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Abstract 
 
Fuzzy Clustering has been proven to be 
advantageous over crisp clustering in some 
applications such as pattern recognition, image 
segmentation, and compression. In this paper, a 
new Hopfield-model net based on fuzzy 
possibilistic reasoning is proposed to clustering 
problem. The main purpose is to modify the 
Hopfield network and embed Fuzzy Possibilistic 
Fuzzy C-Means (FPCM) method to construct a 
classification system named Fuzzy-Possibilistic 
Hopfield Net (FPHN). The classification system 
is paradigms for the implementation of fuzzy 
logic systems in neural network architecture. 
Instead of one state in a neuron for the 
conventional Hopfield nets, each neuron 
occupies 2 states called membership state and 
typicality state in the proposed PFHN. The 
proposed network not only solves the noise 
sensitivity fault of Fuzzy C-Means (FCM) but 
also overcomes the simultaneous clustering 
problem of Possibilistic C-Means (PCM) 
strategy. In addition to the same characteristics 
as the possibilistic fuzzy c-means algorithm, the 
designed neural-network-based approach is 
self-organized structure that is highly 
interconnected and can be implemented in a 
parallel manner. The experimental results show 
that the proposed FPHN can obtain promising 
solutions. 
Key words: possibilistic c-means, 
fuzzy-possibilistic c-means, Hopfield neural 
network  
 
1. Introduction 
 
Clustering has been an indispensable paradigm 
to unsupervised pattern recognition. Generally 
speaking, conventional methods such as 
K-means (C-means) [1] and ISODATA [2] are 
traditional clustering methods in which each 
sample belonging only one cluster. FCM [2]-[5], 
PFCM [6]-[7] and CFCM [8] are called fuzzy 

clustering methods in which every sample 
belonging all clusters with different degrees of 
membership. Every sample belongs all clusters 
with different degrees of possibility in 
possibilistc clustering algorithm [9-10]. 
Fuzzy-possibilistic c-means [11] solves the noise 
sensitivity fault of fuzzy c-means and the 
simultaneous clustering problem of possibilistic 
c-means strategy with membership and 
typicality.  
In the application of optimization problem, 
neural networks exploit the massive parallelism 
of neurons. To update the performance, fuzzy 
reasoning algorithms have been added into 
neural network to construct fuzzy-neural systems 
[8, 12]. Kanstein et al. [13] embedded the 
possibilistic reasoning into a competitive 
learning network to clustering problem. Lin et al. 
[12] combined the penalized fuzzy c-means and 
competitive learning network to apply the 
multi-spectral image segmentation. Lin [8] also 
embedded the compensated fuzzy c-means into 
Hopfield net and applied to clustering. In this 
paper, the FPCM is added into Hopfield network 
to construct the FPHN to clustering. 
Additionally preserving the performance of 
fuzzy reasoning strategy, the FPHN not only 
solves the noise sensitivity fault of FCM but also 
overcomes the simultaneous clustering of the 
PCM. The FPHN can obtain promising solutions 
in clustering shown in experimental results.  
The remainder of this paper is organized as 
follows. Section 2 reviews the fuzzy cluster 
technique. Possibilistic clustering techniques are 
presented in Section 3. Section 4, proposes 
fuzzy-possibilistic c-means strategy; Section 5 
presents the Fuzzy Possibilistic Hopfield 
network (FPHN). Section 6 shows several 
experimental results; Finally, Section 7 gives the 
discussion and conclusions. 

 
2. Fuzzy Clustering Techniques 
 
Fuzzy clustering strategies are mathematical 



tools for detecting similarities between members 
of a collection of samples. The theory of fuzzy 
logic provides a mathematical framework to 
capture the uncertainties associated with the 
human cognition processes. Unlike the hard 
c-means method, in fuzzy c-means each training 
sample belongs to every cluster with some 
degree of membership. The purpose of the FCM 
approach, like the conventional clustering 
techniques, is to group data into clusters of 
similar items by minimizing a least squared error 
measure. For 2≥c  and m>1, the algorithm 
chooses ]1,0[: →Zxµ  so that 1=∑x xµ  

and d
i R∈ϖ  for i=1, 2, ..., c to minimize the 

objective function 
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where ix,µ  is the value of the ith membership 
grade on the xth sample xz . The cluster centers 

cj ϖϖϖ ,...,,...,1  can be regarded as prototypes 

for the clusters represented by the membership 
grades. For the purpose of minimizing the 
objective function, the cluster centers and 
membership grades are chosen so that a high 
degree of membership occurs for samples close 
to the corresponding cluster centers. The 
membership grades and cluster centers are 
iteratively updated by the following formulas 
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The value m ∈ (1, ∞ ) is the fuzzification 
parameter (or exponential weight). This 
parameter reduces the sensitivity of the class 
centers to noise in the data. 
 
3. Possibilistic Clustering Techniques 
 
The theory of fuzzy logic provides a 
mathematical environment to capture the 
uncertainties same as human cognition processes. 
The fuzzy clusters are generated by partition the 
training samples in accordance with the 
membership functions matrix ][ ,ixU µ= . The 
component ix,µ  denotes the grade of 
membership that a training sample belongs to a 
cluster. The fuzzy c-means algorithms use the 

probabilistic constraint to make the memberships 
of a training sample across clusters must sum to 
1 that means the different grades of a training 
sample shared by distinct clusters but not as 
degrees of typicality. In contrast, each 
component generated by the possibilistic 
c-means (PCM) corresponds to a dense region in 
the data set. Each cluster is independent of the 
other clusters in the PCM strategy. The PCM 
strategy was proposed by Krishnapuram et al. 
[9-10] for unsupervised clustering. The objective 
function of the PCM can be formulated as  
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typicality value of training sample xz  
belonging to the cluster i. 

),1[ ∞∈η , is a weighting factor called the 
possibilistic parameter. 

 
4. Fuzzy-Possibilistic C-Means  
 
Memberships and typicalities are both important 
for correct feature of data substructure in 
clustering problem. If a training sample been 
classified to a suitable cluster, membership is a 
better constraint for which the training sample is 
closest to this cluster. On the other word, 
typicality is an important factor for unburdening 
the undesirable effects of outliers to compute the 
cluster centers. In accordance with reference [11], 
typicality is related to the mode of the cluster 
and can be calculate based on all n training 
samples. Thus an objective function in the 
fuzzy-possibilistic c-means (FPCM) can depend 
on both of memberships and typicalities and be 
defined as  
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where memberships, typicalities, and centroids 
are  
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In the FPCM, membership .,ixµ is a function of 
training sample and all c cluster centers while 
the typicality ixt ,  is a function of training 

sample xz  and cluster center iϖ . Thus 
typicality ixt ,  does just depend on the location 

of the cluster center iϖ .  
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Figure 1. Architecture of the neuron (x, i) in a 
2-D FPHN 

 
5. Fuzzy-Possibilistic Hopfield Neural 
Network 
 
The Hopfield-model neural networks [14-16] 
have been studied extensively. The features of 
this network are simple architecture and clear 
potential for parallel implementation. In order to 
update the performance in the application of 
optimal problems, modified Hopfield networks 
[17-20] have been proposed. Lin et al. [8, 17-19] 
proposed different fuzzy Hopfield networks to 
the applications of clustering problem and 
medical image segmentation. Cheng et al. [20] 
presented a possibilistic Hopfield network on CT 
brain hemorrhage image segmentation. These 
modified Hopfield networks base either fuzzy 
reasoning or possibilistic learning. For the 
purpose of solving the noise sensitivity fault of 
fuzzy reasoning and the simultaneous clustering 

problem of possibilistic learning, the 
fuzzy-possibilistic c-means strategy is embedded 
into Hopfield network to construct the FPHN. In 
the FPHN, shown in Figure 1, each neuron 
occupies 2 states named membership state based 
on all c cluster centers and typicality state based 
on all n training samples individually. Thus the 
total weighed input for neuron (x,i) and 
Lyapunov energy function in the FPHN can be 
modified as 
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where )( ,,
ηµ iy

m
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n

1y
x,i;y,i tW +∑

=
 is the total 

weighed input received from the neuron (y,i) in 
column i, m and η  are fuzzification and 

typicality parameters, ix,µ  and ixt ,  are 
membership state and typicality state at neuron 
(x,i), and ixI , , ixK ,  are input biases for 
membership and typicality states at neuron (x,i) 
respectively. The network reaches an equilibrium 
state when the modified Lyapunov energy 
function is minimized. The objective function 
for clustering problem in the 2-D FPHN is 
defined as follows: 

2

1
,,

1 ,,

1 1
,,

)(
)(

1

)(
2

∑
∑

∑∑

= =

= =

+
+

−

×+=

n

y
iy

m
iyyn

h ih
m

ih
x

n

x

c

i
ix

m
ix

tz
t

z

tAE

η
η

η

µ
µ

µ

 

2

1 1
,, )(

2 











−−











++ ∑∑

= =
cntB n

x

c

i
ixixµ     (15) 

where E is the objective function that accounts 
for the energies of all training samples in the 
same class, and xz , yz  are the training 
samples at rows x and y in the FPHN, 
respectively. 
The first term in Eq. (15) defines the Euclidean 
distance between the training samples in a 
cluster and that cluster’s centers over c clusters 
with membership grade and typicality degree. 

Netx,i 

Ix,i Kx,i 

ux,i 

tx,i 

zx 



The second term guarantees that n training 
samples in Z are distributed among these c 
clusters. More specifically, the second term (the 
constrained term), imposes constraints on the 
objective function, and the first term minimizes 
the intra-class Euclidean distance from training 
samples to the cluster centers. 
All the neurons in the same row compete with 
one another to determine the training sample 
represented by that row belongs to all clusters 
with membership grades and typicality degree 
respectively. In other words, the summation of 
the membership states in the same row equals 1 
and the summation of the typicality states in the 
same column also equals 1. That is the total sum 
of membership states in all n rows equal n and 
the total sum of typicality states in all c columns 
equal c. This assures that all n samples will be 
classified into c classes. The objective function 
in these networks can be further simplified as 
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By using Eq. (16), the minimization of E is 
greatly simplified, since Eq. (16) contains only 
one term, removing the need to find the 
weighting factors A and B. Comparing Eq. (16) 
with the modified Lyapunov function Eq. (14), 
the synaptic interconnection weights and the bias 
input for the proposed can be obtained as 
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0, =ixI ,                            (18) 
and 

0, =ixK                             (19) 
By introducing Eqs. (17), (18), and (19) into Eq. 
(13), the input of neuron (x,i) can be expressed 
as 
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Consequently, the neuron states at neuron (x,i) 
are given by 
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Directly mapping training samples to the 
two-dimensional neuron array, the FPHN is 
trained to update all neuron states in order to 
classify the input samples into feasible clusters 
when the defined energy function converges to 
near global minimum.  

 

 

 

 

Figur

6. Experi
 
To show th
set propos
multi-spect
an IBM co
The data se
points on a
Initially, th
are random
for all neur
solutions 
function co
value. The
shown in T
(3.19, 0.31)
FCM and F
the centroid
influenced 
the indices 
values in ea
FPHN can 
FPCM. Sam
1-5 are mos
are also mo
with equal 
point 12 is
the typicali
6 belongs 
more stron
that the FP
to reduce th
 

x12 

x1 

 x8 
x2
 x5 x7 x9 x11 
x3
 

 

10 
x4
e 2. Coord

mental R

e perform
ed by P
ral images
mpatible p
t, shown 
 2-D coo
e states o
ly set duri
ons are m
as the d
nverging 
 cluster c
able 1 w
] and [(-3
PHN respe
s resulted 

by point 12
of the 12 
ch cluster

also get the
e as the r
t typical t
st typical t
typicality 
 an order 
ty value fo
to both cl
gly than p
HN can pr
e effects o
x6
inates of 

esults 

ance of t
al et al.
 are used 
ersonal P
in Figure 
rdinate g
f neuron
ng 0 to 1.
odified ite
efined L
to a near-
enters as
ith c=2 a
.20, 0.27)
ctively. F
by FPHN
 than FCM
points so
. From Ta
 same pro

esults in t
o cluster 
o cluster 2
values to 
of magnit
r point 6
usters wi
oint 12. 
une outli
f noise.  
x

the data set 

he FPHN, a data 
 [11] and real 
for simulation in 
entium computer. 
2, consists of 12 
iven in Table 1. 
s ix,µ  and ixt ,  
 These two states 
ratively to stable 
yapunov energy 
global minimum 
sociated the run 
re [(-3.19, 0.31), 
, (3.20, 0.27)] for 
rom these results, 
 are more weakly 

. Table 2 shows 
rted by typicality 
bles 1 and 2, the 
mising results as 
he FPCM, points 
1 and points 7-11 
. Points 6 and 12 

both clusters, but 
ude smaller than 
 that means point 
th proper grades 
This also means 
ers from the data 



The other example is multi-spectral image 
classification in MR head images of a patient 
diagnosed with cerebral infarction shown in 
Figure 3. These real images are acquired with 
T2-weighted sequences for channel images CH = 
1, 2, 4, and 5 and T1-weighted signal for channel 
image 3. The acquisition parameters with 
different repetition time (TR) and echo time (TE) 
are TR1/TE1 = 2500 ms / 25ms, TR2 / 
TE2=2500ms / 50ms, TR3 / TE3=500ms / 20ms, 
TR4/TE4=2500ms / 75ms, and TR5/TE5=2500ms / 
100ms respectively. Figure 4 shows the 
classified abnormal region with cerebral 
infarction. Experts indicated that the more 
promising result is obtained using the FPHN 
than those yielded by the fuzzy Hopfield neural 
network in reference [18]. 
 
Table 1. The membership grades and typicality 
degrees for FCM and FPHN 

 Data set FCM 
(m=3) 

FPHN (m=3, η =3) 

x p1 p2 
1,xµ 2,xµ 1,xµ 2,xµ 1,xt  2,xt  

1 -3.34 0.00 0.95 0.05 0.95 0.05 0.0227 0.0012 

2 -3.34 1.67 0.96 0.04 0.96 0.04 0.0368 0.015 

3 -3.34 0.00 1.00 0.00 1.00 0.00 0.8664 0.0016 

4 -1.67 -1.67 0.92 0.08 0.92 0.08 0.0178 0.0014 

5 -1.67 0.00 0.91 0.09 0.91 0.09 0.0287 0.0031 

6 0.00 0.00 0.50 0.50 0.50 0.50 0.0067 0.0067 

7 1.67 0.00 0.09 0.91 0.09 0.91 0.0028 0.0301 

8 3.34 1.67 0.04 0.96 0.04 0.96 0.0015 0.0385 

9 3.34 0.00 0.00 1.00 0.00 1.00 0.0016 0.8654 

10 3.34 -1.67 0.08 0.92 0.07 0.93 0.0014 0.0193 

11 5.00 0.00 0.05 0.95 0.05 0.95 0.0010 0.0210 

12 0.00 10.00 0.50 0.50 0.50 0.50 0.0005 0.0005 

 
Class center 

(-3.19, 0.31) 
(3.19, 0.31) 

(-3.20, 0.27) 
(3.20, 0.27) 

 
 
Table 2. The indices of the 12 points corresponding to 
a sort on 1,xt  and 2,xt  

Typicality order 

1,xt       2,xt  

3 9 
2 8 
5 7 
1 11 
4 10 
6 6 
7 5 
9 3 
8 2 

10 4 
11 1 
12 12 

           (a)                   (b) 

          (c)                 (d) 

                    (e) 
Figure 3. The multi-spectral MR head images 
with cerebral infarction: (a) TR1/TE1 = 2500 ms / 
25ms; (b) TR2 / TE2=2500ms / 50ms; (c) TR3 / 
TE3=500ms / 20ms; (d) TR4/TE4=2500ms / 
75ms; (e) TR5/TE5=2500ms / 100ms. 
 
 
 

Figure 4. The classified image using the 
proposed FPHN in channel 2 with TR2 / 
TE2=2500ms / 50ms. 
 
 
7. Discussion and Conclusions 
 
A Modified Hopfield-net model called Fuzzy 
Possibilistic Hopfield Net (FPHN) embedded 
fuzzy possibilistc c-means strategy with 2 
neuron states, membership state and typicality 
state, is proposed to clustering problem. Not 



only solves the noise sensitivity fault of fuzzy 
c-means but also overcomes the simultaneous 
clustering problem of possibilistic c-means 
strategy using the proposed FPHN. Therefore, 
the FPHN can prune outliers from the data to 
reduce the effects of noise. Moreover, the 
designed FPHN neural-network-based approach 
is a self-organized structure that is highly 
interconnected and can be implemented in a 
parallel manner.  It can also be designed for 
hardware devices to achieve very high-speed 
implementation. 
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