
FPGA-BASED RECONFIGURABLE ARCHITECTURES FOR
NEURAL NETWORK

Wee Leng Goh

School of Electrical and Electronic E ngineering,

Nanyany Technological University, S1, Nanyang Avenue, Singapore 639798
E-mail: wlgoh@ntu.edu.sg

Abstract

This paper describes the use of FPGA-based
reconfigurable architectures to implement artificial
neural networks. The research is focused on
investigating the properties of FPGAs (Field
programmable gate arrays) to determine whether they
are suitable hardware solutions, and to experiment with
their reconfigurability as potential implementation
approaches for neural network computing. Two
implementation approaches were proposed. The first
proposal, known as the template-based approach, is
aimed at producing a computing architecture that
combines high computational power with user-
programmable flexibility to handle a wide variety of
neural networks. The second approach introduced a
partial-RTR (run-time reconfiguration) methodology
that formats the native reconfigurable logic resources of
an FPGA, allowing its reconfigurable region to be
manipulated like a functional entity. The architecture is
able to benefit from higher functional density without
the complexities associated with conventional partial-
RTR methodologies. A prototype system, FRANN, was
constructed to test the proposed implementation
approaches, and to act as an experimental testbed for
future development.

Keywords: FPGA, reconfigurable architecture,
artificial neural networks.

1. Introduction

One of the main attraction of artificial neural networks
(ANN) information processing system is its ability to
learn a task rather than being programmed to do it.
Learning is achieved by iteratively adjusting the
network’s weights such that the neural network will
response correctly to the input signals. The computation
during the learning phase requires massive parallelism
through a dense synaptic network, thus requiring

computing systems capable of high computational
power.

The widespread use of personal computers has allowed
ANN to be implemented in software, where the
inherent parallelism is simulated in a sequential
manner. For large networks that require huge training
data sets, the training time is normally very long. In
order to reduce the training time, many
implementations had used parallel computers or
specialized architectures in an attempt to physically
realize as much of the inherent parallelism that exist in
neural networks.

Most of these neural computing systems catered to
specific applications and implement only one neural
network. For general-purpose neurocomputing, the
ability to implement a variety of neural networks
requires the system to be flexible as well as
programmable. Unfortunately, in most computing
architecture, customization and parallelism are often
achieved at the expense of flexibility. So, an ideal
system to carry out general-purpose neural training
should be flexible and yet possess high computing
power.

This led to the investigation of the use of FPGA
devices, which can be used for building specialized
digital circuits, and reconfigured repeatedly. In theory,
a computing architecture consisting of FPGA devices
may provide a promising solution to the customisation-
flexibility issue. It is the goal of this research to find out
whether the FPGA is really suitable, and if so, how it
can be used.

The main contribution of this paper is the proposed
implementation using FPGA’s reconfigurability for
creating neural processing hardware. The first method
proposed, called the template-based approach, provides
hardware programmability by deriving custom
computing architecture from a generic hardware
template. The template and its supporting system
architecture takes into account the computation
structure of neural networks. The advantage of the
template approach is its ability to include circuit
specialization for higher computational power, and
flexibility together in the same system.

mailto:wlgoh@ntu.edu.sg

The second method proposed is an implementation
approach for run-time reconfiguration. This method
provides a simple solution to the difficulties
encountered in existing partial run-time reconfiguration
approaches. In general, it incorporates a reconfigurable
framework, which can be manipulated like normal
digital logic, into the processing architecture. The
framework is generated by formatting the FPGA’s
reconfigurable logic resources.

A prototype was built to implement neural network
training based on the proposed methodologies. The
prototype consists of both hardware and software, and
can be easily modified for future improvements. This
paper provides a discussion on its design, results and
observations obtained from building and testing the
system.

2. FPGA-based Implementation of ANN: A
Literature Review

The main goal of mapping neural network algorithms
onto hardware is to achieve higher computational
power. There are two ways of doing this: (1) by
building high-speed processors, and (2) by employing
parallel processing.

The three main arithmetic operations used in neural
computations are multiplication, addition (or
accumulation), and non-linear functions. For instance,
the accumulation of weighted-inputs at the input of
every neuron requires the multiplication of the input
signal and the weight of the link, followed by the
accumulation of these product values for all links going
into the neuron. The resulting net input is then passed
through a non-linear function, normally implemented in
look-up tables, to generate the output. Multiplication is
also used extensively in the generation of the ∆∆∆∆w term
in a majority of neural network algorithms.

From a different perspective, the operations can be
treated as vector operations [1], as explained below:
1) Multiplication of a vector and a matrix (Vector x

Matrix), as in the summation of weighted-inputs,
and;

2) Multiplication of a matrix with another matrix
(Matrix x Matrix), as in the generation of the ∆∆∆∆w
in the learning phase.

As can be seen, one of the most frequently used
operation in ANN is multiplication. Every synaptic link
requires a multiplication between the synapse input and
the weight, and for two adjacent layers with just ten
neurons each, a total of 100 multiplications are
required. Unfortunately, high-speed digital multipliers
often require a lot of logic resources to implement.

Various techniques to reduce the amount of hardware
used had been proposed: using simpler but slower
multiplier like those in bit-stream arithmetic, or
modifying the neural algorithm such that it does not
require any multiplication. Many bit-stream encoding
and arithmetic methods have been used in the
implementation of digital ANN hardware because they
can simplify the multiplication operation. Examples are
the stochastic methods [2], delta encoding [3] or the
digital pulse stream techniques [4].

In most neural network hardware, data precision of 8 to
16 bits are sufficient, although intermediate results,
such as net-inputs and products of multiplications, may
require more bits to represent them. Without any
demanding needs for high data precision, it is also
sufficient to use fixed-point arithmetic operations rather
than the hardware-intensive floating-point operations.

3. Implementation of the Prototype System

This section describes the implementation of a
prototype neural computing machine using FPGA-
based reconfigurable architecture. The prototype was
used as a testbed for neural network hardware based on
the proposed implementation approaches. Its design
and development caters for a high degree of flexibility
in order to accommodate changes during the course of
the research project.

The FRANN prototype system consists of three main
pieces of hardware:

1) a host computer;
2) an FPGA subsystem; and
3) UCIS bus-interfacing unit between the host

computer and the FPGA system.

The host computer is an IBM-compatible PC that takes
inputs from users and allows neural networks to be
designed in software. The neural network and its
parameters are stored in hard drives and retrieved
whenever it is needed. The host’s software also
generates the FPGA’s circuitry and configuration data
for downloading onto the FPGA chips. All these
functionality constitute the software platform of the
FRANN system.

The FPGA subsystem is a collection of interconnected
printed circuit boards, which house all the FPGA chips.
Its main purpose is to provide a hardware platform to
support all the FPGAs’ functional requirements such as
power supply lines, decoupling capacitors, headers for
ribbon cables connections, configuration interfaces, and
tapping the desired lines from the package pins. The

FPGA boards also contain static RAM memory to store
data locally during system operation.

An ISA bus-interfacing unit known as UCIS (Universal
Computer Interfacing System) bridges the FPGA
subsystem and the host computer. It is based on the
general-purpose ISA-interfacing hardware designed by
Bruce Chubb [5]. The UCIS was modified to suit the
needs of the FRANN prototype system.

Figure 1 shows the setup of the system.

Figure 1: FRANN system setup

3.1 Computational Performance.

In neural network computing machines, the
performance of the system is presented in two units.
The first one is presented in terms of connections per
second (CPS), or the number of weight multiplications
in each second. This measurement is used during the
operational or recall phase of the neural network, where
the input signals are propagated forward. The second
performance measurement is used during the training
phase and indicates the number of weights updated per
second, or connections update per second (CUPS). CPS
and CUPS are often quoted in multiples of a million, as
in million connections per second (MCPS), and million
connection updates per second (MCUPS). These
performance values take into consideration the total
time required to complete either the operational or the
training phase. This means that various delays due to
communication, control and functional units are
considered.

The performance results presented in this paper is
obtained under several conditions which will be
highlighted here. First of all, the prototype machine
runs at a global clock frequency of 8 MHz. This clock
frequency is chosen to accommodate all the delays
incurred in the PCB boards, interfacing logic,
interconnecting ribbon cables, and the SRAM
read/write access time. The clock frequency is selected
to ensure that all the data on the lines are stable before
the next rising edge of the clock. From Xilinx timing
analyzer tools, the FPGA internal circuitry of the
implemented architectures can actually reach a
maximum clock frequency of approximately 34 MHz.

However, in order to cater for various external delays, it
is scaled down to 8 MHz.

Next, the performances are measured at the optimum
network condition. Optimum condition means that the
percentage of time spent on non-processing activities
such as data transfer and reconfiguration is at their
minimum. In general, optimum conditions exist when
the number of neurons in a neural network layer equals
the total number of neural processors that can be
physically realized on the FPGAs. Table 1 below shows
the maximum number of neural processors that can be
accommodated in each processing FPGA, and the total
neural processors for the complete set of 4 processing
FPGAs. The number of input elements is fixed at 32 for
these measurements. Table 2 lists the performance
results for all four algorithms and the corresponding
network topology.

The performance does not account for:

1) System initialization before training begins.
2) Data transfer between host and local SRAM.
3) The initial programming of all the FPGA

chips.
The processing architecture for the ADALINE is simple
and straightforward with a group of 24 neural
processors operating in SIMD scheme. No activation
function unit is required as it uses the identity function.
Processing power is increased by employing
parallelism through the SIMD architecture, and through
circuit customization. For the operational phase, the
ADALINE network records a projected performance of
30.4 MCPS for 3072 weight multiplications, when all 4
processing FPGAs are used. During the training phase,
the projected performance is 13.2 MCUPS to propagate
an input pattern and then train the weights on it.

Notice that this particular ADALINE architecture
accepts bipolar inputs (-1 and 1), which is represented
as 0 and 1. Thus, the storage of the input data can be
customized, i.e. 16 inputs are stored in one memory
location. Each time a memory read is performed, 16
input data is loaded onto local registers. The time spent
reading inputs from memory is reduced by 16 times.

In addition, with bipolar inputs, the multiplication unit
is greatly simplified. Multiplying w with an input of 1
would result in w itself, and with 0 the two's
complement of w is produced. Both are achieved using
two's complement combinational logic that consumes
very little resources and takes only one clock cycle to
execute. Customizing the multiplier unit in this way
allows us to add more neural processors into each
FPGA while reducing its processing latency, both
contributing towards increasing performance. Another
less obvious advantage is that this multiplier does not

HO UCI FPGA

double the wordlength of the product, thus no scaling
circuitry and its related processing is required, which
again leads to a lot of saving in terms of logic resources
and computation latency.

Another feature of customization in the proposed
architecture is the use of dedicated hardwired
controllers for each of the operations performed. At
most, only 3 clock cycles are required to set up and
initiate each controller. The majority requires only two
clock cycles, one to choose the operation, and another
one to start the operation. As with all the other
algorithms, the controllers are built using the one-hot
method, which is fast (can reach 50 MHz or more) but
consume more flip-flops.

Unlike ADALINE, the processing architecture for
discrete Hopfield network is rather different. First of
all, it does not use neuron-oriented mapping, but more
closely resemble the synapse-oriented mapping. This is
due to its algorithm which requires only one output
unit's state to be updated at each forward pass of the
feedback signal. In addition, all computation involved
are concerned with the operational phase of the network
and not the training phase.

Instead of having many simple neural processors
executing concurrently, this particular Hopfield
architecture uses just one neural processor which
performs two weight multiplications, a summation of
their two products, and an accumulator. The weights
are represented by 8-bit two's complement integer and
not the usual 16-bit two's complement fractional
numbers. Only two weight multiplication units are
employed because each 16-bit memory location can
store two weight values. So, each memory read
operation will retrieve two weight values per FPGA.
The arithmetic units form a two stage pipeline
producing a new sum-of-weighted-input value at each
cycle after the first initial two clock cycle.

The processor's raw computing power is two weight
multiplications for every clock cycle. If all four
processing FPGAs are considered, then 8 weight
multiplications occurred in each clock cycle. This is
equivalent to a performance of 64 MCPS. However, as
mentioned earlier the true performance of each
architecture should take into account of other delays
such as loading registers, processing by activation unit
and so forth. In short, the total time taken to complete
the forward phase. Table 3 shows the expected
performance of the operational phase with respect to
different number of neurons being implemented.

Notice that the performance increases with the number
of neurons and slowly saturates when the number of

neurons reach 16384 and above, at a value slightly less
than 64 MCPS, which is the raw processing power of
the processor. At 96 neurons (Table 1), the performance
is compatible with that of ADALINE’s and Kohonen’s.
The lower MCPS value is due to the fact that it
processed three times more weights during the
operational phase.

In general, the training architecture for Kohonen
network is quite similar to the ADALINE architecture,
but more complicated. Additional circuitry and
processing is required to find the winner neuron and
calculate how many of its neighbours can learn the
current input pattern. Thus, its performance for the
operational and training phase is slightly less than that
of ADALINE's.

During the training phase, notice that the performance
gradually decreases from 12.3 MCUPS to 0.2 MCUPS.
This is a result of the gradual reduction of the
neighbourhood size. Eventually it will reach zero and
only the winner neuron gets to train its weights. The
circuit now operates in the same condition as that with
the Hopfield architecture except that it is using the
ADALINE-like architecture instead of the Hopfield-
like architecture. At this point of the processing, the
Kohonen architecture is not optimized for the
computation at hand and the performance drops
tremendously. In fact, the computation becomes
sequential in nature with only one active processor.

Overall performance would depend on how long the
Kohonen network continues to train with a
neighbourhood size of zero before the stopping
condition is fulfilled. Assuming that the network spends
an equal amount of training cycle with the maximum
and minimum values of the neighbourhood size, the
average performance of the network can be calculated
by adding the maximum and the minimum values and
dividing their sum by 2, i.e. approximately 6.25
MCUPS.

If the optimum performance is to be maintained, then
one possible solution is to reconfigure the FPGA to
change the parallelism from neuron's level to synapse's
level when neighbourhood size has become too small,
in order to resemble the Hopfield's processing
architecture.

The performance of the backpropagation architecture is
the lowest of the four algorithms that were
implemented. This is a direct consequence of the
backpropagation network being more computationally
demanding compared to the other three. The differences
are as follows:

1) Backpropagation network is multi-layered (the
proposed implementation uses two layers). The
main cause of delay in multi-layered network is the
added data communication to reload the neural
network parameters when time-multiplexing the
layers.

2) In SRAM memory, the inputs, target and
activations are represented by 8 bits two's
complement numbers. However, in the neural
processors, they are converted to 16-bit
representation to maintain uniformity with the 16-
bit weights. As a result, 16-bit multiplication
operations are required which is very expensive for
FPGA-based implementations. To reduce the
consumption of logic resources, bit-serial
multipliers are used, but at the expense of longer
computational latency. The bit-serial multiplier is
customized to produce a 32-bit product in 19 clock
cycles instead of the usual 32 cycles. But still,
when compared to the 1-clock cycle multiplication
of the other architectures, it takes around 20 times
longer to produce a result.

3) The backpropagation algorithm also uses more
operations compared to the others. Thus, its neural
processors are more complex and larger in terms of
the amount of logic required. As a result, only 8
processors are implemented in each FPGA as
compared to 24 in ADALINE and Kohonen's
architecture.

Among the four architectures, only the backpropagation
implementation uses an RTR region to realize some of
its functional units. During the training of one input
pattern (one forward and backward pass of the input
signal), the RTR region is reconfigured 3 times to
implement 3 different functional units. A total of 195
clock cycles are required to reconfigure 64 LUTs and
32 flip-flops. The time spent is only 3% of the total
training time for one forward and one backward pass,
or 1% for each configuration. The RTR region,
including routing, uses approximately 180 CLBs or
11% of the total CLBs per FPGA. In other words, our
RTR implementation allows us to reconfigure
approximately 11% of the logic resources 3 times using
just 3% of the total processing latency to train on one
input pattern. The benefits of RTR can be enjoyed
without compromising too much on processing latency.

Apart from performance, the other goal of the template-
based approach is flexibility. For each of the algorithm
above, their topology can have any number of neurons
or layer of neurons, as long as all the neural parameters
(weights, input, output, etc.) can fit onto the local
SRAM memories. The current design of the FRANN
system does not allow data transfer between the host
computer and local SRAM during the operational or

training phase in order to keep the design simple. The
memory can accommodate a network with up to
262144 weights to be implemented on the FRANN
hardware. This is equivalent to a single-layered
network with 500 neurons and 500 inputs, or a two-
layered BP network with 280 neurons in each layer.
These values are projected figures based on the usage
of local SRAM memories. The current application
software of the FRANN system allows only 60 to 100
neurons per layer depending on the algorithm
implemented.

As for implementing networks using algorithms other
than the four which have been included in the
architecture, existing templates can be reused, or new
ones can be created. A library of templates and neural
processors can be built to handle a wide variety of
neural algorithms and topology.

3.2 Evaluation of RTR Method

The evaluation of RTR implementation, based on the
formatting of reconfigurable logic resources, has shown
that most of the design goals have been achieved. For
instance, run-time reconfiguration is executed in 8
MHz, which is the system’s clock frequency. Thus,
increasing the system’s clock speed would also increase
the reconfiguration speed. Operating under the same
clock also helps to synchronize the run-time
reconfiguration to neighbouring circuitry’s operation.
Next, the size (area) of the RTR region is variable
allowing the reconfiguration time to be controlled. As
is well known, the reconfiguration time is proportional
to the amount of logic that needs to be changed. This
will provide circuit designers with yet another means of
controlling the total computation time. Another
important feature of the RTR methodology is that it
provides encapsulation of the internal formatted
architecture from other circuits. This enables a modular
approach to be used for both the static and dynamic
circuitry.

The introduction of formatted RTR methodology has
demonstrated many advantages. However, there are still
several problems and limitations that needs to be
considered. Firstly, the current implementation process
is still carried out manually, which is limited to small
RTR regions only. In order to have larger RTR regions,
the process would have to be automated with software
programs. Unfortunately, the algorithm required for
such a software program turns out to be much more
complicated than expected, and goes beyond the scope
of this project.

Reconfigurations are only limited to functional
elements. Routing elements remain fixed as there are

currently no means of manipulating them directly. Data
flow control devices such as multiplexers would have
to be used to add some flexibility to the interconnection
network. However, if too many of them are employed,
it could lead to large consumption of logic resources
and introduce delays into the signal paths.

Last but not least, if the dynamic circuit is complex, it
might become more difficult to implement as compared
to the conventional method. This is because the truth
tables that are generated might be large and multi-level.
In addition, it will become more difficult to design the
routing elements so that they can accommodate all the
configurations.

In general, circuits implemented using RTR logic
consumes slightly more logic resources than the
standard method of compiling a design onto FPGA
bitstream. This observation is based on the fact that
RTR circuitry are not optimized for minimum area
during the design cycle. The effect is not obvious in the
current implementation because the RTR region is
small. However, it is predicted that large RTR regions
could degrade the efficient use of resources if no
optimization is included; especially when the
interconnection network is complex. This is one of the
area that will require further study and analysis.

In general, each architecture demands specific
requirements. The ADALINE and Hopfield
architectures are both very simple but can achieve
computational power using different strategies.
ADALINE uses a SIMD parallel architecture while
Hopfield uses a pipeline processor inserted directly in
the data path. Both used a certain degree of circuit
customization to boost their performance.

Kohonen’s computation needs are more dynamic and
changes from an ADALINE-like processing to a
Hopfield-like processing. This dynamism was analyzed
from the performance point of view. Finally, the
backpropagation architecture was examined to
determine how its complexity affects performance.

Observations on the use of formatted RTR logic were
also discussed, and some of its advantages or
disadvantages were highlighted.

4. Conclusions

In this paper, the research and analysis of neural
network computation and how it could be implemented
on hardware were presented. In addition, various
digital hardware implementation techniques were
examined in an attempt to understand the various
computing needs of neural network computing systems.

The survey has revealed that there was a need to
achieve both high computational power and flexibility
if a variety of neural networks were to be implemented
on the same hardware resources. The FPGA-based
system shows the most potential in achieving these two
requirements.

Two implementation approaches for implementing the
neural network computing hardware based on FPGA
devices were proposed. The first one is known as the
template-based approach targeted at achieving both
performance and flexibility using the same hardware
resources. The basic idea is to construct a complete
neural processing architecture by customizing a basic
template architecture. Each template can be used for
several different neural algorithms. The template’s
architecture implements only a layer of neurons and
they are time-multiplexed for multi-layered networks.
This is based on an earlier analysis which showed that
inputs to hidden and output layers are obtained from the
outputs of previous layers. Thus, the signal travels from
one layer to another. It is not necessary to have all the
layers implemented in hardware as only one is active at
each instance of time.

The next proposed idea is catered to the implementation
of partial-RTR capability onto standard FPGA devices.
A method which formats the native reconfigurable logic
resources of the FPGA in order to elevate them to the
functional level of the system is used. The formatted
RTR region can now operate just like a circuit
component in the entire architecture eliminating many
problems faced by other partial-RTR methodologies.
The format consists of various building blocks such as,
LUTs for combinational logic, flip-flops and routing
resources.

Four neural network architectures - ADALINE, discrete
Hopfield, Kohonen and backpropagation - were
designed based on the two proposed ideas mentioned
above. A prototype system was constructed to test the
architectures and to act as a starting platform for future
versions of the neural computing system. The prototype
system consists of a host computer and a total of 7
Xilinx XC4044XL FPGAs housed on 7 separate printed
circuit boards. The PCBs are linked via ribbon cables
and communicates with the host computer through a
UCIS bus interfacing module. The application software
includes functionality for designing neural networks
and converting them to FPGA configuration data. The
four neural architectures were tested on the constructed
prototype. The average performance of the single layer
networks were found to be around 27 MCPS and 12
MCUPS, while the two-layered backpropagation
computes at 8 MCPS and 2 MCUPS.

.

5. References

[1] Simon C.J. Garth, “Simulators for Neural
Networks”, in Advance Neural Computers, Elsevier
Science Publishers B.V., 1990, page(s) 177-183.
[2] Stephen L. Bade, Brad L. Hutchings, “FPGA-
Based Stochastic Neural Networks – Implementation”,
IEEE Workshop on FPGAs for Custom Computing
Machines, April 1994, page(s)189-198.
[3] Valentina Salapura, “Neural Networks Using Bit
Stream Arithmetic: a Space Efficient Implementation”,

1994 IEEE International Symposium on Circuits and
Systems, 1994. ISCAS '94., Volume: 6 , 1994 , page(s)
475 –478.
[4] P. Lysaght, J. Stockwood, J. Law, D. Girma,
“Artificial Neural Network Implementation on a Fine-
Grained FPGA”, in Field-Programmable Logic:
Architectures,
[5] Bruce Chubb, “Build Your Own Universal

Computer Interface”, Second Edition, McGraw
Hill, 1997.

Table 1: Maximum hardware neural processors

Algorithm No. of NP per
FPGA

Total no. of NP
for 4 FPGAs

CLB usage per
FPGA

ADALINE 24 96 1148 CLBs
Kohonen 24 96 1246 CLBs
Backpropagation 8 32 1154 CLBs

Table 2: Projected performance of the prototype system

Algorithm Topology Total weights
involved

MCPS MCUPS

ADALINE 32-96 3072 30.4 13.2
Hopfield 96 9216 26.5 -- NA --
Kohonen 32-96 3072 28.6 12.3 - 0.2
Backpropagation 32-32-32 2048 8 2

Table 3: Hopfield operational performance for different network sizes

No. of neurons MCPS
4 1.7
8 3.6
12 5
16 6.7
32 12.2
64 20.5
96 26.5
128 31
256 41.8
512 50.6
1024 56.5
2048 60
4096 62
8192 63
16384 63.5

	FPGA-BASED RECONFIGURABLE ARCHITECTURES FOR NEURAL NETWORK
	
	
	
	
	Wee Leng Goh

	Abstract

	2. FPGA-based Implementation of ANN: A Literature Review
	
	3. Implementation of the Prototype System
	
	
	Figure 1: FRANN system setup

	3.2 Evaluation of RTR Method

	5. References
	Table 1: Maximum hardware neural processors
	
	Table 2: Projected performance of the prototype system
	Table 3: Hopfield operational performance for different network sizes

