Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

An Extension of MS Windows to Support the Developmeht
of Distributed Object-Oriented Applications

Heng-Ching Lin and Chih-Ping Chu

Institute of Information Engineering
Nationa] Cheng Kung University
Tainan, Taiwan 701, R.O.C.
chucp@serverZ.iie.ncku.edu.tw

Abstract

MS Windows is the most widely used operating
environment with graphics user interface for personal
computers. However, in MS Windows there exists no
appropriate, high-level support for developing
distributed windows applications. In this paper we
propose an expansion to the MS Windows environment
to support the development of distributed windows
applications across heterogeneous platforms. The
extended version of MS Windows (we call it EMS
Windows) adopts Client/Server architecture with the
Jeatures of network transparency. .and independent
execution-platform applications. In addition, a class
library supporting the development of distributed,
object-oriented windows applications is also built into
EMS Windows. Based on EMS Windows, we found that
developing a distributed windows application is very
fast and efficient.

1. Introduction

Since the computer network has become popular,
application systems have advanced from operating in a
stand-alone computer to working in network-connected
computer clusters. Applications which used to be executed
on mainframes have been downsized to redevelop on
distributed computing platforms. People at various sites
can operate and share resources with each other,
eliminating time and space restrictions. On the other hand,
ever since MS Windows operating environments were
released on personal computers, more and more people
have gradually come to believe that the windows interface
is a more user-friendly interface and may replace the
command mode interface of the DOS enVJ,ronment Many
applications have thus been developed | with windows
interfaces in MS Windows environment. Tn addition, the
advantages of object-oriented programming - information
hiding, more structure, easy to understand, reuse, and

294

_maintain, etc., and the advancement of object-oriented

languages have enabled many applications to be

- constructed on the basis of objects. Due .to these facts

distributed, object-oriented windows applications will be
the mainstream of application software in the near future.
However, currently it is still rather difficult to develop
distributed applications in an MS Windows environment,
especially for a novice - in networking programming.
Therefore, an extension of MS Windows (we call it EMS
Windows) to support. the development . of dlstrlbuted
object-oriented window applications with the features of
network transparency and independent execution-platform
applications is considered necessary. , _
In Section 2 some background information is
introduced. . Section 3 describes how to design and
implement EMS Windows. Section 4 presents applications
implemented in EMS Windows, showing also the
relationship between EMS Windows and X Window.

Finally, Section 5 draws conclusmns and outlines future

research directions.
2. Background

EMS Windows, an extension of MS Windows, adopts
the client/server architecture supporting - distributed
applications: executed across different windows
environments such as X Window, the Apple’s Macintosh,
and other windows systems. We will first briefly provide
some background information about the client/server
architecture, the MS Windows System and the X Window
System in this section.

2;1 Client/Server architecture

A distributed application contains software programs
and data resources scattered across independent computers
connected through a communication network.
Coordination models establishes logical roles - along with
associated behaviors for applications that assume roles.
One coordination model widely used in a distributed

system is the client/server mode. A program, the client
requests an operation or service that some other
application, the server, provides. Upon receiving a client
request, the server performs the requested service and
returns the results. A client interface specifies the
individual services or operations supported by the server.
Clients can only request services that conform to the client
interface of the given server.

To design a model for a development environment
supporting applications with client/server coordination
several key issues must be considered carefully [Adler, 1]:
- direct or indirect services

The service mode provided by the server can be
classified as direct or indirect. A direct service implies the
client communicates with the server immediately, while an
indirect service means the client merely communicates
with an agent and the agent communicates with the actual
server. Both modes have their application considerations
including execution-platforms, efficiency, extendability,
coding complexity, etc.

- explicit or implicit requests

Explicit requests refer to when a client needs to state
clearly the service and the server it is requesting. An
implicit request means that a client needs to state simply
the service it is requesting but not the server. The server
providing that specific service will be found and bound by
the supporting environment.

- blocking or non-blocking

A client after submitting a service request may be
blocked in order to wait for the results, or it may continue
to do its own job without being blocked.

In EMS Windows environment the supported
client/server mode adopts direct services, explicit requests,
and non-blocking scheme.

2.2 MS Windows system

Programming an application in MS Windows
usually includes the following steps:

1. Register a window class and assign message-handling
procedures.

2. Create a window and expose the window.

3. Get messages and dispatch them to message-handling
procedures for processing. ‘

A window is always created on the basis of a
window class. The window class identifies the window
procedure that processes messages for that window. The
window class defines the window procedure and some
other characteristics of the windows that are created based
on that class. When a window is created, additional
characteristics that are unique to that window may also be
defined. Like X Window, MS Windows is also event-

295

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

driven. In MS Windows events are called neessages. There
are two kinds of message: quewed messages and
nonqueued messages. The queued messages are those that
are placed in an application’s message queue by Windows
and retrieved and dispatched in the application’s message
loop. The nonqueued messages are sent to the window
directly when Windows calls the window procedure. The
queued messages are primarily those that result. from user
input, while the nonqueued messages resuli from the
Windows system (e.g., events for creating windows).
Usually the window procedure processes some special
kinds of message and the others are sent to a default
window procedure for processing.

2.3 X Window system

The X Window System, having been developed on
top of operating systems, is a development environment
with the feature of network transparency, hardware
independence and text and graphics computing window
interfaces, supporting the development of centralized and
distributed applications [Jones, 3].

As shown in Figure 1, the basic architecture of the X
Window System is a client/server model. There is a server
managing all input and output devices in each host
machine. The server notifies clients of the occurrence of
events and handles requests from clients. Clients and
servers do not have to be in the same machine. An
application in X Window System communicates with a
server by a display connection. A display connection is a
logical network connection between an application and a
server. X Windows System provides programmers
network transparency by means of display connection.

Fig. 1 Network Transparency of X Windows

Event-driven is another property of X Window
applications. The X protocol specifies what makes up each
packet of information transferred beiween the server and

the application in both directions. There are four types of

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

packets transferred via the protocol: requests, replies,
events and errors. A protocol request is generated by an
application and sent to the server and the others are sent
from the server to an application. The event is the most
important packet becanse all X applications are event-
driven. When the program starts, it first connects with a
server. Then, after creating windows, the .program
repeatedly waits for an event. When a user operates 1/O
equipment, an event will be generated and sent to the
application by the server. Then the application will
undertake appropriate processing after receiving the event.

3. Design and implementation of the EMS Windows

The goals of EMS Windows are to support the
development of distributed applications in procedural and
object-oriented languages and to provide an environment
with network transparency and execution-platform
independence.

3.1 System architecture

As shown in Figure 2, EMS Windows is developed
with a client/server architecture. It provides programmers
an interface between an application and the network. An
application (client) can communicate with the server either
by passing messages to objects or by calling functions.
Objects consist of member functions. The server either
calls an appropriate MS Windows application program
interface (API) or X Library (X Lib) to be processed,
depending on the execution platform. The MS Windows
API will talk with the MS Windows System and the X Lib
will talk with the X server. The results will be returned to
the application. The network protocol is TCP/IP.

SRS

IClient Interface Objec:

Fig. 2 System Architecture

We first need to execute a daemon process on each
computer that wants to be a server. Figure 3 shows the

296

operation flow of the daemon process in EMS Windows.
The algorithm for the daemon process is:

1. Initialize windows’ sockets.

Wait for a connection request from a client.

Establish connection with the client.

Produce a server for the client, and then go back to
step 2.

Initialize Sockets API

Establish Counnection

2.
3.
4.

Connection Request

Fig. 3 Execution Flow of the Daemon Process

After producing a service process, the daemon process
continues waiting for the next connection request from
another client. Meanwhile, the serving process begins to
serve the client as shown in Figure 4. The operation flow
of the serving process is:

1. Wait for a service request.
2. Provide the client with a suitable service according to
the service identification, then return the results to the

client and go back to state 1.

Wait for Service Requests

Fig. 4 The operation flow of the serving process

3.2 Detailed design

By referring to [3,14] the coding paradigm for writing
an application in EMS Windows is established as follows:
1. Establish a display connection.

Register a window class.
Create a window and expose the window.

2.
3.
4. Get messages and dispatch them to the message

processing procedure to handle them.

In this section, based on [5-11], we will describe how
to design the interface functions and the interface objects
to meet the expected goals.

Establish a display connection

As we have described in Section 3.1, first, we need to
start up a daemon in the server node. In the EMS
Windows system, the daemon process is SERROOT (i.e.,
Server Root). SERROOT does not provide any service to
clients but only produces a serving process for the client
requesting connection. The serving process will handle all
requests from the connected client. SERROOT will tell the
serving process its client’s display number. As shown in
Figure 5, each client has an individual serving process in
each connected corputer, and the serving process will
handle its requests. Applications use OpenDisplay() to
connect with a server in either execution model. When the
connection is closed, the serving process will be killed.

Client A Client B

A’s Service | |B’s Service A’s Service | |B’s Service
process ina | [process in a process in b | [process in b

Fig. 5 Clients VS. Servers

Register window classes

In conventional windows programming, before
creating a window, the window class has to be registered
in advance. In EMS Windows, it is necessary to register a
window class before a window is created. By means of the
display connection a client notifies a server it wants to
register a specific window class.

The function - MlinitialWindow() is defined to register
a window class. This function needs eight parameters in
addition to the server’s identification. The eight
parameters are specified as follows:
- Style Specifies the configuration of the window.
- cbClsExtra Defines a certain number of extra bytes that
will be appended at the end of the window class structure
and reserved for special purposes.
- cbWndExtra The number of extra bytes added to the end
of each newly created window structure.
- hlcon Defines the icon assigned to the window class.

_ = hCursor The handle for a cursor type.

297

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

- hMenu'A long pointer of a character string ending in “\0”.
This character string assigns a menu resource for the
window class.

- IpszClassName A long pointer to a character string
ending in “\0”, that contains the name of the window class.
- hbrBackground A handle for a background brush.

The conventional coding method for windows
applications needs to fill in the variable fields of
WNDCLASS and then call the function - RegisterClass()
to register the window class. WNDCLASS, in addition to
the eight field shown above, has two extra fields. In the
EMS system, these two fields are filled in by the server.
The names and the reasons are explained below.

o IpfuWndProc A pointer of the window function
assigned to the window class

Traditionally, each window class has a window
(control) function. When a window belonging to some
class receives an event, the windows system will call its
window function. In EMS Windows the server will get
events to happen in the window on the server node and
notify clients to handle them. Thus, a function that can
record events belonging to user-defined classes of
windows is needed. The function is assigned to all user-
defined classes to the window function by the server. Then
servers can record events and notify clients.
® hinstance The handle for the instance of the application
for which the window class is being registered

From a user’s viewpoint this function is an application
which registers the window class. But an application just
tells the server information about the class, and the server
actually registers it. So, it is correct that the handle for the
instance of the application is assigned by the server.

Expose windows

In the creation of windows, the parameters needed by
the function - MCreateWindow() are similar to the ones
used by EMS Windows. There are two different points
that are the necessary for the server’s identification and
the lack of a handle for the instance of the application. We
will know which server needs to create a window by
means of the server identification. The reason for the lack
of a handle is the same as in registering window classes.
After the server receives all information, it will create the
specified window for the client. In addition, the system
also supports a system-defined windows class - Edit - in
EMS Windows. Because the class has a defined window
function, the service process will change the pointer from
an edit window function to the window function provided
by EMS Windows, which will record events originally
sent to the edit window function. The application will then
be able to know the events in the edit window, but it will
need to use CallEditFunction() to call the original edit

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

window function, if you want to keep the original
operation of the edit window.

If the window’s type is set as WS_VISIBLE in window
creation, the window will be exposed on the screen after it
has been successfully created. If we do not set the
window’s type, we will need to call the function -
MShowWindow() to expose the window on the screen after
it has been created. Parameters needed by this function are
similar to the corresponding function in EMS Windows,
but in creating a window it needs a server’s identification
to notify the correct server.

Event Process

In MS Windows, there are two kinds of message. One
is a gueued message, and the other is a nongueued
message. In EMS Windows, the classification and
handling methods of events are different with respect to
the viewpoints of the users and the system. We will
describe them here.

Figure 6 shows the event queue from the user’s
viewpoint. From user’s (programmer’s) viewpoint, all
events are in the event queue. When an event takes place,
it will be entered in the queue to wait for processing.
Clients use the function - MGetEvent(Display Dpy,
MEvent *event) to read an event from the queue of the
server whose identification is' Dpy. Because this function
will block the program before it gets an event, sometimes
we can check to see if there are waiting events before we
read an event. We can use MLookupEvent() to check it.
Clients also can use MSendEvent() to duplicate an event to
a specified server; the event will be inserted between the
duplicated event and other events. They also can use
AppendEvent() to produce an event at a specified server
that appears as a general event. :

Fig. 6 The User’s Viewpoint to the Event Queue

The fields of the event structure (MEvent) is as
follows:)
- dpy (server’s identification) Specifies the issuance of the
event.
- hwnd Specifies the handle for the window on which the
event takes place.

298

- type Describes the event type ex. WM_RBUTTONDOWN.
- wParam Short extra information about a special event.

- IParam Long extra information about a special event.

- Send_Type Specifies if the event is a reduplicated one. If
it is reduplicated, this field will be set to TRUE; otherwise,
it is FALSE.

Figure 7 shows the appearance of the queue in terms
of the system. Two linked lists make up the queue looked
at by clients. The responsibility of list B is to record -
reduplicated events by clients. List A records the other
events. When a client asks if an event exists or it reads an
event, events in list B will be handled first, and the evenis
in list A will be handled until B is null. By the way, we
can make a queue that can distinguish if an event is
reduplicated. A reduplicated event is handled first and sets
Send Type to TRUE. This property allows programmers
to be able to write a synchronous application easily.

' Original Event

if List B §s null

Fig. 7 The Event Queue from the System’s Viewpoint

Figure 8 shows the implemented client interface in
EMS Windows. Next, we will introduce the objects in
EMS Windows.

—-IOpen and Close (.onnectlonl

——[Reglster Window C lassl

vent Process

1
1@

3
i-

:

N
<

[C"iﬁnt InterfaceJ_

nput aracters

__lM emory Management I

arent

mer

i

Fig. 8 Client Interface

3.3 Design of objects

To enable programmers to be able to develop their
applications in an object-oriented programming mode, in
EMS Windows the interface objects are also built. As
shown in Figure 9, the objects currently provided can be
classified as conmnmection objects; window objects, image
objects, CD object and wave object.

rectionChyact

Fig. 9 Classification of objects

Connection objects are divided into multiple and
single connection objects. There are three. operating
methods on the object. They are:

1. Open connection.

2. Read events.

3. Close connection.

‘When programmers start an object, they need to pass the
messages of the computers’ addresses to it. Fig. 10 shows
a connection object and the messages passed-in and

passed-out.
Opening Connection \

Reading Events
Closing Connection

Addresses

1. Servers’ Identification
2. Number(Multiple)

Events

Flg 10 A Connection Object and the Messages Passed

Window objects are divided into user-defined window
objects, edit window objects and button objects. User-
defined window objects and edit window objects both can
be synchronized and asynchronized. Synchronized means
that the windows will have the same eVent_s and

299

Joint Conferer;ce of 1996 International Computer Symposium .
December 19~21, Kaohsiung, Taiwan, R.O.C. .

asynchronized means that they are independent. Thus, the

synchronous object inherits from the asynchronous one

and modifies the event processing. Their operating
methods for all window objects are the same. They are:

1. Initialize window.

2. Display window.

3. Handle events.

4. Close window.

Fig. 11 shows a window object and the messages passed-
in and passed-out.

1. Servers’ Identification
2. Number

‘Window’s Handle

Fig. 11 A Window Object and the Messages Passed

However, the operating logic for each of the
methods has a few differences. That is, when starting
window objects, programmers need to pass two
messages - servers’ identification and the number of
hosts to be connected - to the objects. For user-defined
window objects the methods ‘window initialization’
need to handle the registration of window class to each
of the connected hosts. For the other two window
objects this job is not required as they are defined
window classes in MS Windows system. In event
processing, the operations for synchronous user-defined
and edit window objects are different from those of
other window objects. That is, an event will be
duplicated on all other connected hosts before it is
processed by a method. This mechanism will make the
synchronization behaviors of applications be achieved
implicitly. '

Image objects are divided into synchronous and

- asynchronous. A synchronous object will.show the same’

image to different servers, and an asynchronous object
will show different images to different servers. There are
four methods for operating an image object. They are:

1. Initialize object.

2. Show an image.

3. Repaint an image.

4. Clear image data.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Fig. 12 shows an image object and the messages passed
into and passed out of the ob_]ect

1. Servers’ Identification

2. Number

3. File Name

Displaying Location
Images’ Information
(Height and Width)

Fig. 12 An Image Object and the Messages Passed-in
and Passed-out '

A CD object has several operating methods:

Open CD.

. Operate (play, pause, and chapter-selection, etc.) CD.
3. Close CD.

When starting a CD object, programmers pass a
server’s identification and number of computers to be
connected to it. When ending an object, CD will be closed.
Fig. 13 shows a CD object and the messages passed-in

N =

1. Servers’ Identification
2. Num ber

Fig. 13 A CD Object and the Messages Passed-in

A Wave object is shown in Figure 14. The several
methods for operating a wave object are as follows »
1. Open audiowave input/output device.
2. Record and broadcast.

Fig. 14 also shows the required messages passed into the
Wave object for different operations provided.

4. Application based on EMS Windows

1. Servers’ Identification

‘Revise Recording
2. Nurtber and Broadcasting
3. Device Tipe Formete
4, Windows’ Handle

1. Servers’ Identification
2 Number

3, Device Type

4. Windows” Handle

— Bvent(MM WIM OPEN)

Event(MM_ WIM DATA)

Fig. 14 A Wave Object and its Passed Message
4.1 Homogeneous platforms

An application was implemented in Borland C++
under MS Windows NT System -{12,13,15]. It allows
users to co-edit a text, co-watch an identical image and
co-listen to music from a CD player. Figure 15 shows the
initial appearance of the application. We can see the same
windows as Fig. 15 in each connected computer. There
are three buttons - white board, CD player and image - in
the initial window. After a user clicks white board, CD

CEm domR WM

Fig. 15 The Initial Window

CEE OwmWE $X%

Fig. 16 Program in Execution

300

player and image buttons, each connected computer will -

see the same windows as Figure 16. The source code for
this application can be found in [Lin, 4].

4.2. Heterogeneous platforms

As EMS Windows provides the same client interface
between MS windows and X windows to programmers,
programmers do not need to know the remote window
environments before. they program applications to be
executed across different platforms. An application
showing the input characters in both MS windows and X
window simultaneously was also developed in EMS
environment.

According to. our, experiences, for a programmer

familiar with EMS Windows, it will take about one hour .

and write 50 lines of source code to complete a dlstnbuted,

synchronous multidisplay white board system. However,

to code a similar system in-general MS Windows
environment, a programmer will spend about one day to
one week time and write about 200 lines of source code,
depending on his/her network and window programming
abilities.

5. Conclusions and future work

MS Windows is a widely adopted operating
environment with graphics user interface for personal
computers. However, the MS Windows environment does
not support the development of distributed applications.
In other words, programmers need to deal with network
connections, message passing and interprocess
coordination in the distributed applications themselves.
Therefore, we have expanded the MS Windows
environment to adopt a client/server architecture
supporting the development of distributed applications.
Such an extension includes developing a function library,
a class library, and a client/server architecture including a
server process. The function library includes a set of
interface functions for server node connections, a window
class registration, and image, audio and CD processing.
Similar functions also exist in the member functions of
objects in the class library. The client/server architecture
adopts direct services, explicit request, and non-blocking
scheme. The server process is actually spawned from a
daemon process that is resident on a server node. The
server process is in charge of event/request processing.
Actually what we are proposing is a model for extending
MS Windows to allow it to support distributed
applications development. According to our experiences
the timing and source code improvement for applications

301

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

developed in EMS Windows environment is very
significant, ranged from 10 to 50 times in timing,
depending on the proficiency of network and window
programming of a programmer. In the future we plan to
implement as many functions and objects as possible to
complete' a powerful system, integrate the existing PC-
based database systems and offer related functions and -
objects into EMS Windows environment, and provide the
supports in fault tolerancy, security, and efficiency.
Meanwhile, the serving process in X Window and other
systems will also be put into practice. :

References

[1] Richard M. Adler, Distributed Coordination Models
for Client/Server Computing, IEEE Computer, 1995.

[2] Helen Custer, Inside Windows NT, Microsoft Press,
1993.

[3] Oliver Jones, Introduction to the X Wmdow System
Prentice-Hall International Inc., 1989. .

[4] Heng-Ching Lin, “EMS Windows - An Extended MS
Windows for Supporting the Development of Distributed
Objected-Oriented Window Applications,” Master Thesis
(in_ Chinese), National Cheng Kung University, June
1996.

[5] Microsoft Wm32
Microsoft Press, 1993.

[6] Microsoft Win32
Microsoft Press, 1993.

[7] Microsoft Win32
Microsoft Press, 1993.

[8] Microsoft . Win32
Microsoft Press, 1993.

[9] Microsoft Win32
Microsoft Press, 1993.

[10] Microsoft Win32 Application Programming Interface
V.1, Microsoft Press, 1992.

[11] Microsoft Win32 Application Programmmo Interface
V.2 Microsoft Press, 1992.

[12] Microsoft Windows Multimedia Programmer s
Reference, Microsoft Press, 1991.

[13] Microsoft Windows Multimedia Programmer’s
Workbook, Microsoft Press, 1991.

[14] Charles Petzold, Programming Windows 3.1,
Microsoft Press,1992.

[15] Peter D. Varhol, Windows NT - M1crosoft‘s New
Operating = System Strategy, Computer Technology
Research Corp., 1993.

[16] Peter Wilken and Dirk Honekamp, Wmdows System
Programming, Abacus, 1991.

Programmer s Reference V.1,

Programmer’s Reference V.2,
Programmer’s Reference V.3,
Programmer’s Reference V.4,

Programmer’s - Reference V.5,

