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Abstract
Let P and Q be two disjoint rectilinear
polygons in the plane. We say P and
Q are in Case 1 if there exists a
rectilinear line segment to connect
them; otherwise, we say they are in
Case 2. In this paper, we present
optimal algorithms for solving the
following problem. Given two
disjoint rectilinear polygons P and Q
in the plane, we want to add a
rectilinear line segment to connect
them when they are in Case 1, or add
two rectilinear line segments, one is
vertical and the other is horizontal, to
connect P and Q when they are in
Case 2. Our objective is to minimize
the maximum of the L;-distances
between points in one polygon and
points in the other polygon through
one or two line segments. Let V(P)
and V(Q) be the vertex sets of P and
Q, respectively, and let |[V(P)|=m and
[V(Q)[Fn. In this paper, we present
O(m+n) time algorithms for the above

two cases

1. Introduction
Let P be a simple polygon in the
plane. For points p, q 0P, the
geodesic path gp(p,q) is the shortest
path in P connecting p and q. The

geodesic distance gd(p,q) is the
length of gp(p,q). Let P and Q be two
disjoint polygons in the plane with
boundaries dP and 9Q, respectively.
Points pld P and qld Q are mutually
visible if the line segment ﬁ does not
enter the interior areas of P and Q.
The bridge problem is to find a pair
of mutually visible points pld P and
ql@ Q that minimize

max gd(p',p) + pq + max gd(q,q')
pCP q0Q

where [71 denotes the Euclidean
distance between points p and q. Let
V(P) and V(Q) be the vertex sets of P
and Q, respectively, and let n denote
max {|V(P),|/(Q)|}. In [5], the authors
considered three bridge problems
according to whether polygons are
convex or not. The results are

summarized in Table 1.

Problem Time complexity

convex-convex | O(n)
simple-convex | O(nlogn)

simple-simple O(n’)

Tablel
In this paper, we will consider the
same problem for rectilinear case, and

present an O(n) time algorithm to



solve it.

A simple polygon P is rectilinear if
the inner angles of all the vertices are
either TU2 or 3172. From now on,
whenever we talk of a polygon, we
mean a simple rectilinear polygon and
whenever we talk of a line segment,
we mean the line segment is vertical
or horizontal.

Let P and Q be two disjoint polygons
in the plane. We say P and Q are in
Case 1 if there exists a rectilinear line
segment to connect them; otherwise,
we say they are in Case 2.

Let t; and t, be two points in a
polygon P. The L;-distance between t;
and t, denoted as L;(t;,t;), is defined
to be the length of a shortest
rectilinear path connecting them
inside of P.

The goal of our paper is to solve the
following rectilinear bridge problem.
There are two cases.

Case 1: Suppose that polygons P and
Q are in Case 1. We want to find a
line segment ﬁ to connect P and Q,
where pld P and qld Q and the line
segment [71 does not enter the
interior areas of polygons P and Q.

Our objective is to minimize
Fi(p.q)=

max L, (p',p) +pq +maxL,(q,q),
ptP q0Q

where L,(p',p) and L,(q,q') denote
the L;-distances from p to a point
p'inside of a polygon P and from q to
a point q' inside of a polygon Q,
respectively. We call ﬁ as a Type 1

bridge of P and Q.
Case 2: Suppose that polygons P and
Q are in Case 2. We want to find two
line segments p_r and El , one is
vertical and the other is horizontal, to
connect P and Q, where pld P and
ql@ Q and the line segments 1; and
El do not enter the interior areas of
polygons P and Q. Our objective is to
minimize

Fa(p,q)=

L.(p',p) +pr +rq + max L '
rlrjl,gg 1(p',p) +pr+r1q rglgg 1(a,9")

We call p_r+El as a Type 2 bridge of
P and Q.
The organization of our paper is as
follows. In Section 2, we will present
some useful lemmas about the
problem. In Section 3, the detail of
the algorithm will be presented. Some
further works will be addressed at the
final section.

2. Some Useful Lemmas
Let pld P. The L;-farthest neighbour
of p, denoted as f(p), is a point that
has the maximal L;-distance in P to p.
In [6] it is shown that f(p) must be a
vertex of P. If f(p) is not unique, then
we choose the one which is the first
one when we traverse the boundary
from p clockwise.
Let p; and py[d P. We use the
notation [p;p2] to represent the
boundary edges from p; to p
clockwise.
From [1], we can have the following

two lemmas.



Lemma 2.1: Let p; and p,[doP. If
p20[p13f(p1)], then f(p2)O[f(p1);p1l-
Lemma 2.2: Let p; and p,[doP. If
f(p1)=f(p2)=vi and v; is not in [p;p:],
then f(x)=v; for all points x[[p;;p2].
Assume vil1V(P). We use B(vi) to
denote the set of points on the
boundary of P such that their
L;-farthest neighbours are v;. That is
B(vi)={x|xld P and f(x)=v;}. Based
upon Lemma 2.2, we have the
following lemma.

Lemma 2.3: Let v;(IV(P). If B(v;) is
not empty, then B(vi)=[t;;t;] where
t; and t, are two points on the
boundary of P.

Lemma 2.3 can be proved directly
from Lemma 2.2. For the sake of
explanation, t; and t, are said to be
the transition points of B(v;).

We use an example to explain B(vi) .
In Figure 1, polygon P has ten
vertices which numbered vy,...,vg
clockwise. For these wvertices, we
have B(vo)=[t2;ts], B(vi)=@, B(v2)= @,
B(v3)= @ B(va)= @ B(vs)=[t3;t],
B(ve)=[ta;t1], B(v7)= @ B(vs)= @ and
B(vo)=[t;;tz]. The boundary of P is
partitioned into B(vo)UIB(vs)B(ve)
B(v9). We use T(P) to record all of
the transition points. That is, 7(P)={t|
t is a transition point of B(vj) if
B(vy)#@ for 0<i<|V(P)|-1}. For our
example, T(P)={t;,t2,t3,t4}. In the next
section, we will prove that the
transition points are the endpoints of
our candidate Type 1 or Type 2
bridges.
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Figure 1
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From [6], we have the following
lemma.

Lemma 2.4: Suppose v;l(1V(P) and e
is an edge of P, then there is one
point t on e such that L(vjt)=
L1(vi,e) and Li(vi,x)= Li(vi,t) + tx,
for all points x[le.

We denote the unique point t on e
with Li(vi,t)=Li(vi,e) as the
L,-projection point of v; onto e. Let
Li(vit)= tie. The L,-distance function
from v; to x, for all points x[Je, can be
expressed as y(x)=L;(vi,x)= tx +t,
=|x-tHt, . If we consider edge e as
x-axis, then the L;-distance function
from v; to a point X in e can be
expressed as a spearhead, as shown in

Figure 2.




Lemma 2.5: Let e=m » Vi= f(vy)
and vi= f(v;+1). Then for all points
xUe, f(x) is either v; or v

Proof: If j=k, then this lemma is held under
Lemma 2.2. Now let us consider jZk. Assume
f(x)=v; for v,<x<v,,; and j<i<k. Let t; be the
L,-projection point of v; onto edge ¢ and t. be
the L;-distance from v; to edge e, for j<i<k.
Consider the set of functions {y;(x)=|x- t+t.
[for j<i<k}. We draw these functions in
Figure 3. It is clear that there are two groups
of parallel line segments in the plane. Since
vi= f(v;) and vi= f(v;41), the maximum values
of {y(v):. ¥u(w) » - . w(w)} and
(Vi) SYi1(Vern)s- > YV} are yj(vy) and
yi(Vi+1), respectively. Let yu.c be the
maximum value of yj(x) and y(x) for
ViSXSVyyq. That is, yma=max(y;(x),yx(x)) for
Vv,<x<vy. From geometric properties, we
know that any function of {y;(x)= |x- t+t.
for j<i<k} can not larger than y,, for
V,<x<V.41. Thus for any arbitrary point x of e,
f(x)=v; or vy.

Q.ED.
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Figure 3
We can find the set 7(P) of transition
points circularly. When e= m is
considered, we first find out f(v;) and

f(vi+1), wlo.g., assume they are v;

and vy respectively. From Lemma 2.5,
we know that edge e has 0 or 1
transition point. If j=k, then e has no
transition point. If j#k, then e has one
transition point. In [6], the author had
achieved the following results:
Suppose v[IV(P) and e is an edge of P.
The author can preprocess polygon P
in linear time such that both of the
L,-distance from v to e and the
L,-projection point of v onto e can be
answered in O(1) time. Thus we can
find the L;-distance from vj(vy) to e
and the L;-projection point of vj(vy)
onto e in O(1) time after linear time
preprocessing. We can draw the
spearheads of the the L,-distance
function from vj(vy) to a point X in e,
as shown in Figure 4. Thus we can

find the transition point on e in O(1)

time.
yx(X)
i(X)
L 1 (Vj 9 e)
Ll (Vka e) r
Vi £k t'J V'i+ 1

ti(t;) 1s the Li-projection point of vi(v;j)
onto e
Figure 4
Lemma 2.6: Given a polygon P with
m vertices, the set 7(P) of transition

points can be found in O(m) time.



Proof: In [6], the author can find f(v;), for
0<i<m-1, in O(m) time. As discussed above,
we can find one transition point in O(1) time.
Since there are at most m transition points of
P, it needs O(m) time to find all of the
transition points of P.

Q.E.D.

Given a polygon P with m vertices,
we use L;P(P) to record the set of

Li-projection points from a vertex v;

onto an edge e=v,v,, , 0<iSm-I,
where vi=f(x) for xUe. Note that v;
may not be unique, but based upon
Lemma 2.5, the number of v; is at
most two. In the next section, we will
show that the set L;P(P) of
L;-projection points may be also the
end points of our candidate Type 1 or
Type 2 bridges.

We can also find the set L;P(P) of

L;-projection points circularly. When

€E=V.V.

171+l

out f(vi) and f(vis1), w.l.o.g., assume

is considered, we first find

they are v; and vy respectively. Using
the results of [6], we can find the
L,-projection points from vertices v;
and vi onto e in O(1) time. Thus, we
have the following Lemma.

Lemma 2.7: Given a polygon P with
m vertices, the set L;P(P) of
L;-projection points can be found
in O(m) time.

3. Geometric Analysis and the

Algorithm

Lemma 3.1: Suppose that polygons
P and Q are in Case 1. Then there
exists an optimal Type 1 bridge p_q
of P and Q such that p and q must

be falling in one of the following
two cases.

() pOw(P) OT(P) OL,P(P), or

(2) qUMQ) OT(Q) OLP(Q).

Proof: Suppose that IE is an optimal Type 1

bridge of P and Q and pOV(P) O7(P) UL,P(P)
and qOV(Q) O7(Q) DOL,PQ). W.lo.g.,

assume IE is horizontal and does not overlap

any edges of P and Q.

Let us consider two Type 1 bridges
ml and ﬁz that satisfy one of the above
two conditions and are nearest to ﬁ at the
upper and lower sides of ﬁ, respectively. It
is clear that the points p,p; and p, are in the
same edge of P and the points q,q; and q, are
also in the same edge of Q. Therefore
E:ml :ﬁz . Based upon Lemma 2.5,
f(p))=f(p)=f(p)  and
f(q1)=f(q)=f(qn). Let vi=f(p))=f(p)=f(p>) and
vi’= f(q)=f(q)=f(q2) where v;lV(P) and
vi’OV(Q). The L,-distance from v; to the

points in [p;p,] is monotone inscreasing or

we  know  that

o

&

decreasing. Therefore we have L;(p,v;) > min
(Li(p1,vi),Li(p2,vi))- W.l.o.g., assume Li(py,v;)
<Li(p,v;). From Lemma 2.4, we know that
Ll(p,Vi)—Ll(pz,Vi):ﬁ. Now, let us consider
polygon Q. The L;-distance from v;’ to the
points in [qp;q;] is also monotone increasing
or decreasing. Therefore Li(q,v;) >
min(Li(q1,vi), Li(q,v’). If Li(qvy) >
Li(q2,vy), then Fi(p,q)>Fi(p2,q2) and our
assumption is false, i.e., IE is not an optimal

Type 1 bridge. Otherwise, we know that
Li(q2,vi)-L1(q,vi)=q2q . Sincep,p =q,q,
Fi(p.9)=F1(p>,q2). P,q, is also an optimal

Type 1 bridge.

Q.E.D.

Using the same reasoning of Lemma
3.1, we can have the following
lemma.

Lemma 3.2: Suppose that polygons
P and Q are in Case 2. Then there



exists an optimal Type 2 bridge
[; +a of P and Q such that p(V(P)
d7(P) OL,P(P) and qOV(Q) OT(Q)
OL:P(Q).

Let us discuss how to solve Case 2 of
the rectilinear bridge problem first.
Base upon Lemma 3.2, we can
function

transform the objective

F>(p,q) of Case 2 into
Fa(p,@)=Li(p.f(p))+ pr +rq +Li(q,f(q)),
for pUM(P) OT(P) UL,P(P) and
qUMQ) UT(Q) LL;P(Q).

Since there are O(n?) pairs in the
above objective function, it needs
O(n?) time to find the minimum value
from these pairs by a bruteforce
method. Before we present our linear
time algorithm, some notations must
be introduced first. It is clear that
polygons P and Q are in Case 2 iff
there exist two lines /; and /,, one is
vertical and the other is horizontal,
such that polygons P and Q are in
different sides of them.W.lo.g.,
assume /; and /, are x and y axises,
respectively, and polygons P and Q
are in the first and third quadrants,
respectively. For the sake of
explanation, we say r is a turning
point of a Type 2 bridge p_r+El It is
clear that r is in the second or fourth
quadrants. Let pld P and / be a
vertical or horizontal line. We say p
and / are mutually visible if there
exists a point x[J/ such that p and x
are mutually visible. We use /;(P) and
L(P) [11(Q) and 5(Q)] to denote the
subset of V(P) OT(P) OL,P(P) [M(Q)

O7(Q) UL;P(Q)] that are mutually
visible from /; and /,, respectively.
For every point p in the plane, we use
X, and y, to denote the x and y
coordinates of p, respectively. Then
the objective function F5(p,q) for

Case 2 can be transformed into

F(p,)=Li1(p,f(p))+xp|lypl+

Li(q,f(@)+ [xql*lyqls
for pUL(P) and qU/(Q), if the

turning point r is in the second
quadrant.

for pU/i(P) and qU(Q), if the
turning point r is in the fourth
quadrant.

Let g (p)=Li(p.f(p)+ [xpltlypland p
(9= Li(q.f(@)* [Xq[*lyql Then the
objective function F»(p,q) for Case 2
can be transformed into

Fy(p,q)=H (p)t K (q)

for pUL(P) and qU/(Q), if the
turning point r is in the second
quadrant.

for pU/i(P) and qU(Q), if the
turning point r is in the fourth
quadrant.

The following is the formal algorithm
for finding an optimal Type 2 bridge
between polygons P and Q.
Algorithm
Optimal Type 2 bridge(P,Q)

Input: Two polygons P and Q in
Case 2

Output: An optimal Type 2 bridge
priq

1: Find the sets 7(P) and T(Q) of
transition points and the sets L;P(P)
and L;P(Q) of L,-projection points.



2: Find [,(P), L(P), 1;(Q) and L(Q).
3: Let p(p)) =p%}f£)“ @), K (p2)

= min , = min and
[foin ! (P), K (q1) Jmun M ©))

H(q2) =qr51}21(r(5) K (q).

4. If Fr(p1,92) <Fa2(p2,q1) then

return p;r +1q, where r=(Xp,,yq,);

otherwise, return p,r + rq, where

1=(Xq;5Yp,)-

The correctness of  Algorithm
Optimal Type 2 bridge 1is derived
from Lemma 3.2, we will show that it
needs linear time to execute it.
Lemma 3.3: Suppose that polygons
P and Q are in Case 2, we can find
an optimal Type 2 bridge in linear
time.

Proof: Based upon Lemmas 2.6 and 2.7, it
needs linear time to execute Step 1. Step 2
can be done in linear time by using the result

of [4]. It needs linear time to execute Step 3
[6]. Step 4 can be done in O(1) time.

Q.E.D.

Now, let us consider Case 1. Base
upon Lemma 3.1, we know that one
endpoint of the optimal Type 1 bridge
must be in V(P) UT(P) UL;P(P)
UMQ) UT(Q) ULP(Q). In [4], the
author proposed the following
problem. Given a polygonal curve C
with vertices vi,vy,...,vn, extend two
horizontal segments from each vertex
v;, one in each direction until it meets
another point of C. In [4], the author

can solve this problem in O(n) time.

Using the algorithm of [4], we can
find the candidate Type 1 bridges in
linear time. The following is the
formal algorithm for finding an
optimal Type 1 bridge between
polygons P and Q.

Algorithm
Optimal Type 1 bridge(P,Q)

Input: Two polygons P and Q in
Case 1
Output: An
bridge pq

1: Candidate bridge set=@.

2: Find the sets 7(P) and 7(Q) of
transition points and the sets L;P(P)

optimal Type 1

and L;P(Q) of L;-projection points.

3: For every element p in {V(P) UT(P)
[L,P(P)}, find a set of points S4(d Q,
such thatpqis a Type 1 bridge of
polygons P and Q for qOIS,
Candidate bridge set=
Candidate_bridge setd{ pq } for
qUS,.

4: For every element q in {/(Q)
U7(Q) LL;P(Q)}, find a set of points
S,@ P, such that pqis a Type 1
bridge of polygons P and Q for pLIS,.
Candidate bridge set=
Candidate_bridge setd{ pq } for
pUS,.

5:Evaluate the objective function
Fi(p,q) for every element pq in
Candidate bridge set.

6:Output p_qwhich is an element in
Candidate bridge set and has a
minimum value of the objective
function F(p,q).

The correctness of  Algorithm



Optimal Type 1 bridge is derived
from Lemma 3.1. We will show that it
needs linear time to execute it.
Lemma 3.4: Suppose that P and Q
are in Case 1, we can find an
optimal Type 1 bridge in linear
time.

Proof: Based upon Lemmas 2.6 and 2.7, it
needs linear time to execute Step 2 . Using
the results of [4], it needs (m+n) time to do
Steps 3 and 4. And using the rseults of [6],
for every  element IE of  the
Candidate bridge set, we can evaluate the
objective function Fi(p,q) in O(1) time after
linear time preproceing. Therefore, it needs
O(m+n) time to execute Step 5. It needs
O(m+n) time to execute Step 6 by finding the
minimum value from the O(m+n) values.
Q.E.D.

Based upon Lemmas 3.3 and 3.4, we
can have the following theorem.
Theorem 3.5:

non-intersecting polygons P and Q

Given two

with m and n vertices, respectively.
We can solve the rectilinear bridge
problem in O(m+n) time.

4. Conclusions

In this paper we present an optimal
linear time algorithm to solve the
optimal bridge problem under the
rectilinear case. It is simple and easy
to implement. We think this algorithm
may have some applications in the
VLSI layout design and the Euclidean
Steiner tree problems.

A natural generalization of the
considered problem is to modify the

objective function, for example,

rectilinear link distance metric[2] or
combined L; and link distance
metric[3].
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