
Locality-Preserving Dynamic Load Balancing for Data-Parallel

Applications on Distributed-Memory Multiprocessors

Pangfeng Liu

Chih-Hsuae Yang

Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi, Taiwan, R.O.C.

pangfeng@cs.ccu.edu.tw

Abstract

Load balancing and data locality are the two most
important factors in the performance of parallel
programs on distributed-memory multiprocessors.
A good balancing scheme should evenly distribute
the workload among the available processors, and
locate the tasks close to their data so as to reduce
communication and idle time.

In this paper, we study the load balancing prob-
lem of data-parallel loops with predictable neigh-
borhood data references. The loops are character-
ized by variable and unpredictable execution time
due to dynamic external workload. Nevertheless
the data referenced by each loop iteration exploits
spatial locality of stencil references. We combine
an initial static BLOCK scheduling and a dynamic
scheduling based on work stealing. Data locality is
preserved by careful restrictions on the tasks that
can be migrated. Experimental results on a net-
work of workstations are reported.

1 Introduction

To achieve maximum performance, a parallel pro-
gram must evenly distribute the workload among
the available processors, and locate the tasks close
to their data. If the workload is not balanced
among processors, a heavily loaded processor may
be busy executing tasks assigned to it while other
processors sit idle. This will degrade the overall
parallel speedup since the aggregated CPU com-
puting power is not fully utilized. If tasks are not
placed close to their data, then the processors will
have to synchronize and communicate with one an-
other to acquire the necessary data for computa-

tion.

In cases where the structure of the program is
�xed and the execution time of tasks are known
before program execution, static scheduling poli-
cies can be used to �nd appropriate assignment of
tasks to processors and data to memories. In many
cases however, dynamic policies for load balancing
and locality management must be used to deter-
mine this assignment. The challenges of load bal-
ancing for dynamic problems can be summarized
as follows.

1. The amount of computation required for each
task can vary tremendously between tasks and
may change dynamically during program ex-
ecution, so it is not su�cient to map equal
numbers of tasks among processors; rather,
the work must be equally distributed among
processors in a dynamic manner.

2. The data reference patterns may be irregular
and dynamic; as they evolve, a good map-
ping must change adaptively in order to en-
sure good data locality.

3. The system load on the parallel machine may
vary dynamically and is usually unpredictable.
This is true for non-dedicated parallel ma-
chines, network of workstations and PC clus-
ters, since a parallel process on such platforms
not only has to compete with other parallel
processes but also with other jobs submitted
by the interactive users. A change of a sin-
gle processor load can easily defeat a sophisti-
cated strategy for task (and data) assignment,
if we do not take this factor into consideration.

A good balancing scheme should address all
these issues satisfactorily. However, these issues

1

are not necessarily independent; there are often
con
icts between load balancing and data locality.
In this paper, we study the load balancing problem
of data-parallel computations which exploit neigh-
borhood data references. These computations are
usually expressed by means of parallel loops char-
acterized by iteration costs which are variable and
often unpredictable, due to the dynamically chang-
ing external load. On the other hand, the data
referenced by each loop iteration exploits spatial
locality of stencil references (for example, regular
5-point stencils on regular grids, irregular n-point
stencils on unstructured grids), so that boundary
elements can be identi�ed once a partitioning strat-
egy is given, and optimizations such as message
vectorization and message aggregation can be ap-
plied. A large number of applications fall into this
category. For example, solving PDEs and ODEs
using iterative methods.

Many load-balancing schemes work in an \ac-
tive" way. For example, many loop partition-
ing algorithms actively estimate the load of each
loop iteration, then try to �nd out a good way
to distribute them. Also in many task scheduling
method, the scheduling algorithms try to partition
the task DAG. Be it partitioning the loop, or the
data set, or the task graph, the load distributer
must know the load information about every el-
ements it wants to partition (loop iterations, the
amount of computation on a data, or on a subtask)
and make correct judgment accordingly. Unfortu-
nately, if the load balancer cannot acquire accurate
load information, it could make a wrong decision.
As a result the system load information must be
constantly monitored and updated.

One \passive" approach of load distribution is
to put all the work in a job queue and let any
idle processor grab a job from this pool and exe-
cute it. This approach is conceptually simple, and
can be easily implemented on a shared memory en-
vironment. However, this approach may perform
poorly due to lack of management for data locality
{ a processor may get tasks from the pool that do
not share any data, or many tasks that require re-
mote data. Another problem the job pool approach
might have is that it uses a global data structure to
store the jobs. The global queue requires a central-
ized control on the integrity of the data structure
and will create \hot spots" in data access since
every processor can only get job from a single pro-
cessor. In addition, this would be di�cult to im-
plement in a distributed memory environment, in

which processors can only receive remote data by
message passing.

In this paper, we propose a passive scheduling
system, WBRT, that achieves load balancing and
preserves data locality at the same time. We com-
bine static scheduling and dynamic scheduling such
that initially data are BLOCK distributed to pre-
serve data locality for stencil-type data references,
while dynamic load balancing is activated only
when load imbalance occurs during program execu-
tion. Furthermore, to avoid synchronization over-
head required in dynamic scheduling based on cen-
tralized dispatcher, we employ a fully distributed
scheduling policy that constantly monitors and up-
dates the system load information. Furthermore,
to preserve data locality during program execution,
tasks are migrated only if they form a contiguous
domain. As a result an overloaded processor trans-
fers tasks and data in the way that preserves the
BLOCK distribution as much as possible, so that
subsequent communication for executing the pro-
gram can be minimized. Finally, we also duplicate
boundary elements (shadowing) between adjacent
processors to avoid inter-processor communication
for computation of boundary elements and also to
improve vectorization of the loop body, hence re-
ducing computation time of each processor.

The rest of the paper is organized as follows.
Section 2 reviews some related works. Section 3
outlines the implementations of the WBRT sys-
tem. Section 4 reports our experimental results on
a network of UltraSPARC workstations, and Sec-
tion 5 concludes.

2 Related Work

Many studies have been carried out on various
dynamic load balancing strategies for distributed-
memory parallel computing platforms. Rudolph
and Polychronopoulos [9] implemented and eval-
uated share-memory scheduling algorithms in the
iPSC/2 hypercube multicomputer. It was not un-
til early 90's that load balancing algorithms for
distributed-memory machines were reported in lit-
erature [5, 10, 4, 8, 2, 3]. Liu et. al. pro-
posed a two-phase Safe Self-Scheduling (SSS) [5].
In the �rst (compile-time) phase, a subset of the
loop iterations is distributed uniformly among the
processors. In the second (run-time) phase, an
idle processor sends task request to the scheduler.
The scheduler then chooses and assigns dynam-

ically a chunk of not yet executed iterations to
each requesting processor. Distributed Saft Self-
Scheduling (DSSS), a distributed version of SSS, is
reported in [10]. The data is partitioned into small
blocks of the same size and distributed with partial
redundancy among all the processors. Unlike SSS,
DSSS assigns the chunks of iterations to the pro-
cessors that have the corresponding data. DSSS
is further generalized in [4]. Plata and Rivera [8]
proposed a two-level scheme (SDD) in which static
scheduling and dynamic scheduling overlap. In
SDD, data-locality is considered, and the sched-
uler tries to predict in advance the workload unbal-
ance in order to obtain a better load-balance and
to reduce the communication overhead. While the
processors are executing their statically distributed
workload, a dynamic redistribution of the rest of
the workload is in action. A similar approach fo-
cusing on adaptive data placement for load balanc-
ing is reported in [6].

The di�culty of load balancing is in deciding
whether work migration is bene�cial or not. None
of the above balancing strategies has addressed
this issue however. The SUPPLE system [7] de-
termines whether work migration is pro�table by
comparing current load with a machine-dependent
threadhold. When migration is determined, an un-
loaded processor chooses a victim from overloaded
processors using a round-robin policy. Upon re-
ceiving job request, a victim processor chooses the
appropriate number of loop iteraions to be moved
using a modi�ed Factoring scheme.

The idea of work stealing is not new. Cilk [1, 11]
is a multi-thread language with runtime support
for dynamic load balancing. At runtime, an idle
processor steals work from a random victim pro-
cessor by migrating a task from the top of the
job queue in the victim processor. On a shared
memory environment Cilk reported good speedup
for various applications. However, the random-
ized work stealing strategy may perform poorly
for data-parallel applications, where data locality
is a critical factor in code performance. Cilk does
not make an attempt to analyze the pro�tability
of work stealing either. A processor begins to steal
works when it becomes idle, and work migration is
always carried out whenever there are unprocessed
jobs on overloaded processors.

3 WBRT System

WBRT system is a runtime environment for par-
allel programming on distributed networks. The
main features of WBRT includes a high-level pro-
gramming interface for array-based parallel pro-
gramming, a partitioner and a WBRT scheduler
for automatic data distribution and load balancing,
and a communicator for data delivery and low-level
message-passing over the network.

WBRT provides a global view of the data, in
which the data structure is treated as a whole, with
operators that manipulate individual elements and
implicitly iterate over substructures. When a
global array is instantiated, it creates a constituent
local array on each processor. Whenever a kernel
operator associated with global array is invoked,
the operation is delegated to each local array. If
communication is required, it is performed through
the communicator.

Conceptually, WBRT array operations are de-
composed into parallel tasks, which are initially
distributed to available processors following the
\owner-computes-rules". When the program starts
execution, every processor self-schedules its own
portion of the tasks, and when the need arises,
tasks at processor boundaries are migrated among
processors by work stealing technique.

3.1 Programming Model

Internally, WBRT implements an arrays based
on the Single-Program-Multiple-Data (SPMD)
model, in which every processor executes the same
program operating on the portion of the array
that are mapped to that processor. Since inter-
processor communication may occur frequently
during load balancing and actual program execu-
tion and the message start-up cost is usually high
for network transmission, one-dimensional parti-
tion is adopted to minimize number of messages.

WhenWBRT initializes, it is given the size of the
global array by the application. Then on each pro-
cessor WBRT allocates a memory segment for this
global data according to its current workload and
memory usage, which results in a variable-size one
dimensional block partitioning. After the global
data structure is partitioned and mapped into lo-
cal memory segments, each segment is partitioned
into chunks consisting of a �xed number of adjacent
elements of the global data. This chunk of data is

A task

P2

P0

(2 tasks)

P1

(4 tasks)

(3 tasks)

variable-size BLOCK distribution among 3 processors

Figure 1: A mapping of data array to processors.
Each task computes two data elements and the
padding size is one.

called a task (Figure 1). The user code can retrieve
a task fromWBRT system, and perform operations
in data-parallel fashion. The WBRT system pro-
vides data and the user provides the function that
will be applied on the data.

3.2 WBRT API

WBRT provides a simple interface that the ap-
plication program can retrieve the tasks and ex-
ecute them. Figure 2 show how a sample code
communicates with WBRT runtime system. First
the application calls a WBRT initialization func-
tion WBRT init collectively. The application spec-
i�es the size of the global array, the number of
data in each task, the boundary width, and two
function pointers that initializes and computes the
data in a task (InitData and DoTask respectively).
Finally the WBRT init returns a WBRT handler
by which the application can communicate with
WBRT. Then the application calls WBRT Run to
start the execution, and WBRT Finalize to �nish.

A WBRT handler (WBRT H) is the window that
the application can communicates with the WBRT
runtime system. The structure records detailed in-
formation of the runtime environment, including
the geometry of the global array, the padding size,
the task size. Also it keeps a list of pointers to
those tasks that have not been done, so that they
can be exported to other processors for load bal-
ancing purposes. Figure 3 shows the handler in
details.

WBRT users can start the execution by call-
ing WBRT Run, whose default implementation is also

#include "WBRT.h"

#define D_ARRAY_SIZE 500
#define BOUNDARY 1
#define TASK_SIZE 5
int ARRAY_SIZE = 20000;

typedef struct{
int org[D_ARRAY_SIZE];
int res[D_ARRAY_SIZE] ;

} DATA;

/* Major WBRT interface */

void WBRT_Init(int argc, char **argv, int *array_size,
int task_size, int boundary_prefetch,

WBRT_H* rh, void(*INIT_DATA)(DATA*),
void (*TASKFUNC)(Task*));

void WBRT_Run(WBRT_H *wrh);
void WBRT_Finalize();

/* User functions to manipulate the data in a Task */

void DoTask(Task *);
void InitData(DATA*);

int main(int argc, char *argv[])
{

WBRT_H wrh;
WBRT_Init(argc, argv, &ARRAY_SIZE, TASK_SIZE, BOUNDARY,
&wrh, InitData, DoTask);

WBRT_Run(&wrh);
WBRT_Finalize();

}

Figure 2: A sample application using WBRT in-
terface.

given in Figure 3. The WBRT Run function repeat-
edly calls WBRT Gettask to get a task for execu-
tion. This task returned by the WBRT may be a
local task or a remote one that were stolen from
other processors. In other words, the task stealing
is transparent to the application and it does not
need to know where the task came from. All the
details of sending/receiving data associated with
the migrating tasks are handled by WBRT.

3.3 Implementation Details

This subsection describes the details of the WBRT
implementation. A WBRT execution consists of
two threads { AP and RT running on every proces-
sor in the system. The AP is the user application
thread and the RT is the runtime system thread.
An AP can only request tasks from the correspond-
ing RT on the same processor. RTs work together
to handle all the low level details of work steal-
ing and task migration, without the involvement
of APs.

/* WBRT Handler */

typedef struct {
int id; /* MPI processor ID */
int proc_num; /* MPI total processor number */
pthread_t wbrt_thr_id; /* Runtime system thread id */
pthread_t app_thr_id; /* Application thread id */

int array_len; /* Array total data element number */
int task_len; /* Task data element number */
int boundary; /* Boundary effective data number */

int total_task_num; /* Runtime total task number */

DATA *data_array; /* Data pointer array */
char *dirty_array; /* Dirty bit array */

TaskList* finished_tasks; /* Link list of finished tasks */
TaskList* local_tasks; /* Link list of local tasks */
Task* working_task; /* Pointer to current working task */

void (*InitData)(DATA*);
void (*DoTask)(Task*); /* Function pointer of DoTask */

} WBRT_H;

Task *WBRT_Gettask(WBRT_H* wrh);

void WBRT_Run(WBRT_H *wrh)
{

Task *task ;
while((task = WBRT_Gettask(wrh)) != NULL)
(wrh->DoTask)(task);

}

Figure 3: major data structures in WBRT and
the default implementation of implementation of
WBRT Run.

Initial tasks assignment

At the beginning of execution WBRT distributes
the workload according to the initial load of pro-
cessors. First each processor test-runs a task to
determine its current load, then the processors dis-
tribute all the tasks among themselves accordingly.
If a processor is overloaded, it will be given less
tasks. The load information obtained this way is
most accurate so that actual workload, not simply
the number of tasks, is evenly distributed. For-
mally let the load on the i-th processor Pi be

1

Li

and Nall be the total number of tasks. The num-
ber of tasks given to the i-th processor Pi, denoted
by Ni, is given as follows.

Ni = Nall � (
1

LiP
1

L

) (1)

During the initial distribution of tasks to pro-
cessors we also measure the network transmission
time. This information is used to determine the
communication overheads in sending a task to a
remote processor, so that we can decide if it is
worthwhile to perform work-stealing. We obtain
this information at this stage for free since the data

have to be transmitted to individual processor any-
way.

Work Stealing

The most important function of WBRT is work
stealing. When an AP requests work from a corre-
sponding RT by WBRT Gettask, the corresponding
RT will give it a local task if one is available, oth-
erwise the RT will try to steal a set of contiguous
tasks from other processors. Note that these stolen
tasks may not be adjacent to those in the thief
processors. By forcing the processors to steal only
contiguous tasks, we prevent the data fragmenta-
tion and extra overhead in both computation and
communication. See Figure 4 for an illustration.

P3

P2

P2

P3

(b) after work stealing of P1

P1

P1

(a) before work stealing of P1

(1 tasks)

(3 task)

(5 tasks)

(3 tasks)

(3 task)

(3 tasks)

Figure 4: A mapping of 9 tasks to three proces-
sors. (a) and (b) show the situation before and
after processor 1 steals one task from processor 2.

A processor must determine if it is underloaded
before performing work stealing. Let Si be the
time for Pi to �nish a task under current workload,
Ri be the number of remaining tasks in Pi, then
we de�ne Wi to be the amount of time to Pi to
�nish its tasks.

Wi = Ri � Si (2)

We de�ne that a processor Pi is underloaded if
Wi < k �Wavg , where k is a constant that we can
tune by experiments, and Wavg is the sum of all
workload.

A underloaded processor locates its victim for
task stealing by message passing. A underloaded
processor sends a request messages to each of the

other processors. When a processor receives this
request, it will return an reply message, by which
the requesting processor can determine if it wants
to steal tasks from the replying processor.

A reply message from Pj consists of Sj , Rj , and
Tj , namely the current computation cost per task,
the number of remaining tasks, and the time for Pi

to send a task to other processors. The requesting
processor Pi uses these information to select the
victim processor to steal tasks from. First Pi com-
pares the Wj received with its own Wj , then con-
sider only those processors that have more work-
load than itself as possible victims. In other words,
an overloaded processor will never try to steal from
a underloaded one. In addition, after Pi realizes
that Pj has less workload, it will not send any fur-
ther request message to Pj in order to reduce com-
munication costs.

To determine the most suitable victim processor
we de�ne a cost ratio for a possible victim processor
Pj .

Cj =
Tj

Wj

(3)

This ratio indicates the relative cost of stealing
tasks from Pj among other choices. A processor
with a small Cj ratio is either overloaded or can
send tasks to others very quickly, both indicate
that it is a good candidate for work stealing. As a
result, we compare Cj with a �xed threshold � and
ignore those processors that have high Cj values,
since they are either underloaded or will incur high
migration costs. From the remaining possible vic-
tim processors, we choose the one with the smallest
Cj to steal from. However, if there is no possible
victim, i.e. all the processors have Cj larger than
�, the requesting processors will not try to steal
workload from others. We argue that under such
a circumstance it will not be bene�cial to migrate
the tasks despite of load imbalance, since the com-
munication overheads will be high.

To prevent unnecessary task migrations, a un-
derloaded processor can issue \false" reply mes-
sages. For example, to prevent the tasks of a un-
derloaded processor Pj from being stolen by an-
other processor that has even less workload, Pj

will issue reply message with Rj set to 0. In other
words, when a processor decides that its workload
is under a certain threshold and it will not be ben-
e�cial to migrate the tasks, it issues this message
so that other processors will not bother it again.

After issuing such reply, all the local tasks of Pj

will stay in Pj until the execution ends.

After having located the victim processor, the
underloaded processor will transfer tasks from the
victim to itself. The overloaded processor makes
sure the tasks that will be sent out form a con-
tiguous block so that data locality is preserved,
and only up to half of the tasks are allowed to
be transferred. In addition, we restrict the num-
ber of contiguous blocks a processor domain can
have. it will be impractical, if not impossible, to
maintain a block partition at all times, since the
most suitable victim processor for P , as far as the
C cost is concerned, may not be adjacent to P . To
distribute workload and maintain data locality si-
multaneously, we make the following comprise that
each processor can have up to a small number of
contiguous segments. If the number of segments in
a processor P reaches the upper bound, any further
tasks that P wants to steal must be adjacent to the
existing segments in P . These restrictions reduce
high communication costs in task migration, and
data fragmentation due to work stealing.

To further reduce the communication cost we re-
duce the number of request messages being sent.
When a remote processor return a high Ci value,
the requesting processor notes the fact and will not
send any further request for a given period of time.
We argue that since Pj is now underloaded or hav-
ing large communication costs, the situation will
not improve in a very short period of time.

Boundary Padding and Direct Reference

WBRT also maintains a read-only padding (or
shadowing) around the processor domain bound-
ary. This size of this padding can be set during
WBRT init. This padding is maintained by WBRT
to simplify the application code. Each task re-
turned by WBRT gettask is automatically padded
by WBRT so that user code can access the data
in the padding. In addition, when the boundary
between two processors is changed, (e.g. due to
work stealing), the padding is automatically ad-
justed by WBRT. The existing of padding is com-
pletely transparent to applications.

WBRT also supports direct access to remote
data. User application can call WBRT request to
request a data in the global array by index. Simi-
lar to the padding, this access is read-only.

Synchronization

The scheduling between AP and RT is important.
We implement AP and RT as two Pthreads in one
processor. The RT will wake up every 500 mi-
cro second to see if there is anything it needs to
do. If there is then it will do the work, possibly
communicate with other RTs in order to �nish it.
Otherwise it will go back to sleep so that AP can
use the CPU. There is a tradeo� between shorter
response time and better CPU utilization by AP
in picking the length of the sleep. We are working
on a new version in which RT will wake up on de-
mand. That is, RT will only wake up when it is
interrupted by its AP or other RT. There will be
extra programming e�ort and a careful investiga-
tion of the possible performance gain is needed.

4 Experimental Results

We design a series of experiments to evaluate the
e�ciency of WBRT. These experiments are con-
ducted on a cluster of four Sun Dual UltraSPARC
II workstations. Each Dual UltraSPARC II is run-
ning at 296 with 1Gega bytes of memory. All work-
stations run SunOS release 5.6, and we use mpich
1.1.2 for message-passing, and POSIX thread for
multi-threading. The application is a graphic re-
laxation process that computes the value of every
pixel as the average of its four neighbors. The com-
putation domain is a N by 500 matrix where N is
between 1000 and 10000.

WBRT runtime overheads

First we examine the overheads due to WBRT.
We run the graphic relaxation code sequentially
and compare the results with WBRT with/without
workload stealing. Di�erent problem sizes are
tested. Figure 5 shows that the speedup on a
four node cluster, with WBRT work stealing, is be-
tween 3.46 to 3.81, depending on the problem size,
the speedup number improves. This high speedup
number indicates that WBRT API only introduces
a very small amount of overhead.

E�ectiveness in load balancing

The second set of experiments examine if work-
stealing can e�ectively balance the load on a real
cluster system. We run the same relaxation code

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sp
ee

d
up

 r
at

io

data array size

no work-stealing
with work-stealing

Figure 5: Speedup of the relaxation code with and
without work stealing the relaxation code sequen-
tially, on a cluster of four Dual UltarSPARC II
workstations.

on the UltraSPARC cluster, and compare the tim-
ing from with and without work stealing. The clus-
ter is located at Academia Sinica and is heavily
used from time to time. Figure 6 shows the load
on this cluster in a 24 hour period.

1

2

3

4

5

6

7

8

0 5 10 15 20

sy
st

em
 lo

ad

time of the day

Maximum load
Average load

Figure 6: Maximum and average system load on a
cluster of four Dual UltraSPARC II workstations
during a 24 hour period.

On this cluster we run the relaxation code with
WBRT. Each timeing data point is the average
from ten test runs. The experiments show the the
same code with work-stealing runs about 1.5 time
as fast as without (Figure 7). This signi�cant im-
provement indicates that WBRT does reduce the
parallel execution time on a multiprocessor with
dynamic external workload.

Figure 7 also indicates that the execution time
with work stealing increases more smoothly than
without. In a system with dynamic workload, the

execution time can be greatly a�ected by the
uc-
tuation of system load. Despite the fact that we
have taken multiple samples in time and compute
the average, we can still see the timing
uctuates
slightly when work stealing is disabled. In contrast
WBRT with work stealing gives much predictable,
and also shorter, execution time.

0

50

100

150

200

250

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

data array size

no work-stealing
with work-stealing

Figure 7: Timing results from running the relax-
ation code on four processors with and without
work-stealing respectively.

5 Conclusion

In this paper we show that the simple technique of
work-stealing improves parallel e�ciency. The key
observation is that by letting the idle processors
steal tasks from busy processors, every processor
can be busy all the time. Data locality is impor-
tant to parallel execution e�ciency. By restricting
that tasks must be migrated as contiguous blocks,
data locality can be preserved. This is as impor-
tant as even distribution of workload, especially in
a distributed memory multiprocessor.

Preliminary experiments show that WBRT work
stealing e�ectively balances the load on a real clus-
ter system. We run a relaxation code on a four
node UltraSPARC II cluster, and report that the
same code with work-stealing runs about 1.5 time
as fast as without. This improvement indicates
that WBRT does reduce the parallel execution
time on a multiprocessor with dynamically chang-
ing external workload. In addition, WBRT with
work stealing also gives much more predictable ex-
ecution time than without.

References

[1] R. Blumofe and C.E. Leiserson. Scheduling
multithreaded computations by work steal-
ing. In Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science,
Nov 1994.

[2] M. Hamdi and C.-K. Lee. Dynamic load bal-
ancing of data parallel applications on a dis-
tributed network. In ACM International Con-
ference on Supercomputing, pages 170{179,
Barcelona, Spain, 1995.

[3] T. Y. Lee, C. S. Raghavendra, and H. Sivara-
man. A practical scheduling scheme for non-
uniform parallel loops on distributed-memory
parallel computers. In Proceedings of HICSS-
29, pages 243{250, Jan 1996.

[4] J. Liu and V. A. Saletore. Self-scheduling
on distributed-memory machines. In IEEE
Supercomputing Conference, pages 814{823,
Nov. 1993.

[5] J. Liu, V. A. Saletore, and T. G. Lewis.
Scheduling parallel loops with variable length
iteration execution times on parallel comput-
ers. In Proceedings of 5th IASTED-ISMM In-
ternational Conference on Parallel and Dis-
tributed Computing and Systems, Oct. 1992.

[6] D. K. Lowenthal and G. R. Andrews. Adap-
tive data placement for distributed-memory
machines. In Internationl Parallel Process-
ing Symposium (IPPS96), Honolulu, Hawaii,
1996.

[7] S. Orlando and R. Perego. A support for non-
uniform parallel loops and its application to a
Flame simulation code. In Irregular'97, pages
186{197, 1997.

[8] O. Plata and F. Rivera. Combining static and
dynamic scheduling on distributed-memory
multiprocessors. In the 1994 ACM Interna-
tional Conference on Supercomputing, pages
186{195, July 1994.

[9] D. C. Rudolph and C. D. Polychronopoulos.
An e�cient message-passing scheduler based
on guided self-scheduling. In ACM Interna-
tional Conference on Supercomputing, pages
50{61, July 1989.

[10] V. A. Saletore, J. Liu, and B. Y. Lam.
Scheduling non-uniform parallel loops on dis-
tributed memory machines. In IEEE Interna-
tional Conference on System Sciences, pages
516{525, Jan. 1993.

[11] Supercomputing Technologies Group, MIT
Laboratory for Computer Science. Cilk 5.2
Reference Manual, 1998.

