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Abstract 
 

This paper describes the use of FPGA-based 
reconfigurable architectures to implement artificial 
neural networks. The research is focused on 
investigating the properties of FPGAs (Field 
programmable gate arrays) to determine whether they 
are suitable hardware solutions, and to experiment with 
their reconfigurability as potential implementation 
approaches for neural network computing. Two 
implementation approaches were proposed. The first 
proposal, known as the template-based approach, is 
aimed at producing a computing architecture that 
combines high computational power with user-
programmable flexibility to handle a wide variety of 
neural networks. The second approach introduced a 
partial-RTR  (run-time reconfiguration) methodology 
that formats the native reconfigurable logic resources of 
an FPGA, allowing its reconfigurable region to be 
manipulated like a functional entity. The architecture is 
able to benefit from higher functional density without 
the complexities associated with conventional partial-
RTR methodologies. A prototype system, FRANN, was 
constructed to test the proposed implementation 
approaches, and to act as an experimental testbed for 
future development. 
 
Keywords: FPGA,  reconfigurable architecture, 
artificial neural networks. 
 

1. Introduction 
 

One of the main attraction of artificial neural networks 
(ANN) information processing system is its ability to 
learn a task rather than being programmed to do it. 
Learning is achieved by iteratively adjusting the 
network’s weights such that the neural network will 
response correctly to the input signals. The computation 
during the learning phase requires massive parallelism 
through a dense synaptic network, thus requiring  
 
 
 
computing systems capable of high computational 
power. 

 
 
The widespread use of personal computers has allowed 
ANN to be implemented in software, where the 
inherent parallelism is simulated in a sequential 
manner. For large networks that require huge training 
data sets, the training time is normally very long. In 
order to reduce the training time, many 
implementations had used parallel computers or 
specialized architectures in an attempt to physically 
realize as much of the inherent parallelism that exist in 
neural networks.  

 
Most of these neural computing systems catered to 
specific applications and implement only one neural 
network. For general-purpose neurocomputing, the 
ability to implement a variety of neural networks 
requires the system to be flexible as well as 
programmable. Unfortunately, in most computing 
architecture, customization and parallelism are often 
achieved at the expense of flexibility. So, an ideal 
system to carry out general-purpose neural training 
should be flexible and yet possess high computing 
power. 

 
This led to the investigation of the use of FPGA 
devices, which can be used for building specialized 
digital circuits, and reconfigured repeatedly.  In theory, 
a computing architecture consisting of FPGA devices 
may provide a promising solution to the customisation-
flexibility issue. It is the goal of this research to find out 
whether the FPGA is really suitable, and if so, how it 
can be used. 

 
The main contribution of this paper is the proposed 
implementation using FPGA’s reconfigurability for 
creating neural processing hardware. The first method 
proposed, called the template-based approach, provides 
hardware programmability by deriving custom 
computing architecture from a generic hardware 
template. The template and its supporting system 
architecture takes into account the computation 
structure of neural networks. The advantage of the 
template approach is its ability to include circuit 
specialization for higher computational power, and 
flexibility together in the same system. 
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The second method proposed is an implementation 
approach for run-time reconfiguration. This method 
provides a simple solution to the difficulties 
encountered in existing partial run-time reconfiguration 
approaches. In general, it incorporates a reconfigurable 
framework, which can be manipulated like normal 
digital logic, into the processing architecture. The 
framework is generated by formatting the FPGA’s 
reconfigurable logic resources. 

 
A prototype was built to implement neural network 
training based on the proposed methodologies. The 
prototype consists of both hardware and software, and 
can be easily modified for future improvements. This 
paper provides a discussion on its design, results and 
observations obtained from building and testing the 
system.  
 

2. FPGA-based Implementation of ANN: A 
Literature Review 

 
The main goal of mapping neural network algorithms 
onto hardware is to achieve higher computational 
power. There are two ways of doing this: (1) by 
building high-speed processors, and (2) by employing 
parallel processing.  

 
The three main arithmetic operations used in neural 
computations are multiplication, addition (or 
accumulation), and non-linear functions. For instance, 
the accumulation of weighted-inputs at the input of 
every neuron requires the multiplication of the input 
signal and the weight of the link, followed by the 
accumulation of these product values for all links going 
into the neuron. The resulting net input is then passed 
through a non-linear function, normally implemented in 
look-up tables, to generate the output. Multiplication is 
also used extensively in the generation of the ∆∆∆∆w term 
in a majority of neural network algorithms. 

 
From a different perspective, the operations can be 
treated as vector operations [1], as explained below: 
1) Multiplication of a vector and a matrix (Vector x 

Matrix), as in the summation of weighted-inputs, 
and; 

2) Multiplication of a matrix with another matrix 
(Matrix x Matrix), as in the generation of the ∆∆∆∆w 
in the learning phase. 
 

As can be seen, one of the most frequently used 
operation in ANN is multiplication. Every synaptic link 
requires a multiplication between the synapse input and 
the weight, and for two adjacent layers with just ten 
neurons each, a total of 100 multiplications are 
required. Unfortunately, high-speed digital multipliers 
often require a lot of logic resources to implement.  

 
Various techniques to reduce the amount of hardware 
used had been proposed: using simpler but slower 
multiplier like those in bit-stream arithmetic, or 
modifying the neural algorithm such that it does not 
require any multiplication. Many bit-stream encoding 
and arithmetic methods have been used in the 
implementation of digital ANN hardware because they 
can simplify the multiplication operation. Examples are 
the stochastic methods [2], delta encoding [3] or the 
digital pulse stream techniques [4]. 

 
In most neural network hardware, data precision of 8 to 
16 bits are sufficient, although intermediate results, 
such as net-inputs and products of multiplications, may 
require more bits to represent them. Without any 
demanding needs for high data precision, it is also 
sufficient to use fixed-point arithmetic operations rather 
than the hardware-intensive floating-point operations. 
 

3. Implementation of the Prototype System 
 

This section describes the implementation of a 
prototype neural computing machine using FPGA-
based reconfigurable architecture. The prototype was 
used as a testbed for neural network hardware based on 
the proposed implementation approaches. Its design 
and development caters for a high degree of flexibility 
in order to accommodate changes during the course of 
the research project. 

 
The FRANN prototype system consists of three main 
pieces of hardware: 

1) a host computer; 
2) an FPGA subsystem; and 
3) UCIS bus-interfacing unit between the host 

computer and the FPGA system. 
 

The host computer is an IBM-compatible PC that takes 
inputs from users and allows neural networks to be 
designed in software. The neural network and its 
parameters are stored in hard drives and retrieved 
whenever it is needed. The host’s software also 
generates the FPGA’s circuitry and configuration data 
for downloading onto the FPGA chips. All these 
functionality constitute the software platform of the 
FRANN system. 

 
The FPGA subsystem is a collection of interconnected 
printed circuit boards, which house all the FPGA chips. 
Its main purpose is to provide a hardware platform to 
support all the FPGAs’ functional requirements such as 
power supply lines, decoupling capacitors, headers for 
ribbon cables connections, configuration interfaces, and 
tapping the desired lines from the package pins. The 



FPGA boards also contain static RAM memory to store 
data locally during system operation.  

 
An ISA bus-interfacing unit known as UCIS (Universal 
Computer Interfacing System) bridges the FPGA 
subsystem and the host computer. It is based on the 
general-purpose ISA-interfacing hardware designed by 
Bruce Chubb [5]. The UCIS was modified to suit the 
needs of the FRANN prototype system.  

 
Figure 1 shows the setup of the system. 
 
 
 
 
 
 
 

 
 

Figure 1: FRANN system setup 
 
3.1 Computational Performance. 

 
In neural network computing machines, the 
performance of the system is presented in two units. 
The first one is presented in terms of connections per 
second (CPS), or the number of weight multiplications 
in each second. This measurement is used during the 
operational or recall phase of the neural network, where 
the input signals are propagated forward. The second 
performance measurement is used during the training 
phase and indicates the number of weights updated per 
second, or connections update per second (CUPS). CPS 
and CUPS are often quoted in multiples of a million, as 
in million connections per second (MCPS), and million 
connection updates per second (MCUPS). These 
performance values take into consideration the total 
time required to complete either the operational or the 
training phase. This means that various delays due to 
communication, control and functional units are 
considered. 

 
The performance results presented in this paper is 
obtained under several conditions which will be 
highlighted here. First of all, the prototype machine 
runs at a global clock frequency of 8 MHz. This clock 
frequency is chosen to accommodate all the delays 
incurred in the PCB boards, interfacing logic, 
interconnecting ribbon cables, and the SRAM 
read/write access time. The clock frequency is selected 
to ensure that all the data on the lines are stable before 
the next rising edge of the clock. From Xilinx timing 
analyzer tools, the FPGA internal circuitry of the 
implemented architectures can actually reach a 
maximum clock frequency of approximately 34 MHz. 

However, in order to cater for various external delays, it 
is scaled down to 8 MHz. 

 
Next, the performances are measured at the optimum 
network condition. Optimum condition means that the 
percentage of time spent on non-processing activities 
such as data transfer and reconfiguration is at their 
minimum. In general, optimum conditions exist when 
the number of neurons in a neural network layer equals 
the total number of neural processors that can be 
physically realized on the FPGAs. Table 1 below shows 
the maximum number of neural processors that can be 
accommodated in each processing FPGA, and the total 
neural processors for the complete set of 4 processing 
FPGAs. The number of input elements is fixed at 32 for 
these measurements. Table 2 lists the performance 
results for all four algorithms and the corresponding 
network topology. 

 
The performance does not account for:  

1) System initialization before training begins. 
2) Data transfer between host and local SRAM. 
3) The initial programming of all the FPGA 

chips. 
The processing architecture for the ADALINE is simple 
and straightforward with a group of 24 neural 
processors operating in SIMD scheme. No activation 
function unit is required as it uses the identity function. 
Processing power is increased by employing 
parallelism through the SIMD architecture, and through 
circuit customization. For the operational phase, the 
ADALINE network records a projected performance of 
30.4 MCPS for 3072 weight multiplications, when all 4 
processing FPGAs are used. During the training phase, 
the projected performance is 13.2 MCUPS to propagate 
an input pattern and then train the weights on it. 

 
Notice that this particular ADALINE architecture 
accepts bipolar inputs (-1 and 1), which is represented 
as 0 and 1. Thus, the storage of the input data can be 
customized, i.e. 16 inputs are stored in one memory 
location. Each time a memory read is performed, 16 
input data is loaded onto local registers. The time spent 
reading inputs from memory is reduced by 16 times. 

 
In addition, with bipolar inputs, the multiplication unit 
is greatly simplified. Multiplying w with an input of 1 
would result in w itself, and with 0 the two's 
complement of w is produced. Both are achieved using 
two's complement combinational logic that consumes 
very little resources and takes only one clock cycle to 
execute. Customizing the multiplier unit in this way 
allows us to add more neural processors into each 
FPGA while reducing its processing latency, both 
contributing towards increasing performance. Another 
less obvious advantage is that this multiplier does not 
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double the wordlength of the product, thus no scaling 
circuitry and its related processing is required, which 
again leads to a lot of saving in terms of logic resources 
and computation latency. 

 
Another feature of customization in the proposed 
architecture is the use of dedicated hardwired 
controllers for each of the operations performed. At 
most, only 3 clock cycles are required to set up and 
initiate each controller. The majority requires only two 
clock cycles, one to choose the operation, and another 
one to start the operation. As with all the other 
algorithms, the controllers are built using the one-hot 
method, which is fast (can reach 50 MHz or more) but 
consume more flip-flops.  

 
Unlike ADALINE, the processing architecture for 
discrete Hopfield network is rather different. First of 
all, it does not use neuron-oriented mapping, but more 
closely resemble the synapse-oriented mapping. This is 
due to its algorithm which requires only one output 
unit's state to be updated at each forward pass of the 
feedback signal. In addition, all computation involved 
are concerned with the operational phase of the network 
and not the training phase. 

 
Instead of having many simple neural processors 
executing concurrently, this particular Hopfield 
architecture uses just one neural processor which 
performs two weight multiplications, a summation of 
their two products, and an accumulator. The weights 
are represented by 8-bit two's complement integer and 
not the usual 16-bit two's complement fractional 
numbers. Only two weight multiplication units are 
employed because each 16-bit memory location can 
store two weight values. So, each memory read 
operation will retrieve two weight values per FPGA. 
The arithmetic units form a two stage pipeline 
producing a new sum-of-weighted-input value at each 
cycle after the first initial two clock cycle. 

 
The processor's raw computing power is two weight 
multiplications for every clock cycle. If all four 
processing FPGAs are considered, then 8 weight 
multiplications occurred in each clock cycle. This is 
equivalent to a performance of 64 MCPS. However, as 
mentioned earlier the true performance of each 
architecture should take into account of other delays 
such as loading registers, processing by activation unit 
and so forth. In short, the total time taken to complete 
the forward phase. Table 3 shows the expected 
performance of the operational phase with respect to 
different number of neurons being implemented.  

 
Notice that the performance increases with the number 
of neurons and slowly saturates when the number of 

neurons reach 16384 and above, at a value slightly less 
than 64 MCPS, which is the raw processing power of 
the processor. At 96 neurons (Table 1), the performance 
is compatible with that of ADALINE’s and Kohonen’s. 
The lower MCPS value is due to the fact that it 
processed three times more weights during the 
operational phase. 

 
In general, the training architecture for Kohonen 
network is quite similar to the ADALINE architecture, 
but more complicated. Additional circuitry and 
processing is required to find the winner neuron and 
calculate how many of its neighbours can learn the 
current input pattern. Thus, its performance for the 
operational and training phase is slightly less than that 
of ADALINE's. 

 
During the training phase, notice that the performance 
gradually decreases from 12.3 MCUPS to 0.2 MCUPS. 
This is a result of the gradual reduction of the 
neighbourhood size. Eventually it will reach zero and 
only the winner neuron gets to train its weights. The 
circuit now operates in the same condition as that with 
the Hopfield architecture except that it is using the 
ADALINE-like architecture instead of the Hopfield-
like architecture. At this point of the processing, the 
Kohonen architecture is not optimized for the 
computation at hand and the performance drops 
tremendously. In fact, the computation becomes 
sequential in nature with only one active processor.  

 
Overall performance would depend on how long the 
Kohonen network continues to train with a 
neighbourhood size of zero before the stopping 
condition is fulfilled. Assuming that the network spends 
an equal amount of training cycle with the maximum 
and minimum values of the neighbourhood size, the 
average performance of the network can be calculated 
by adding the maximum and the minimum values and 
dividing their sum by 2, i.e. approximately 6.25 
MCUPS.  

 
If the optimum performance is to be maintained, then 
one possible solution is to reconfigure the FPGA to 
change the parallelism from neuron's level to synapse's 
level when neighbourhood size has become too small, 
in order to resemble the Hopfield's processing 
architecture. 

 
The performance of the backpropagation architecture is 
the lowest of the four algorithms that were 
implemented. This is a direct consequence of the 
backpropagation network being more computationally 
demanding compared to the other three. The differences 
are as follows: 
 



1) Backpropagation network is multi-layered (the 
proposed implementation uses two layers). The 
main cause of delay in multi-layered network is the 
added data communication to reload the neural 
network parameters when time-multiplexing the 
layers. 

2) In SRAM memory, the inputs, target and 
activations are represented by 8 bits two's 
complement numbers. However, in the neural 
processors, they are converted to 16-bit 
representation to maintain uniformity with the 16-
bit weights. As a result, 16-bit multiplication 
operations are required which is very expensive for 
FPGA-based implementations. To reduce the 
consumption of logic resources, bit-serial 
multipliers are used, but at the expense of longer 
computational latency. The bit-serial multiplier is 
customized to produce a 32-bit product in 19 clock 
cycles instead of the usual 32 cycles. But still, 
when compared to the 1-clock cycle multiplication 
of the other architectures, it takes around 20 times 
longer to produce a result. 

3) The backpropagation algorithm also uses more 
operations compared to the others. Thus, its neural 
processors are more complex and larger in terms of 
the amount of logic required. As a result, only 8 
processors are implemented in each FPGA as 
compared to 24 in ADALINE and Kohonen's 
architecture.  
 

Among the four architectures, only the backpropagation 
implementation uses an RTR region to realize some of 
its functional units. During the training of one input 
pattern (one forward and backward pass of the input 
signal), the RTR region is reconfigured 3 times to 
implement 3 different functional units. A total of 195 
clock cycles are required to reconfigure 64 LUTs and 
32 flip-flops. The time spent is only 3% of the total 
training time for one forward and one backward pass, 
or 1% for each configuration. The RTR region, 
including routing, uses approximately 180 CLBs or 
11% of the total CLBs per FPGA. In other words, our 
RTR implementation allows us to reconfigure 
approximately 11% of the logic resources 3 times using 
just 3% of the total processing latency to train on one 
input pattern. The benefits of RTR can be enjoyed 
without compromising too much on processing latency. 

 
Apart from performance, the other goal of the template-
based approach is flexibility. For each of the algorithm 
above, their topology can have any number of neurons 
or layer of neurons, as long as all the neural parameters 
(weights, input, output, etc.) can fit onto the local 
SRAM memories. The current design of the FRANN 
system does not allow data transfer between the host 
computer and local SRAM during the operational or 

training phase in order to keep the design simple. The 
memory can accommodate a network with up to 
262144 weights to be implemented on the FRANN 
hardware. This is equivalent to a single-layered 
network with 500 neurons and 500 inputs, or a two-
layered BP network with 280 neurons in each layer. 
These values are projected figures based on the usage 
of local SRAM memories. The current application 
software of the FRANN system allows only 60 to 100 
neurons per layer depending on the algorithm 
implemented. 

 
As for implementing networks using algorithms other 
than the four which have been included in the 
architecture, existing templates can be reused, or new 
ones can be created. A library of templates and neural 
processors can be built to handle a wide variety of 
neural algorithms and topology.  
 
3.2 Evaluation of RTR Method 

 
The evaluation of RTR implementation, based on the 
formatting of reconfigurable logic resources, has shown 
that most of the design goals have been achieved. For 
instance, run-time reconfiguration is executed in 8 
MHz, which is the system’s clock frequency. Thus, 
increasing the system’s clock speed would also increase 
the reconfiguration speed. Operating under the same 
clock also helps to synchronize the run-time 
reconfiguration to neighbouring circuitry’s operation. 
Next, the size (area) of the RTR region is variable 
allowing  the reconfiguration time to be controlled. As 
is well known, the reconfiguration time is proportional 
to the amount of logic that needs to be changed. This 
will provide circuit designers with yet another means of 
controlling the total computation time. Another 
important feature of the RTR methodology is that it 
provides encapsulation of the internal formatted 
architecture from other circuits. This enables a modular 
approach to be used for both the static and dynamic 
circuitry. 

 
The introduction of formatted RTR methodology has 
demonstrated many advantages. However, there are still 
several problems and limitations that needs to be 
considered. Firstly, the current implementation process 
is still carried out manually, which is limited to small 
RTR regions only. In order to have larger RTR regions, 
the process would have to be automated with software 
programs. Unfortunately, the algorithm required for 
such a software program turns out to be much more 
complicated than expected, and goes beyond the scope 
of this project.  

 
Reconfigurations are only limited to functional 
elements. Routing elements remain fixed as there are 



currently no means of manipulating them directly. Data 
flow control devices such as multiplexers would have 
to be used to add some flexibility to the interconnection 
network. However, if too many of them are employed, 
it could lead to large consumption of logic resources 
and introduce delays into the signal paths. 

 
Last but not least, if the dynamic circuit is complex, it 
might become more difficult to implement as compared 
to the conventional method. This is because the truth 
tables that are generated might be large and multi-level. 
In addition, it will become more difficult to design the 
routing elements so that they can accommodate all the 
configurations.  

 
In general, circuits implemented using RTR logic 
consumes slightly more logic resources than the 
standard method of compiling a design onto FPGA 
bitstream. This observation is based on the fact that 
RTR circuitry are not optimized for minimum area 
during the design cycle. The effect is not obvious in the 
current implementation because the RTR region is 
small. However, it is predicted that large RTR regions 
could degrade the efficient use of resources if no 
optimization is included; especially when the 
interconnection network is complex. This is one of the 
area that will require further study and analysis. 

 
In general, each architecture demands specific 
requirements. The ADALINE and Hopfield 
architectures are both very simple but can achieve 
computational power using different strategies. 
ADALINE uses a SIMD parallel architecture while 
Hopfield uses a pipeline processor inserted directly in 
the data path. Both used a certain degree of circuit 
customization to boost their performance. 

 
Kohonen’s computation needs are more dynamic and 
changes from an ADALINE-like processing to a 
Hopfield-like processing. This dynamism was analyzed 
from the performance point of view. Finally, the 
backpropagation architecture was examined to 
determine how its complexity affects performance. 

 
Observations on the use of formatted RTR logic were 
also discussed, and some of its advantages or 
disadvantages were highlighted. 
 

4. Conclusions 
 

In this paper, the research and analysis of neural 
network computation and how it could be implemented 
on hardware were presented.  In addition, various 
digital hardware implementation techniques were 
examined in an attempt to understand the various 
computing needs of neural network computing systems. 

The survey has revealed that there was a need to 
achieve both high computational power and flexibility 
if a variety of neural networks were to be implemented 
on the same hardware resources. The FPGA-based 
system shows the most potential in achieving these two 
requirements.  

 
Two implementation approaches for implementing the 
neural network computing hardware based on FPGA 
devices were proposed. The first one is known as the 
template-based approach targeted at achieving both 
performance and flexibility using the same hardware 
resources. The basic idea is to construct a complete 
neural processing architecture by customizing a basic 
template architecture. Each template can be used for 
several different neural algorithms. The template’s 
architecture implements only a layer of neurons and 
they are time-multiplexed for multi-layered networks. 
This is based on an earlier analysis which showed that 
inputs to hidden and output layers are obtained from the 
outputs of previous layers. Thus, the signal travels from 
one layer to another. It is not necessary to have all the 
layers implemented in hardware as only one is active at 
each instance of time. 

 
The next proposed idea is catered to the implementation 
of partial-RTR capability onto standard FPGA devices. 
A method which formats the native reconfigurable logic 
resources of the FPGA in order to elevate them to the 
functional level of the system is used. The formatted 
RTR region can now operate just like a circuit 
component in the entire architecture eliminating many 
problems faced by other partial-RTR methodologies. 
The format consists of various building blocks such as, 
LUTs for combinational logic, flip-flops and routing 
resources. 

 
Four neural network architectures - ADALINE, discrete 
Hopfield, Kohonen and backpropagation - were 
designed based on the two proposed ideas mentioned 
above. A prototype system was constructed to test the 
architectures and to act as a starting platform for future 
versions of the neural computing system. The prototype 
system consists of a host computer and a total of 7 
Xilinx XC4044XL FPGAs housed on 7 separate printed 
circuit boards. The PCBs are linked via ribbon cables 
and communicates with the host computer through a 
UCIS bus interfacing module. The application software 
includes functionality for designing neural networks 
and converting them to FPGA configuration data. The 
four neural architectures were tested on the constructed 
prototype. The average performance of the single layer 
networks were found to be around 27 MCPS and 12 
MCUPS, while the two-layered backpropagation 
computes at 8 MCPS and 2 MCUPS.  

. 
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Table 1: Maximum hardware neural processors 

Algorithm No. of NP per 
FPGA 

Total no. of NP 
for 4 FPGAs 

CLB usage per 
FPGA 

ADALINE 24 96 1148 CLBs 
Kohonen 24 96 1246 CLBs 
Backpropagation 8 32 1154 CLBs 
 

Table 2: Projected performance of the prototype system 

Algorithm Topology Total weights 
involved 

MCPS MCUPS 

ADALINE 32-96 3072 30.4 13.2 
Hopfield 96 9216 26.5    -- NA -- 
Kohonen 32-96 3072 28.6 12.3 - 0.2 
Backpropagation 32-32-32 2048 8 2 
 

 

Table 3: Hopfield operational performance for different network sizes   

No. of neurons MCPS 
4 1.7 
8 3.6 
12 5 
16 6.7 
32 12.2 
64 20.5 
96 26.5 
128 31 
256 41.8 
512 50.6 
1024 56.5 
2048 60 
4096 62 
8192 63 
16384 63.5 
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