at one step may adversely affect the results of many subsequent steps. Also, an online algorithm is supposedly designed for handling all possible values of the data given initially and at all steps, Therefore, while trying
to optimize the total cost at individual steps, the main overall strategy is to avoid outrageously unacceptable solutions at any step for all possible given data.

One frequently-used measure for the overall performance of on-line algorithms is a quantity called competitive ratio. Roughly, it is defined as an upper bound on the ratio of the optimal solution for current step over the non-on-line optimal solution for all the steps up to and including the current step.

Several related on-line problems have been studied in the literature. In the on-line assignment problem [1], the number and locations of the facilities are known in advance and the demand points appear one after another in steps. The problem is to assign each demand point to an appropriate facility immediately in a manner that will balance the load on the facilities. It has been proved that the general greedy algorithm has the best possible competitive ratio that can be achieved by any deterministic on-line algorithm. Another related on-line k-server problem [13] is to plan the motion of k mobile facilities such that the total distance moved by the facilities (the facilities must move to the demand point for providing the service) is minimized. Also, the demand points appear one after another and the service must be provided immediately.

In this paper, an algorithm is proposed for solving the on-line version of the Euclidean p median problem. To the best of our knowledge, this is the first on-line algorithm for this problem. Our algorithm has a competitive ratio $2 n$. In general, a competitive ratio of $O(n)$ cannot be considered as a good result. However, at this state of the arts, the best results of most of the on-line algorithms for many other problems are at this order of performance. For example, the best possible competitive ratio for the on-line directed Steiner tree problem is n [17]. Furthermore, in this paper, we will show that a greedy algorithm cannot even achieve a finite competitive ratio for this problem.

Formal Presentation of Problems:

The locations of a given a set D of n demand points with weights $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ are fixed in the Euclidean plane. The locations of a set of p facilities, where $p<n$, are to be determined. The off-line and on-line Euclidean k-median problems $(k \leq p)$ can be formally described as follows:

Problem OFF-LINE(k, D):

Determine simultaneously the locations of the k facilities and allocate each of the demand points to one and only one of these k facilities in such a way such that the total cost $\operatorname{opt}(k)=\sum_{j=1}^{n} \omega_{j} l_{j}^{k}$ is minimum, where l_{j}^{k} is the Euclidean distance between ω_{j} and its nearest facility.

Problem ON-LINE(k, D):

At step k, assume that problem ON-LINE ($k-1$, $D)$ has been solved. Determine the location of a new facility k and reallocate some of the demand points to facility k so that $c(k)$ is minimum, where $c(k)=\sum_{j=1}^{n} \omega_{j} l_{j}^{k}$ and l_{j}^{k} is the Euclidean distance between ω_{j} and its nearest facility.

Notations (In the following, index k is for step, i is for facility and j is for demand point):
ω_{j} : the weight of demand point j. When there is no confusion, we also refer ω_{j} as demand point j.
$l_{j e}$: fixed distance between demand point j and demand point e. Note that $l_{e j}=l_{j e}$.
opt (k) : optimal solution value of OFF-LINE $(k$, D).
$o_{i}^{k}: \quad$ location of facility i in the optimal solution for OFF-LINE (k, D).
$l_{j}^{k}: \quad$ distance between demand point j and its closest facility in the optimal solution for $\operatorname{OFF}-L I N E(k, D)$.
G_{i}^{k} : the group of demand points allocated to facility i in the optimal solution for OFF$\operatorname{LINE}(k, D)$.
n_{i}^{k} : the number of demand points in group G_{i}^{k}.
$\operatorname{opt}\left(G_{i}^{k}\right)$: cost of group G_{i}^{k} based on the optimal solution for $\operatorname{OFF}-\operatorname{LINE}(k, D)$. Note that $\operatorname{opt}(k)=\operatorname{opt}\left(G_{1}^{k}\right)+\operatorname{opt}\left(G_{2}^{k}\right)+\ldots+\operatorname{opt}\left(G_{k}^{k}\right)$.
$c(k)$: total cost for $\operatorname{ON}-\operatorname{LINE}(k, D)$, i.e., $c(k)=$ $\sum_{j=1}^{n} \omega_{j} l_{j}^{k}$.
$c\left(\omega_{j}\right)$: cost of ω_{j} based on the solution for ON$\operatorname{LINE}(k, D)$, i.e., the weighted distance between ω_{j} and its closest facility in the solution for $\operatorname{ON}-\operatorname{LINE}(k, D)$. Note that $c\left(\omega_{j}\right) \leq \omega_{j} l_{i j}$ for any i.
$c(X)$: cost of the set of demand points X based on the solution for $\operatorname{ON}-\operatorname{LINE}(k, D)$, i.e.,

$$
\sum_{\omega_{j} \in X} c\left(\omega_{j}\right) .
$$

Definition 1 The competitive ratio ρ of an online algorithm is an upper bound on the ratio between the on-line solution value and the optimal off-line solution value over all steps and for all possible weights and distributions of the demand points. That is, for any weights and distribution of the demand points and $1 \leq k \leq p$, $\frac{c(k)}{o p t(k)} \leq \rho$.

We emphasize the fact that the bound spreads over all steps of the solution process. The following lemma was proved in [6] and will be used later in this paper.

Lemma $1 \operatorname{Let}\left\{\left(G_{1}^{k}, o_{1}^{k}\right), \ldots,\left(G_{k}^{k}, o_{k}^{k}\right)\right\}$ be the optimal solution for $\operatorname{OFF}-\operatorname{LINE}(k, D)$, where D $=G_{1}^{k} \cup \ldots \cup G_{k}^{k}$ and the demand points in G_{i}^{k} are assigned to the facility located at o_{i}^{k} for $i=$ $1, \ldots, k$. For any k^{\prime}, where $l \leq k^{\prime} \leq k$, let D^{\prime} be the union of any k^{\prime} of the k groups. That is, without loss of generality, $D^{\prime}=G_{1}^{k} \cup \ldots \cup G_{k^{\prime}}^{k}$.
Then, $\left\{\left(G_{1}^{k}, o_{1}^{k}\right), \ldots,\left(G_{k^{\prime}}^{k}, o_{k^{\prime}}^{k}\right)\right\}$ is an optimal solution for OFF-LINE (k^{\prime}, D^{\prime}).

2 ON-LINE ALGORITHMS

To show that our algorithm is non-trivial, let us first solve ON-LINE (k, D) by adopting a greedy strategy widely used for solving many other problems). The main idea of a greedy algorithm is to reduce as much as possible the sum of weighted distances at each step from of the previous step.

Algorithm GREEDY for solving problem ON-LINE (k, D)

Input: A set D of n demand points and $k-1$ facilities which have been located already.
Output: The location of the new facility k and the reallocation of demand points.
Method: Locate the new facility k and reallocate the n demand points in such a manner that $c(k)$ is minimized. (Note: Any method (e.g., Drezner [7]) achieving this goal can be used.)

For many other on-line problems $[1,8,9,10,15$, 17], a greedy algorithm has the best possible competitive ratio. For $\operatorname{ON}-\operatorname{LINE}(p, D)$, however, the following observation and example confirm that this is indeed not the case.

Observation: Algorithm GREEDY for solving $O N-\operatorname{LINE}(p, D)$ has no finite competitive ratio.

Example: Figure 1 illustrates our observation. Consider 7 demand points whose weights satisfy: $\omega_{1}=\omega_{1}^{*}=\omega_{2}=\omega_{2}^{*}=\omega_{3}=\omega_{3}^{*} \gg \omega_{4}=\varepsilon$. The distance between ω_{1} and $\omega_{1}^{*}, \omega_{2}$ and ω_{2}^{*} and ω_{3} and ω_{3}^{*} are all ε.: $\omega_{1}, \omega_{2}, \omega_{3}$ are at the vertices of an equilateral triangle and ω_{4} is at its center. Obviously, Algorithm GREEDY will locate facility 1 at ω_{4} since this is the optimal location for OFF-LINE $(1, D)$. Then, no matter where the facilities are located in the next two steps, the total cost $c(3)$ at step 3 is at least $2 \omega_{1} l_{1}$. However, the optimal solution for OFF$\operatorname{LINE}(3, D)$ is to locate the 3 facilities at the three vertices separately and the optimal value
should be around $l_{1} \varepsilon+3 \varepsilon$. Hence, $\frac{c(3)}{\operatorname{opt}(3)}=\frac{2 \omega_{1} l_{1}}{\left(l_{1}+3\right) \varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

Figure 1. For explaining Observation.

The above example shows that, if we place a facility with the aim of minimizing the sum of the weighted distances of the demand points at a certain step, we run the risk of providing a very bad result at some future steps. The main strategy of on-line algorithms is to avoid such a possibility.

Our algorithm Algorithm MWD follows a similar strategy. The main idea is, at each step, to locate the new facility at a demand point which has the biggest weighted distance to its closest existing facility.

Computationally, Algorithm MWD is relatively simple. The difficulty lies in proving that it has a finite performance ratio as stated in the Theorem 2.

Figure 2. For proving Theorem 2 in the case $\mathrm{p}=1$.

Algorithm $M W D$ (Maximum Weighted Distance) for problem ON-LINE (p, D)

Input: A set D of fixed demand points with weights $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$.
Output: The locations of k facilities and the allocation of the n demand points.

Method:

1. For $k=1$, locate the first facility at the demand point with maximum weight, say ω_{1}. Allocate all demand points to this facility.
2. For $1<k \leq p$, without loss of generality, suppose the first $k-1$ facilities are located at the demand points $\omega_{1}, \ldots, \omega_{k-1}$ when solving ON-LINE $(i, D), i=1,2, \ldots$, $k-1$.
(a) For $j=k, \ldots, n$, let $d\left(\omega_{j}\right)$ be the weighted distance between ω_{j} and its closest facility located at one of the points in the set $\left\{\omega_{1}, \ldots, \omega_{i-1}\right\}$, i.e., $d\left(\omega_{j}\right)=\omega_{j} \cdot \min _{1 \leq e \leq k-1}\left(l_{j e}\right)$.
(b) Locate the new facility k at the demand point ω_{j} whose $d\left(\omega_{j}\right)$ is maximum over $k \leq j \leq \mathrm{n}$. Without loss of generality, let this demand point be ω_{k}.
(c) Reallocate those demand points to ω_{k} if ω_{k} is the facility closest to them.

Theorem 2 Let $c(k)$ be the solution value obtained by Algorithm MWD for ON-LINE (k, D) and opt (k) be the optimal solution value for $\operatorname{OFF}-\operatorname{LINE}(k, D)$. Then, $\frac{c(k)}{\operatorname{opt}(k)} \leq 2 n$ for $1 \leq k \leq$ p and any possible weights and distribution of the demand points.

Proof. We will apply mathematical induction on p. Figure 2 illustrates the case $p=1$. Without loss of generality, let o be the optimal location of the facility for $\operatorname{OFF}-\operatorname{LINE}(1, D)$ and ω_{1} be the demand point with maximum weight. Algorithm $M W D$ locates the first facility at ω_{1}. The solution value $c(1)$ is

$$
\begin{align*}
c(1)= & \sum_{j=2}^{n}\left(\omega_{j} \cdot l_{1 j}\right) \leq \sum_{j=2}^{n} \omega_{j}\left(l_{1}^{1}+l_{j}^{1}\right) \\
& \leq\left(\sum_{j=1}^{n} \omega_{j} l_{j}^{1}\right)+(n-2) \omega_{1} l_{1}^{1} \tag{1}\\
& =\operatorname{opt}(1)+(n-2) \omega_{1} l_{1}^{1} \leq 2 n \cdot o p t(1)
\end{align*}
$$

Assume that Theorem 2 is true for $p=k-1$. That is, Theorem 2 is true for any problem with at most $k-1$ facilities and any weights and distribution and number of demand points. We shall prove Theorem 2 for $p=k$. Let $\Psi=$ $\left\{\omega_{1}, \ldots, \omega_{k-1}, \omega_{k}\right\}$ be the sequence of demand points where the first k facilities are located in the first k steps. Without loss of generality, let $\omega_{k} \in G_{k}^{k}$. Theorem 2 will be proved in two cases: $\left|G_{k}^{k} \cap \Psi\right|=1$ and $\left|G_{k}^{k} \cap \Psi\right| \geq 2$.

Case 1, where $\left|G_{k}^{k} \cap \Psi\right|=1$:
Consider the new p-median problem over the set D^{\prime} of demand points, where $D^{\prime}=D \backslash G_{k}^{k}=G_{1}^{k}$ $\cup G_{2}^{k} \cup \ldots \cup G_{k-1}^{k}$. Let $c^{\prime}(k-1)$ be the solution value obtained by Algorithm $M W D$ for ON-$\operatorname{LINE}\left(k-1, D^{\prime}\right)$ and $o p t^{\prime}(k-1)$ be the optimal solution value for $\operatorname{OFF}-\operatorname{LINE}\left(k-1, D^{\prime}\right)$. Then, since Theorem 2 is true for $p=k-1$, we have

Case where $\left|G_{k}^{k} \cap \Psi\right|=1$
Figure 3.a. Illustration of Theorem 2 when $p=k$.
By Lemma 1, if $\left\{\left(G_{1}^{k}, o_{1}^{k}\right), \ldots,\left(G_{k}^{k}, o_{k}^{k}\right)\right\}$ is an optimal solution for $\operatorname{OFF}-\operatorname{LINE}(k, D)$, then $\left\{\left(G_{1}^{k}, o_{1}^{k}\right), \ldots,\left(G_{k-1}^{k}, o_{k-1}^{k}\right)\right\}$ is an optimal solution
for OFF-LINE $\left(k-1, D^{\prime}\right)$. That is, $\sum_{i=1}^{k-1} o p t^{\prime}\left(G_{i}^{k}\right)$ $=\sum_{i=1}^{k-1} \operatorname{opt}\left(G_{i}^{k}\right)$. This is the same as

$$
\begin{equation*}
\operatorname{opt}^{\prime}(k-1)=\operatorname{opt}(k)-\operatorname{opt}\left(G_{k}^{k}\right) \tag{3}
\end{equation*}
$$

Since $G_{k}^{k} \cap \Psi=\left\{\omega_{k}\right\}, \omega_{k}$ is the only element in Ψ removed together with G_{k}^{k}. Next, we are going to show that $\Psi^{\prime}=\Psi \backslash\left\{\omega_{k}\right\}=\left\{\omega_{1}, \ldots, \omega_{k-1}\right\}$ is the sequence of locations obtained by Algorithm M for the first $k-1$ facilities for ON-$\operatorname{LINE}\left(k-1, D^{\prime}\right)$. According to Algorithm MWD, since ω_{1} is maximum over D and $D^{\prime} \subset D, \omega_{1}$ is also maximum over D^{\prime}. That is, the first facility will be located at ω_{1} when solving ON-LINE $(k$ $\left.-1, D^{\prime}\right)$. Again, according to Algorithm $M W D$, the second facility will also be located at a demand point with maximum weighted distance to ω_{1} over D^{\prime}. Since ω_{2} has the maximum weighted distance to ω_{1} over D (note that the second facility for $\operatorname{ON}-\operatorname{LINE}(k, D)$ is located at ω_{2}) and $D^{\prime} \subset D$, obviously the second facility for $\operatorname{ON-LINE}\left(k-1, D^{\prime}\right)$ will also be located at ω_{2}. By similar argument, we can prove that, for ON-LINE ($k-1, D^{\prime}$), Algorithm $M W D$ locates the facilities at the sequence Ψ^{\prime}.

Next, we consider the total allocation cost for the demand points in D^{\prime} for two cases. In the first case, Ψ^{\prime} is the locations of the first $k-1$ facilities for $\operatorname{ON}-\operatorname{LINE}\left(k-1, D^{\prime}\right)$ with total cost $c^{\prime}(k-1)$. In the second case, Ψ is the locations for the first k facilities for $\operatorname{ON}-\operatorname{LINE}\left(k, D^{\prime}\right)$ (the total cost is denoted as $c\left(k, D^{\prime}\right)$). Since Ψ contains one more facility than Ψ^{\prime} for allocation purpose, we have $c\left(k, D^{\prime}\right) \leq c^{\prime}(k-1)$. This is the same as

$$
\begin{equation*}
\sum_{i=1}^{k-1} c\left(G_{i}^{k}\right) \leq c^{\prime}(k-1) \tag{4}
\end{equation*}
$$

By Inequalities 2, 3 and 4, we have

$$
\begin{equation*}
\sum_{i=1}^{k-1} c\left(G_{i}^{k}\right) \leq 2\left(n-n_{k}^{k}\right)\left(\operatorname{opt}(k)-\operatorname{opt}\left(G_{k}^{k}\right)\right) \tag{5}
\end{equation*}
$$

Next, we try to prove $c\left(G_{k}^{k}\right) \leq 2 n_{k}^{k} \operatorname{opt}\left(G_{k}^{k}\right)$.
According to Algorithm $M W D$, we have

$$
\begin{equation*}
\omega_{j} l_{j h} \leq \omega_{k} l_{k e} \tag{6}
\end{equation*}
$$

where $l_{k e}=\min _{i \leq k-1} l_{k i}$ and $l_{j h}=\min _{i \leq k-1} l_{j i}$
Consider those $\omega_{j} \in G_{k}^{k}$. (Note that $\left.\omega_{k} \in G_{k}^{k}\right)$.
If $\omega_{j} \leq \omega_{k}$, then (Figure 3.a)

$$
\begin{align*}
c\left(\omega_{j}\right) & \leq \omega_{j} l_{j k} \leq \omega_{j}\left(l_{j}^{k}+l_{k}^{k}\right) \tag{7}\\
& \leq \omega_{j} l_{j}^{k}+\omega_{j} l_{k}^{k} \leq \operatorname{opt}\left(G_{k}^{k}\right)
\end{align*}
$$

If $\omega_{k} \leq \omega_{j}$, we consider $\mathrm{c}\left(\omega_{j}\right)$ for two subcases. In the subcase where $l_{j h} \leq l_{j k}$, we have $l_{k h} \leq l_{j k}+l_{j h} \leq 2 l_{j k}$. By Inequality 6 , we get

$$
\begin{align*}
c\left(\omega_{j}\right) & \leq \omega_{j} l_{j h} \leq \omega_{k} l_{k e} \leq \omega_{k} l_{k h} \leq 2 \omega_{k} l_{j k} \\
& \leq 2 \omega_{k}\left(l_{j}^{k}+l_{k}^{k}\right) \leq 2 \omega_{j} l_{j}^{k}+2 \omega_{k} l_{k}^{k} \tag{8}\\
& \leq 2 \operatorname{opt}\left(G_{k}^{k}\right)
\end{align*}
$$

In the subcase where $l_{j k} \leq l_{j h}$, we have $l_{k h} \leq 2 l_{j h}$. By Inequality 6, we have

$$
\omega_{j} l_{j h} \leq \omega_{k} l_{k h} \text { and } \omega_{j} \leq 2 \omega_{k} .
$$

For similar reasons as with Inequality 7, we have

$$
\begin{equation*}
c\left(\omega_{j}\right) \leq 2 \operatorname{opt}\left(G_{k}^{k}\right) . \tag{9}
\end{equation*}
$$

By Inequalities 7, 8 and 9, we have

$$
c\left(G_{k}^{k}\right)=\sum_{\omega_{j} \in G_{k}^{k}} c\left(\omega_{j}\right) \leq 2 n_{k}^{k} \operatorname{opt}\left(G_{k}^{k}\right) .
$$

Adding this to Inequality 5, we have

$$
c(k) \leq 2 n \cdot o p t(k)
$$

Case where $\left|G_{k}^{k} \cap \Psi\right| \geq 2$:

Without loss of generality, let $G_{k}^{k} \cap \Psi=\left\{\omega{ }_{g}, \ldots\right.$, $\left.\omega_{k}\right\}$, where $g<k$. Since there are k groups, at least one of the groups, say G_{f}^{k}, does not contain any element of Ψ, i.e., $G_{f}^{k} \cap \Psi=\phi$.

Case where $\left|G_{k}^{k} \cap \Psi\right| \geq 2$
Figure 3.b. Illustration of Theorem 2 when $p=k$.
By Inequality 2, Lemma 1 and similar argument as with Inequality 5, we have

$$
\sum_{i=1, i \neq f}^{k} c\left(G_{i}^{k}\right) \leq 2\left(n-n_{f}^{k}\right)\left(\operatorname{opt}(k)-\operatorname{opt}\left(G_{f}^{k}\right)\right)
$$

Next, we try to prove the inequality $c\left(G_{f}^{k}\right) \leq$ $2 n_{f}^{k} \operatorname{opt}\left(G_{k}^{k}\right)$. In Figure 3, let $l_{j h}=\min _{i<k} l_{j i}$, $l_{k e}=\min _{i<k} l_{k i}$ and $l_{k d}=\min _{i<g} l_{k i}$. Obviously, d $<\mathrm{g}$. Consider those $\omega_{j} \in G_{f}^{k}$. In case $\omega_{k} \leq \omega_{g}$, we have

$$
\begin{align*}
c\left(\omega_{j}\right) & =\omega_{i} l_{j h} \leq \omega_{k} l_{k e} \leq \omega_{k} l_{k g} \\
& \leq \omega_{k}\left(l_{k}^{k}+l_{g}^{k}\right) \leq \omega_{k} l_{k}^{k}+\omega_{g} l_{g}^{k} \tag{10}\\
& \leq \operatorname{opt}\left(G_{k}^{k}\right)
\end{align*}
$$

In case $\omega_{g} \leq \omega_{k}$, we consider $c\left(\omega_{j}\right)$ for two subcases. In the subcase where $l_{k g} \leq l_{k d}$, since $\omega_{k} l_{k d} \leq \omega_{g} l_{g d} \quad$ and $\quad \frac{\omega_{k}}{\omega_{g}}=\frac{l_{g d}}{l_{k d}} \leq 2$, we have $\omega_{k} \leq 2 \omega_{g}$. By similar argument as for Inequality 10 , we have $c\left(\omega_{j}\right) \leq 2 \operatorname{opt}\left(G_{k}^{k}\right)$. In
the subcase where $l_{k d} \leq l_{k g}$, we have $l_{g d} \leq 2 l_{k g}$. Hence, by Algorithm $M W D$, we get

$$
\begin{aligned}
c\left(\omega_{j}\right) & =\omega_{j} l_{j h} \leq \omega_{k} l_{k e} \leq \omega_{k} l_{k d} \leq \omega_{g} l_{g d} \\
& \leq 2 \omega_{g} l_{k g} \leq 2 \omega_{g}\left(l_{k}^{k}+l_{k}^{g}\right) \\
& \leq 2 \omega_{g} l_{k}^{k}+2 \omega_{g} l_{g}^{k} \leq 2 \operatorname{opt}\left(G_{k}^{k}\right)
\end{aligned}
$$

For similar reasons as in the case $\left|G_{k}^{k} \cap \Psi\right|=1$, we get $c(k) \leq 2 n \cdot o p t(k)$.

3. Conclusion and Future Research

We have proposed an on-line algorithm with competitive ration $2 n$ for solving the p-medium problem where the facilities are provided one after another and the demand points are fixed. Though, as far as we know, it is the only available on-line algorithm for solving this problem and the competitive ratio is at the same order as the on-line algorithms for many other problems, we believe that it can be further improved.

There is the need for further research for several cases, such as the case where new facilities can be added and existing facilities can be deleted, the case where the demand points can be increased or decreased at various steps, etc.

Acknowledgement - We would like to thank Dr. Xiaotie Deng for useful discussion.

Research supported financially by Research Grants Council of Hong Kong under Grant RGC CityU 1133/99E.

REFERENCES

[1] Y. Azar, J. Naor and R. Rom, The competitiveness of on-line assignments, Journal of Algorithms 10, 221-237, 1995.
[2] I.Bongartz, P.H. Calamai and A.R. Conn, A projection method for l_{p} norm locationallocation problems. Mathematical Programming 66, 283-312, 1994.
[3] L. Cooper, Location-allocation problems. Operations Research 11, 331-343, 1963.
[4] R. Chen, Solution of minisum and minimax location-allocation problems with

Euclidean distances. Naval Research Logistic 30, 449-459, 1983.
[5] P. Crescenzi and V. Kann, A compendium of NP optimization problems, Manuscript 1995.
[6] Z. Dai and T.Y. Cheung, A new heuristic approach for the Euclidean p-median problem. Journal of the Operational Research Society 48, 950-960, 1997.
[7] Z. Drezner, On the conditional p-median problem, Computer and Operations Research 22, 525-530, 1995.
[8] J.A. Garay, I.S. Gopal, S. Kutten, Y. Mansour and M. Yung, Efficient on-line call control algorithms, Journal of Algorithms, 23, 180-194, 1997.
[9] M. Imase and B. M. Waxman, Dynamic Steiner tree problems, SIAM Journal on Discrete Mathematics 3, 369-384, 1991.
[10] B. Kalyaiiasundaram and K. Pruhs, On-line weighted matching, Journal of Algorithms 14, 478-488, 1993.
[11] R. F. Love and H. Juel, Properties and solution methods for large locationallocation problems. Journal of Operational Research Society 33, 443-452, 1982.
[12] C. Liu, R. Kao and A. Wang, Solving location-allocation problems with rectilinear distances by simulated annealing. Journal of the Operational Research Society 45, 1304-1315, 1994.
[13] M. S. Manasse, L. A. McGeoch and D.D. Sleator, Competitive algorithms for server problems, Journal of Algorithms 11, 208230, 1990.
[14] F. Maffioli and G. Righini, An annealing approach to multi-facility location problems in Euclidean space. Location Science 2, 205-222, 1994.
[15] R. Motwani, V. Saraswat and E. Torng, On-line scheduling with look ahead: multipass assembly lines, Technical Report of Stanford University, 1997.
[16] K. E. Rosing, An optimal method for solving the (generalized) multi-weber problem. European Journal of Operational Research 58, 414-426, 1992.
[17] J. Westbrook and D. Yan, Linear bounds for on-line Steiner problems, Information Processing Letters 55, 59-63, 1995.

