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Abstract 
An efficient design for low-complexity and fast 

computation for the bit-parallel systolic architecture is of 
practical concern in many digital circuit designs. This 
paper presents a class of novel bit-parallel systolic 
multiplier over the finite field GF(2m), which is 
generated from the irreducible all one polynomial (AOP) 
and equally spaced polynomial (ESP). The proposed 
architectures have properties of highly regularity, 
simplicity, and shorter latency, which are important in 
designing the bit-parallel systolic multipliers. Moreover, 
the AOP-based systolic multipliers of small fields can be 
used to construct all the corresponding ESP-based 
systolic multipliers of large fields. The latency of the 
AOP-based and ESP-based systolic multipliers require 
m+2 and m+r+1 clock cycles, respectively, which are 
better than others. The size complexity of the proposed 
multipliers is smaller than previously developed 
multipliers of the same class. And as for the parallel 
systolic multipliers, the bit-parallel structures used in this 
paper has shorter the computation latency 
 

I. Introduction 

Efficient algorithm of real-time system, 
high-speed and low-complexity of fast computation over 
finite field GF(2m) is an extremely important research 
topic owing to their applications in the areas of 
computers and communications, e.g., 
error-control-correcting [10],[14] and cryptography 
[9],[12],[13]. Significant arithmetic operations for these 
applications are addition, multiplication, 
inversion/division. However, multiplication and 
inversion/division which is proposed by successive 
multiplication are still complex circuits. Therefore, it is 
important to introduce an efficient multiplication 
algorithm for constructing a bit-parallel multiplier of 
low-complexity for arithmetic circuits . Thus, the 
bit-parallel systolic architecture  is of course the hot topic  
for us to pursuit.  

It is important that the Massey-Omura multiplier 
(MOM) in [17] is the first modular parallel architectures, 
which requires the circuit complexity of O(m3) AND 
gates and O(m3 ) XOR gates. To reduce the time and size 
complexities, Itoh and Tsujii in 1989 [6], based on 
special classes of finite fields such as all one polynomial 
(AOP) and equally spaced polynomial (ESP), proposed 
the bit-parallel multipliers. If the irreducible polynomial 
is an AOP, then only 2m2-2m XOR and m2 AND gates 
are required for the parallel multiplier. Their structure is 
a modular architecture and has a lower size complexity 
compared to MOM. Besides, they also extend their 
multiplication algorithm to the irreducible ESP’s. Later, 

Hasan (1992) [5],[4] used the AOP-based multipliers of 
small size to construct the ESP-based multipliers of large 
size. Recently, Koc and Sunor (1998) [3] designed 
multipliers of the low-complexity bit-parallel with 
canonical basis and normal basis. And meanwhile, Wu 
and Hasan (1998) [7],[8] presented another 
low-complexity parallel multipliers employing the 
weekly dual basis (WDB). Moreover, from the 
complexity point of view, Drelot (1998) [16] confirmed 
that irreducible AOP and ESP have smaller complexity 
arithmetic  circuits. The two polynomials based on an 
isomorphism can be transformed from GF(2m) into the 
residue polynomial ring modulo xn +1. If the polynomial 
is irreducible AOP of degree m, then n=m+1. The design 
mentioned above were at the design of modular 
architectures, however, and their circuits can not be 
realized to use the systolic architecture. 

To optimize finite-field arithmetic circuit design 
three criteria  have to be considered: 1) short computation 
delay (latency); 2) less circuit complexity; 3) short clock 
period (cyclic time). The latency of systolic circuit is 
defined as the time it takes for an element from the input 
of a stage to its output. As low-complexity and 
high-speed computation becomes increasingly attractive, 
the systolic architectures in the VLSI are a common good 
choice. Due to the architectures possess concurrent, 
simple and regular designs that are balanced with I/O. 
Recently, numerous several of hardwares and algorithms, 
based on serial and parallel manners, have been proposed 
for comp uting arithmetic operations in GF(2m), which 
can be implemented in the systolic architectures 
[1-2],[15],[18]. The systolic multipliers by bit-serial 
manners have been introduced [18]; furthermore, the 
parallel-in-parallel-out systolic multipliers have been 
proposed in [1-2]. In 1984, Yeh [2] produced the parallel 
systolic multiplier. Its basic cell contains two AND gates, 
one 3-input XOR gates, and seven latches. Wei(1994) [1] 
also produced a power-sum systolic multiplier for 
computing AB2+C, where A, B, and C are any element in 
GF(2m). However, the latency of the exited parallel 
systolic multipliers still required 3m clock cycles.  

For the need of low-complexity circuit with 
minimized latency, this work presents a new bit-parallel 
systolic architectures to compute the element 
multiplication over GF(2m). The new circuit is an 
alternative design in canonical basis over the field GF(2m) 
generated by irreducible AOP and ESP. The novel 
AOP-based systolic multiplier applies the proposed 
multiplication schemes to construct a low-complexity 
and fast computation with the bit-parallel architectures. 
The designed multipliers are more efficient for the 
element multiplication in GF(2m), as they  simplify the 
architecture and increase computation speed. In addition, 
applying the AOP-based systolic multiplier of small 
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fields can construct the ESP-based modular systolic 
multiplier of large fields. The latency complexity of the 
developed AOP-based systolic multiplier is more 
efficient in reducing the clock cycles from 3m to m+2. 
 

II. Proposed AOP-based modular systolic 

multiplier 

It is assumed that the reader is familiar with the basic 
concepts of finite field. The properties of finite fields 
GF(2m) are covered in detail in [11]. 

Definition 1 [6]: A polynomial p(x)= i
m

i
i xp∑

=0

 over GF(2) 

of degree m is called all one polynomial (AOP) iff 
mipi ≤≤= 0,1 . 

An AOP has an important property of p(x)| xm+1+1. 
This variety of polynomial is an irreducible iff m+1 is a 
prime and 2 is a primitive modulo m+1. For example, the 
possible AOP of degree m to become irreducible are 
specified by irreducible polynomials, such as m=2, 4, 10, 
12, 18, 28, 36, 52, 58, 60, 66, 82, 100, for m ≤ 100. If α 
is a root of the irreducible AOP p(x), then we obtain 

 
αm+1+j=αj  (0≤j≤m-2 )   (1) 
 
In order to reduce the modulo operations, the field 

elements are transformed from GF(2m) into the 
polynomial ring modulo xm+1+1 because of αm+1 =1, that 

is, any element i
m

i
iaA α∑

−

=

=
1

0

 ∈ GF(2m) can also be 

represented as i
m

i
iaA α∑

=

=
0

, where  mii aaa +=  

( 10 −≤≤ mi ) [6]. For example, )2(1 43 GFA ∈++= αα , 
the element can be represented as 31 αα ++=A  by 
using the canonical representation or 42 αα +=A  by 
using the extended representation. 

Now, let use consider of the case two extended 

elements i
m

i
iaA α∑

=

=
0

 and i
m

i
ibB α∑

=

=
0

 over GF(2m), it 

is observably that he multiplication of two elements A 
and B equals to )1(mod 1 ++mAB α . In the following 
subsection, this type of element representation will be 
used to develop the multiplication algorithm for 
designing bit-parallel systolic multipliers.  

 

A. Algorithm  

Since m+1 is a prime and 2 is a primitive modulo 
m+1, we obtain 2m-1= (m+2)/2 mod (m+1). So  j2 m-1 mod 
(m+1) is a permutation π on {0, 1, 2, … , m}, i.e., 

)1mod(2/)2(
)1mod(2)( 1

++=
+⋅= −

mmj
mjj mπ

     (2) 

According to (2), we immediately obtain the following 
properties. 
Property 1: jj =)(2π   

Property 2: ( ) ( ) ( )jiji πππ +=±  

Property 3: 0)1( =+mπ   
Applying the Property 1-3, the element A may be 
re-expressed by shuffling its terms as follows 

)(

0
)(

i
m

i
iaA π

π α∑
=

= ,     (3) 

Therefore, common multiplication results: in both types 
of multiplication is the multiply-by-απ(1) operation, 
which can be done by the following rule, i.e., let  

)(

0
)1()(

)1( i
m

i
iaA π

ππ α∑
=

>−<=      (4) 

Then,  
 
Aαπ(1) = aπ(0) α

π(0)+ π(1) + aπ(1) α
π(1) + π(1)  

       + … +aπ(m) α
π(m) + π(1) 

  = aπ(m)α
π(0) + aπ(0)α

π(1) + … +aπ(m-1)α
π(m)  

= a<π(0)-π(1)>+a<π(1)-π(1)>απ(1) +...+a<π(m)-π(1)>απ(m)  (5) 

= A (1) 
where <x> is denoted by x modulo m+ 1. A 
straightforward multiply-by-απ(1) operation is equivalent 
to shift-right-by-1-bit operation. From (5), we can define 
cyclic shift-right-by-j-bit operations, i.e.,  

)(

0
)(

)( i
m

i
ji

j aA π
π α∑

=
−=  

    (6) 

Similarly, A(-j) is equivalent to cyclically shifting j bit to 
the left, such as  
 

)(

0
)(

)( i
m

i
ji

j aA π
π α∑

=
+

− = .     (7) 

Consider the coefficients of A as they relate to )( jA  and 
)( jA − , we therefore obtains 

 
)()()()( jjjj AAA −− == ππ αα     (8) 

Definition 2: Given )(

0
)(

i
m

i
iaA π

π α∑
=

=  and 

)(

0
)(

i
m

i
ibB π

π α∑
=

= , the inner product of A and B, as denotes 

BAΘ , can be defined as follows  
 

i
i

m

i
i baBA αππ )(

0
)(∑

=

=Θ        (9) 

 
Definition 3: Let two elements A and B periodically be 

shifted by j positions to right and left, )( jA  and )( jB − , 

respectively. Then, based on Definition 1, the jth inner 
product, )()( jj BA −Θ , is defined as  
 

i
ji

m

i
ji

jj baBA αππππ >+<
=

>−<
− ∑=Θ )()(

0
)()(

)()(       (10) 

Theorem 1: Given )(

0
)(

i
m

i
iaA π

π α∑
=

=  and 
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)(

0
)(

i
m

i
ibB π

π α∑
=

= , the product of A and B can be 

represented by the following recursive formula 

)(

0

)( j
m

j

j BAAB −

=

Θ= ∑       

Proof: Let  
 
A= a0 +a1α + a2 α2 +… +am αm  
B=b0 +b1α + b2 α2 +… +bm αm 

 
  Then their circular convolution can be re-expressed by  
 

i
ji

m

i

m

j
j baAB α>−<

= =
∑ ∑=

0 0

 

From Property 1, we know that )(2 ii π= , for i = 0, 
1, … , m, then  
 

)(2
)(2

0 0

i
ji

m

i

m

j
j baAB π

π α>−<
= =

∑ ∑=         (11) 

Next, choosing j such that )( jij −= π , for j = 0, 1, … , 
m. Therefore, AB can be re-expressed by 

)(

0

)(

)(

0

)(

0

)(2
)(

0

)(

0

j
m

j

j

i
ji

m

j

ji

m

i

i
ji

m

j

ji

m

i

A

ba

baAB

−

=

+

=

−

=

+

=

−

=

Θ=

=

=

∑

∑∑

∑∑

B

α

α

ππ

π
ππ

       (12) 

        z 
Example 1: If m=4, then we obtains m+1=5 is a prime. 
By applying the Property 1-3, we obtains )(iπ  for 

40 ≤≤ i , such as 0)0( =π , 32)1( 3 ≡=π , 

122)2( 3 ≡⋅=π , 423)3( 3 ≡⋅=π , and 124)4( 3 ≡⋅=π . Assume 

that },,,,1{ 432 αααα  is an extended basis of the field 
GF(24), thus, the basis can be transformed 

into },,,,{ )4()3()2()1()0( πππππ ααααα  . Let )0(
)0(

π
π αaA =  

)4(
)4(

)3(
)3(

)2(
)2(

)1(
)1(

π
π

π
π

π
π

π
π αααα aaaa ++++ and

)0(
)0(

π
π αbB =

)4(
)4(

)3(
)3(

)2(
)2(

)1(
)1(

π
π

π
π

π
π

π
π αααα bbbb ++++  

be two elements of the field GF(24); and let 
4

4
3

3
2

210 αααα cccccC ++++=  be the product of the 
multiplication A and B. The product C can then be 
computed by using Theorem 1, as 

43210

)4()4(

)3()2(

)2()1(

)1()1(

)3()0()2()4()1()3()0()2()4()1(

)2()1()1()0()0()4()4()3()3()2(

)1()2()0()1()4()0()3()4()2()3(

)0()3()4()2()3()1()2()0()1()4(

)4()4()3()3()2()2()1()1()0()0(

)4()3()2()1()0(

)4()3()2()1()0(

cccccC
bababababaBA

bababababaBA

bababababaBA
bababababaBA

bababababaBA
bbbbbX
aaaaa

=
=Θ+

=Θ

=Θ
=Θ

=Θ

−

−

−

−

ππππππππππ

ππππππππππ

ππππππππππ

ππππππππππ

ππππππππππ

πππππ

πππππ

 

As stated above, the multiplication scheme is  

focused in the extended element to obtain AB= j
m

j

jc α∑
=0

, 

where ∑
=

>+<>−<=
m

i

ijijj bac
0

)()()()( ππππ  (mod 2). In order to 

obtain completely multiplication scheme, the proposed 
multiplication in (12) must be to perform the reduced 
modulo )(αp  operation to obtain the desired 
multiplication of two elements. Therefore, let 

j
m

j
jcAB α∑

−

=

=
1

0

 be the results of AB, the coefficients jc  

can be obtained using the following relationships 
 

mjj ccc +=  (mod 2)      (13) 

 
 

B. Structure and comparison 
 

We call the circuits which realize (12) and (13) as 
two operation units: the inner product multiplication 
(IPM) unit and the final reduced modulo p(α) (FRM) 
unit, respectively. According to Theorem 1, it is obvious 
that the IPM unit of Fig. 3 requires m+1 inner-product 
step procedures (IPSPs). The structure of each IPSP is 
shown in Fig. 1(a) includes m+1 basic cells. The basic 
cell is the realization of  ci+ a<π(i)-π(j)>b<π(i)+π(j)> mod 2, 
which includes one 2-input AND gate, one 2-input XOR 
gate and three 1-bit latches, as shown in Fig. 1(b). Fig. 2 
depicts that the structure of FRM unit is operation unit of 
(13), which includes m 2-input XOR gate and m 1-bit 
latches. Fig. 3 illustrates that based on Fig. 1-2, the 
proposed AOP-based systolic multiplier over GF(24) is 
comprised of two parts: the IPM unit and the FRM unit. 

In the IPM unit of Fig. 3, the ith column cells 
denote the order of αi. The jth row cells is identical to the 
jth IPSP for  BA (-j)(j)Θ operations. Hereafter, the ith cell of 
the jth IPSP of IPM unit is denoted by the (i,j) cell. With 
coefficients )()( ,, jijii bac +− ππ  enter the cell (i,j), the 

cell operates )()( jijiii bacc +−+= ππ  (mod 2) 

computations. The basic cells consist of one 2-input 
AND gate, one 2-input XOR gate and three 1-bit latches. 
When the input data of three elements A, B, C enter the 
array, all coefficients are distributed over the first row 
cell. Fig. 3 presents that all coefficients in the jth IPSP 
( 40 ≤≤ j ) are als o distributed over the jth row cells. As 
the operations of the jth IPSP, the coefficients )( jia −π  > 

and )( jia +π  in the cell (i,j), for mi ≤≤0 , respectively 

propagate to the cells (i+1, j+1) and (i+1, j-1). As 
previously stated, neighborhood communications among 
cells is performed by transportation of all neighbor 
coefficients in the array. This instructs us to take 
advantage of the bit-parallel systolic architectures for the 
circuit design with which each IPSP only requires one 
clock cycle.  

In the successive computations, the input data can 
continuously enters the array, and each IPSP only 
demands one clock cycle to complete the inner-product 
operations. From Fig. 3, the proposed AOP-based 
systolic multiplier comprises two parts: the IPM unit and 
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the FRM unit. The IPM unit consists  of m+1 IPSPs, that 
is, the latency of the IPM unit requires m+1 clock cycles. 
According to Fig. 2, the FRM unit only demands one 
clock cycle. Therefore, the latency complexity of the 
proposed multiplier requires only m+2 clock cycles to 
compute AB for the first input data that enters the 
planned systolic multiplier. A possible clock period of 
latency requires a minimum of one 2-input AND gate 
and one 2-input XOR gate delays, as shown in Fig. 2(b). 
The total gate complexity in this circuit comprises 
(m+1)2 2-input AND, mm ++ 2)1(  2-input XOR gates 
and mm ++ 2)1(3  1-bit latches. Since the operation 
works every clock cycle and no cycle is wasted, the 
proposed architecture yields the maximum possible 
throughput. Therefore, this architecture is highly regular 
and simple in structure, and has a shorter latency to 
perform the element multiplication. 

There are several points to be addressed. The 
latency of the systolic architecture for multiplications 
over GF(2m) is only m+1 clock cycles while most other 
bit-parallel systolic multipliers, such as these in [1] and 
[2], require 3m. Table 1 reveals that our AOP-based 
multipliers require more logic circuit than the two 
low-complexity design but they are much simple than 
Wei’s and Yeh’s multipliers. The propagation delay of 
each cell is short being the total delay of one 2-input 
AND gate, one 2-input XOR gate and one 1-bit latch, 
and the multiplier generates a product in each clock 
cycle. The throughput is therefore very high. Finally, this 
architecture is highly regular, simple and with very few 
global connections. 

 

III. Proposed ESP-based bit-parallel modular 

systolic multiplier 

 
Definition 4[6]: A polynomial +++= − L)1()( mrmr xxxg  

)(1 rr xpx =+  over GF(2), where p(x) is an AOP of 
degree m, is termed r-equally spaced polynomial (r-ESP) 
of degree mr. 

It is well known that if p(x) is  an irreducible AOP 
of degree m over GF(2), then )()( rxpxg =  is 

irreducible over GF(2) iff 2)1mod(1)1( +≠+= mmr j  
for 1≥j . An r-ESP also has an important property of 

1)1( =+mrα , where α is a root of g(x). Now, let us 

consider the property of 1)1( =+mrα , for any element 

∑
−

=

=
1

0

mr

i

i
iaA α  ∈GF(2mr) can be represented by  

∑
−+

=

=
1)1(

0

rm

i

i
iaA α          (14) 

where jmrjirjir aaa +++ += , 10 −≤≤ rj , 10 −≤≤ mi  [6]. 

Therefore, any element )2( mrGFA ∈ can might be 
defined as 

∑
−

=

=
1

0

r

i

i
iAA α           (15) 

where  

 ir
m

i
kirk aA α∑

=
+=

0

, 10 −≤≤ rk  

Since m+1 is a prime and 2 is a primitive modulo 
m+1, we obtain )1mod(2/)2(2 1 ++=− mmm . So jr2 m-1 

mod (m+1)r is a permutation σ on {0, r, 2r, … , mr}, i.e., 
 

)1mod(2/)2(
)1mod(2)( 1

++=
+= −

mmjr
rmjrj mσ

      (16) 

 
Therefore, the element kA  ( 10 −≤≤ rk ) can be  
re-expressed by shuffling its terms as follows 
 

)(

0
)(

i
m

i
kik aA ω

σ α∑
=

+= ,       (17) 

 
With Property 1-3, hence, we concludes that 

2σ(j)= jr, σ(i±j)=σ(i)± σ(j), and σ(m+1)=0. For two 

sub-elements )(

0
)(

i
m

i
kik aA σ

σ α∑
=

+=  and 

)(

0
)(

i
m

i
hih bB σ

σ α∑
=

+= ( )1,0 −≤≤ rhk , straightforwardly, 

the product of AkBh is based on Theorem 1 to obtain the 
following results 

 

∑
=

−Θ=
m

j

j
h

j
khk BABA

0

)()(       (18) 

 
Theorem 2 : Given two sub-element Ak and 
Bh( )1,0 −≤≤ rhk , then AkBh multiplied by αr is 

equivalent to { } )1(
hk BA . 

Proof: Since Theorem 2, the results of A kBh obtain 

ir
m

i
ihk cBA α∑

=

=
0

  

where 

 >++<
=

>+−<∑= hji

m

j
kjii bac )()(

0
)()( ππππ  

Therefore, A kBh multiplied by αr+q obtains 
 
αr AkBh =c0αr + c1α2r + …  + cmαmr+r 
 =cm + c0αr + c1α2r + …  + cm-1αmr   
     = {AkBh}(1)            (19)z 
 
Finally, assume that two elements A = A0 + A1α + A2α2 
+ …  +  Ar-1αr-1 and B = B0 +  B1α + B2α2 + …  + 
Br-1αr-1∈GF(2mr), then the multiplication of A and B, 
based on Theorem 2 and 3, can be re-expressed as 
 

1
1

10

)(

2
1)(2

1)(

1

0

1

0

}{

−
−

+++−

−

=

−

=

+++=

= ∑∑
r

r

iiw
rjirji

r

i

r

j

CCC

BAAB

αα

α

L

      (20) 

where  
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mr
mri

r
rii

w
ji

r

j
jii

ccc

BAC i
rr

αα ++

+

−

=
−

+++=

= ++∑
L

)(
)(

1

0
)(

}({
2
1

2
1

      (21) 

Note that x  denotes x modulo r; wi=1 if 

rjiji rr ≥++− ++
2
1

2
1 )()( , else wj=0. Let i

r

i
iCAB α∑

−

=

=
1

0

, 

where jr
m

j
rjii cC α∑

−

=
+=

1

0

, then the coefficients between Ci 

and iC  have the following relations 

mrijrijri ccc +++ +=   (0≤j≤m-1, 0≤i≤r-1)   (22) 

 
As previously stated, the proposed ESP-based 

systolic multiplier comprises r2 IPM and r FRM units, in 
which the IPM array is for computing (19); the FRM unit 
is for (22). As a simple illustration, the bit-parallel 
systolic multiplier based on 3-ESP 136 ++ xx  
corresponding to the irreducible AOP 12 ++ xx  is 
shown in Fig. 4. Fig. 3 demo nstrates the details of IPM 
and FRM circuits. In Fig. 4, the hkIPM ,  denotes the 

proposed that two elements kA  and hB  enter the IPM 
unit. According to (17) the input elements are shuffled 
before enter the IPM unit The computed result )(modrhkC +  

of hkIPM ,  is to propagate to the 
2
1,

2
1 +++− rhrk

IPM  unit. The 

coefficients of )(modrhkC +  which is the output of hkIPM ,  

unit must performs  a periodic shift -rght-by-1-bit 
operation if h+k≥r, subjected to the relations of Theorem 
2.  

 Generally, the proposed ESP-based multiplier 
over GF(2m) which has modular systolic architecture 
requires 2)( rm +  AND gates, mrm ++ 2)(  XOR gates, 

1++ rm  clock cycles. The proposed ESP-based systolic 
multiplier of larger fields can be constructed by the 
corresponding is based on AOP-based systolic multiplier 
of smaller fields. We therefore ascertain both irreducible 
AOP and ESP, for example of m and r, 6(3), 18(9), 20(5), 
54(27), and 100(25). Table 2 presents a comparison 
among ESP-based bit-parallel multipliers. It is evident 
that our proposed ESP-based multiplier is able to design 
the bit-parallel systolic multiplier with modular 
architectures.  

 

IV. Conclusions   

This paper examined a novel systolic multiplier 
over finite field GF(2m), which are generated by an 
irreducible AOP and ESP. An element representation is 
based on a field isomorphism from GF(2m) into the 
residue polynomial ring modulo xm+1+1 and xmr+r+1, 
respectively. All of which are highly regular and able to 
realize with bit-parallel systolic architectures. The 
proposed AOP-based bit-parallel systolic multipliers 
efficiently improve the latency complexity from 3m to 
m+2 clock cycles. Moreover, the AOP-based systolic 
multipliers of smaller fields can be applied to construct 
all the corresponding ESP-based systolic multipliers of 

larger fields. From the hardware implementation pointing 
of view, the primary contribution of our architectures is 
only able to construct the bit-parallel systolic 
architectures.  
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Table 1: Comparison of the related parallel systolic 
multipliers 

 
Multiplier

Item  
Wei [1] Yeh [2] Proposed 

AOPM (Fig. 3) 

Architecture systolic Systolic Bit-parallel 
systolic 

Function  AB2+C AB AB+C 
The total of gates 

Complexity 
# 2-input AND 
# 2-input XOR 
# 3-input XOR 
# 1-bit latches 

 
 

3m2  
 m2 
m2  

10 m2  

 
 

2 m2  
2 m2  

0 
7 m2  

 
 

(m+1)2  
(m+1)2 +m 

0 
3 (m+1)2 +m 

Computation 
time  

per cell 

TAND+T3XO

R 
TAND+TXOR TAND+TXOR 

latency 3m 3m m +2 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The circuit of the jth inner product step procedures 
(IPSP) 

 
Table 2: Comparison of parallel multipliers of GF(2m) generated by an irreducible r-ESP of degree m 

 
multipliers architecture basis  function #AND #XOR  Cycle time 

ITM[6] modular polynomi
al 

AB (m+r)2 (m+r)2-r TA+(log2m+log2(m-r+1))TX 

HWBM[5] modular 
polynomi

al AB m2 m2+m-2r TA+( m/r +log2m)TX 

WDBM[7] modular 
weakly 

dual 
AB m2 m2-r xA T

r
m
rmr

r
mT })

log2
(loglog{

2

22
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Presented 
ESPM 
(Fig. 4) 

Modular 
systolic 

polynomi
al AB+C (m+r)2 (m+r)2+m TA+TX 
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Fig. 4. The configuration of ESP-based 
systolic multiplier over GF(26) 
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Fig. 2. The final reduced modulo p(α) 
(FRM) unit 
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Fig, 3. The bit-parallel systolic multiplier over GF(24) 
based on an irreducible AOP 
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