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Abstract

We present a new mergesort algorithm which is
based on partitioning the input list in an interleaving
manner. The new algorithm has a better performance
than the classic mergesort algorithm does. On the av-
erage, the new algorithm runs in O(nlogn) time using
O(+/n) extra space, where n is the size of the array to
be sorted. In the worst case, depending on the im-

plementation, the new algorithm may have O(nlogn) -

runing time using O(n) extra space, which is the same
as the classic mergesort, or it may have O(n+/n) run-
ning time using O(y/n) extra space.

1  Introduction

Sorting has involved human life ever since the inven-
tion of digits. It is also one of the most intensively

studied subjects in computer science[4]. People in -

this field have been trying to find a “better” sorting
algorithm, even though it has been proven [1, 8] that
O(nlogn) is the lower bound to the complexity of
any sequential comparison-based sorting algorithms,
where n is the size of the list of data elements. In the
past few decades, many sorting algorithms achieved
this lower bound. One among them is Mergesort[1].

Mergesort employs the divide-and-conquer tech-
nique. It consists of two phases, split and merge.
In the split phase, the input list is divided into
smaller sublists. These sublists are eventually merged
in the merge phase after being sorted by the same
method. Both top-down (recursive) and bottom-up
(non-recursive) approaches can be used to implement
mergesort. In the classic mergesort, the input list is
divided into smaller contiguous segments. We will re-
fer to the classic mergesort as the segmented mergesort
hereafter.

The merge operation is the heart and soul of merge-
sort. One obvious way to merge two sorted sublists is
to compare the leading elements of the two lists and
move the appropriate one, the smaller one for non-
decreasing or the larger one for non-increasing order,
to a new location. The index to the removed element
is updated to the next element in its list. Given two
lists with a total size of n, this mechanism ensures
that every element relocates orderly in a time com-
plexity of O(n) . It is straightforward but an extra
space of size O(n) is required [4]. ‘

In-place merge algorithms which merge two sub-
lists using an extra space of a constant size have been
developed [5, 2]. Although these algorithms achieve

the theoretical lower bound to sorting, they are are
not practical because of large overheads. Huang’s al-
gorithm [2] is a more practical method, but i6 1s still
about 2 to 3 times slower than the classic merge al-
gorithm described above.

Our goal is to find a trade-off between time and
space, i.e., to find an algorithm with a running time
comparable to the classic mergesort algorithm, with-
out the requirement of the O(n) extra space. We dis-
covered that if the input list is divided in a different
manner, interleaved instead of segmented, it is pos-
sible to merge two-sublists in-place with help of a
queue, whose size depends on the distribution of the
input data.

In this paper, we will present a new sorting algo-
rithm named interleaved mergesort based on this dis-
covery. We will also give an analysis of interleaved
mergesort. It turns out that interleave mergesort can
sort a size n list in O(nlogn) time in most cases and

uses only an extra space of size O(y/n).

2 Interleaved Mergesort

Interléaved mergesort applies the divide-and-conquer
technique as well to partition the input list in an in-
terleaving manner instead of segmentation. An inter-
leaved sublist out of a regular list is defined by speci-
fying its list-leader and offset. A list-leader is the first
element-in its sublist. Every two successive elements
in an interleaved sublist are separated by a fixed num-
ber of elements from the list. The distance between
two successive elements is called the offset.
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Figure 1: Interleaved Sublists

As shown in Figure 1, the interleaved sublist 1 con-
sisting of elements in positions 1,3,5,...,15 is an in-
terleaved sublist whose list-leader is 1 and offset is 2.
Similarly, the interleaved sublist 2 consisting of ele-
ments in positions 2,5,8,11, and 14 is an interleaved
sublist whose list-leader is 2 and offset is 3.

In interleaved mergesort, each sublist is an inter-
leaved list whose offset is a power of 2. These sublists
are sorted separately and merged in pairs into sorted
interleaved lists with a smaller offset, half of that in
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which is O(n), where n = m/2 and m is the size of
data to be sorted.

If the sorted interleaved sublists are large and ran-
dom enough, there are lots of locations where the
domination status reverses in every iteration. The
number of standing elements is which may not be rel-
‘atively large to the data size. When all the savings
of merge operations in all iterations add up, the total
becomes O(n), which is substantial.

3.4 Worst Case: Time and Space

We know interleaved mergesort avoids some data
movements for those elements who initially are al-
ready in their final positions before merge operation.
In our analysis, we already considered the data com-
parisons and movements for the queue operations.
However, we did not take into account the extra data
comparisons and movements incurred when the queue
is full and an overflow-handling procedure is invoked.
The worst case time and space complexities of in-
terleaved mergesort depends on the overflow-handling
procedure used,

Suppose we use the first overflow-handling proce-
dure, discussed in the earlier section, where when the
queue is full, items are merged back with the sublists.
Obviously, the worst case space requirement is O(/n)
since no additional space is allocated. The cost of
overflow-handling is proportional to the elements left.
Since each time the queue is full, at least /7 elements
must have been output to their final locations. The
worst case time complexity is

(n = Vn)+(n—2Vn) +

which is O(n+/n).

In the second overflow-handling procedure dis-
cussed earlier, we simply double the size of the queue
whenever it is full. Obviously, the worst case space
requirement is O(n) since we need space to hold the
whose sublist. There are extra data movements re-
quired to move elements from old queue to new queue.

S(n) =

In the worst case, the number of such data movements

) Va+2/n+4vn+ ..

which is O(n). Therefore; the overall worst case time
complexity is still O(n logn).

4 Empirical Results and Observations
In order to observe and compare the behaviors of seg-
mented and interleaved mergesort, two C programs
were written; one for segmented mergesort and the
other for interleaved mergesort. Each of them was
tested on a Sun SPARC5/110mhz with 32 MB of main
memory. They are capable of sorting arrays of up to
5,000,000 long integers. The users can specify the size
of array for both programs. The programs will report
the numbers of comparisons and data movements in-
volved, and the execution time. In interleaved merge-
sort, the program also requests the size of queue and
reports how many times the queue becomes full. The
results from our experiments are given in the following
sections.

4.1 Effect of Queue Size on Performance

We calculated prob,ss.(n,k+/n) and noticed that
greatly increasing the factor k will not increase the
probablhty much. In practice, a large factor k may
not improve the performance but waste space. The
following table is an experimental result of sort-
ing 2,000,000 keys using interleaved mergesort. The
largest scale of merging in this case is merging 2 lists
of 1,000,000 keys. The result consists of using differ-
ent sizes of queue, from 10% to 160% of

There is a characteristic of the results that should
be noticed. The number of operations is strongly re-
lated to overflow-handling procedure which is called
every time when queue is full. In each trial for the
same size of queue, those larger numbers of opera-
tions are always associated with larger numbers of
times when queue is full. Those extra operations come
from the overhead doing overflow-handling procedure.
The results are plotted in Figure 8.
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Figure 8: Number of Operations vs. Size of Queue

The graph shows that both numbers of compar-
isons and data movements decrease as the size of
queue increases. Increasing the size of queue benefits
the performance by reducing the operations. How-
ever, the decreasing rate of operations becomes very
slow when the size of queue is larger than square root
of n, 1,000. It is even harder to tell if the size increase
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states Ly dominates L;. Those bold edges by which
a shaded node transits to another shaded node rep-
resent the transitions which reverse the domination
status. There exists a standing element every where a
bold edge is used. Accordingly, the number of spared
data movement equals 3/2 times the expected number
of bold edges used by a random path.

nn Shifted
diagonal

Figure 7: Traveler’s Lattice for Stahding Elements

In order to figure out the expected number of bold
edges used by a random path, we categorize the bold
edges into two types, left-to-right and top-to-bottom.
Let Ny, denote the node labeled zy (or z,y to avoid
ambiguity). We defined the bold edge from N, across
the diagonal as Ey with k = £ +y, where 0 < k < 2n.
From the diagram, we see an edge E} is horizontally
from Nij3x/2 to Nija,kj241 if £ Is an even; and ver-
tica_lly from N(Ic—l)/2,(k+1)/2 to N(k+l)/2,(k+l)/2a oth-
erwise.

Note that the total number of paths from Ny to
Nea (with a < ¢ and b < d) is

(e )

Define U(Ey) as the number of paths, from Nyg to
Npp, which use Ey. Every such path starts from Nyg
and reaches the node before Ey, then passes through
Ey and continues its way to N,y,. Such a path can be
broken into two sub-paths, before and after using Ey,
connected by Ep. Therefore, U(E}y), is the product
of the number of sub-paths before using Ej and the
number of sub-paths after using E}.
Given an Fy, we have

(152) <2nn—_(',cc/+2 D) if k is even

((k —kl) /2) (,,2 :,c(ﬁ)%) if b is odd

Let E(s) denote the expected number of standing
elements, which is also the expected number of E}’s

U(Er)

U(Ek) =
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used by a random path from Nyg to N,,. We have

B(s) = (g (U(Ez) + U(E2k+1))) / (i")
- EOE)/0)
Since [8]
% () -
and ’
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From [3], we know that

2n\ _ 220

n)" Vnr
Hence, we determine that .the expected number of
standing elements is

E(s)w/(jil,r) - Jar,

where n is number of elements in each list to be
merged. Therefore, the expected number of data
movements which a single merge operation can spare
is 3v/nw/2, which is O(y/n).

In interleaved mergesort, the algorithm merges dif-
ferent sizes of lists in different iterations. There are
[log, m] iterations, where m is the size of the input
list to be sorted. For simplicity, let’s assume that
m =2n > 0 and n is a power of 2. There are log, 2n
iterations. In the first iteration, there are m merge
operations each of which merges lists of 1 elements.
In the following iteration, the number of merge oper-
ations becomes half of that in the previous iteration,
and each of them merges lists of as twice elements as
previous. In the kth iteration, there are n/2*—! merge

operations, and each of which merges lists of 2¥~1 el-
ements. Therefore, the total of data movements our

129



Proceedings of International Conference
on Algorithms

less than the average height of Catalan binary trees.
Therefore, we can conclude that the average usage of
the queue is O(y/n).

Although we can not calculate the exact order of
Gavg(m), We know it is bounded above by /n. In prac-
tical use of interleaved merge, the probability of not
using overflow-handling procedure to handle overflow
is more concerned, for a given size of Q. It is defined
as the following.

_ path(n,q)
probsage = path(n,n)’

where 7 is the size of one list and g is the size of Q.

We may wonder if really a size v/ queue is large
enough. In Figure 6, the curve of probsq e%z,k\/ﬁ)
is plotted for 10 different k’s. The pro{>a. ility of
not using overflow-handling procedure increases when
the factor k increases. For those curves with smaller
k’s, they oscillate violently and drop very fast when
n < 50. As n increases, the oscillation becomes
smaller and each of the curves tends to be bounded
by a smaller range. On the other hand, those curves
with larger k’s are more stable and become bounded
very fast. This indicates that the probability depends
on the factor k and it is irrelevant to n if n is relatively
large.

%f we draw a horizontal line at each of the constant
values, we will find that the density of these lines be-
come higher as the k increases. From k = 1.00 to
k = 2.00, the probability increases drastically from
40% up to roughly 98%. In order to increase the
probability to 99.99% however, the factor k& should
be increase to 3.00. The probability does not increase
as drastically after k is larger than certain value.
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Figure 6: Choices between Time and Space

3.3 Time: Average Data Movements

Tt has been proven that the lower bound to merging
two sorted lists of sizes m and n is m+n— 1 compar-
isons in the worst case [4]. In segmented mergesort, a
merge operation always takes place between two ad-
jacent contiguous sublists. An obvious way to merge
is to compare their leading elements and output the
appropriate one to an extra space at a time. The com-
parison repeats until running into the end of one list.
The rest of the other list will be appended to the out-
put. The output should be copied back to the original

space. Given two adjacent subarrays, Ly followed by
L, of sizes m and n respectively, this scheme requires
2(m + n) data movements and m + n extra space for
the output array.

There is a better approach in which the first sub-
array L is copied to a temporary array 7T, which is
then merged with L,. The result is written to the
space originally occupied by L; and Ly. Recall that
L, and L, are adjacent. Some elements in L need
not be moved in the case when T runs out of elements
before Ly does. This scheme needs 2m+n data move-
ments in the worst case and an extra space of size m.

Our new algorithm, interleaved merge, still requires
m +n — 1 comparisons in the worst case. However it
has fewer data movements and uses less extra space in
most cases. The data movements can be categorized
according to the direction to which the elements are
relocated, namely standing, forward, and backward.
No movement is required for those elements at their
final locations initially. Only one step is required to
move an element forward to its final location. Those
that need to be moved backward require two steps,
one to the queue and the other to their destinations.

To compute the total number of data movements,
let s, f, and b be the numbers of elements catego-
rized as standing, moving forward, and moving back-
ward respectively, where s + f +b =-m + n. From
the flowchart in Figure 3, an element needs to be
moved backward for every element which is moved
forward, that is, f = b. No movements are needed
for the standing elements. Each forward element re-

_quires only one movement. However, each backward

element needs two movements, one into the queue and
the other out of the queue. The whole process re-
quires a total of 3b data movements. In comparison
with the old algorithm’s 2m + n movements, the new
algorithm reduces 2m + n — 3b movements. Assume
m = n for simplicity. Since m+n = s+ f +b, we have
9n = s+2b, which yields 3n = 3s/2+3b. The number
of spared movements is 2m+n—3b = 3n—3b = 3s/2.
The new merge algorithm reduces the number of data
movements by 3s/2.

The above result does not show how good the im-
provement is. It depends on the permutation of the
input list. Wherever the domination status reverses,
there must be at least two standing elements. In order
to know the expected number of standing elements,
we need to figure out the expected number of times
the domination status reverses using a traveler’s lat-
tice.

Suppose we are merging two interleaved sublists Ly
and Lo, each of size n, and the index of L1 ’s list-leader
is less than L,’s. The n by n traveler’s lattice shown
in Figure 7 imitates the situation. The main diagonal
is shifted as before. From any node below the diago-
nal, a transition transferring to its bottom increases
the cost while to its right decreases the cost. Con-
versely, from any node above the diagonal, a transi-
tion transferring to its bottom decreases the cost while
to its right increases the cost. The shaded nodes be-
side the diagonal, such as 00,01,11,12,22,.. ., are the
states without using the queue. All the nodes above
the shaded nodes represent the states L; dominates
Lo, while those below the shaded nodes represent the
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Figure 5: Traveler’s Lattices

When two interleaved sublists are merged, the re-
sult of comparisons in the process is a winning-losing
sequence. In each comparison, the traveler moves to
the next vertex on its right if the leader of L; wins,
to the one below otherwise. Once the traveler reaches
the right border, all elements in L; have arrived at
their final locations. All the remaining elements in L,
will be appended to the end without further compar-
isons. Similar situation happens if the traveler reaches
the bottom border. After 2n steps, the traveler will
arrive at D.

The cost of a given path can be defined as the max-
imum distance the traveler deviates from the main di-
agonal for a given path. It also represents the usage
of the queue for the given sequence. One position in
the queue is consumed if the traveler gets farther from
the main diagonal while one position is released if the
traveler gets closer to the main diagonal.

This model is slightly different from interleaved
merge due to the asymmetry in interleaved merge. For
example, the merge process which corresponds to the
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path 00, 01,11, 12, 22, 23, ..., nn has a cost 0 while
the merge process which corresponds to the path 00,
10, 11, 21, 22, 32, ..., nn has a cost 1. In order to
correct the difference between these two models, the
main diagonal is shifted half width of a cell as shown
in Figure 5(B). This shift breaks the symmetry of the
diagram and correctly models interleaved merge.

3.2 Space: Average Queue Usage

As stated earlier, interleaved merge without overflow
handling needs an extra space of size ri in the worst
case, where n is the size of the larger sublist. No extra
space is needed in the best case. It does not have a
better space utilization than the classic mergesort if
we have to provide enough space for the worst case.
Given the fact that the possibility of using a space
near. the size for the worst case is tiny, we, should
use a smaller queue and call a procedure to handle
overflow occasionally. In this section we will discuss
the possibility of overflowing a given queue.

With a slight modification, the traveler’s lattice
model helps us investigate the probability of overflow-
ing a given queue Q. Suppose the size of queue is g,
with ¢ < n. Paths are valid if their costs are not
higher than ¢. Any path with a cost higher than ¢ is
called an invalid path. An invalid path corresponds to
a sequence which will"overflow the queue. As shown
in Figure 5(C), the model can be modified by remov-
ing some cells to simulate this situation. Any path
which uses only vertices in Figure 5(C) has a cost less
than or equal to ¢.

These valid paths correspond to all the possible
winning-losing sequences which do not overflow the
queue when merging two lists. We define the number
of valid paths as a function of n and ¢, path(n,q).

From [6, 7], we have .

path(n, qj = nZh (2- (n 2—-nz's> B (n - (g 2+nl) - iS>

=0

‘<n—(q2+n2)—is>) B (2:>’

where s = 2q + 3, n is the size of the sublists to be
merged, and ¢ is the size of extra memory allowed.

Suppose we are merging two lists of size n. The
number of paths with a cost &k is path(n,k) —
path(n, k — 1). Therefore, the average usage of () can
be written as

Qavg(n) = Z k (path(n, k) — path(n,k — 1))'

pwrt path(n,n)

Unfortunately, we are unable to simplify this formula
any further. Nevertheless, in the Catalan model [8] of
binary trees, each binary tree corresponds to a path
traveling on the upper-right half of a traveler’s lat-
tice. It has been proven that the average height (cor-
responding to cost in our case) of Catalan binary trees
is O(y/n). In our model, paths may cross the main
diagonal, which allows more lower cost paths to exist.
As a result, the average cost in our model should be
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When Q is not empty, comparisons only happen be-
tween the leader of the dominating list and the front
of Q since the leader of the dominated list has been
moved into the front of Q. If the element at-the front
of Q is less than the leader of the dominating list, it
will be removed from @ and moved to its final loca-
tion. Otherwise, the current leader will be moved to
the location after the element occupying it has been
moved into Q. The process will repeat until one of
indices reaches the end of the list. The remaining
elements in @ and the dominated list will then be
attached to the tail of the sorted list.

In the best case, all elements are initially in their
final positions. They merge like closing a zipper. No

data movement is required so @ is never used. In the
worst case, when one sublist totally dominates the .

other, Q requires positions that equal the size of the
dominated list. When a list is dominated, we move
some of its elements into @ in order to preserve them
and let the other list move into its space. When the
situation reverses, move the elements in Q out to their
final positions and free the space in . No matter
which list dominates, the other uses @ as a buffer.
An example of interleaved merge is shown in Figure
4,

Later in our analysis, we will show that to sort a list
of size n, a queue of size O(y/n) is enough most of the
time. However, a queue of size O(n) is needed in the
worst case. There will be no saving in extra space if we
provide with a queue of size O(n). Therefore, in our
algorithm, we will only use a queue of size O({Tz), and
a employ overflow-handling procedure when the queue
is full. There are several overflow-handling procedures

"that can be used. We outline two of them below.

In the first procedure, the space allocated for @ is
never changed. When @ is full, we split @ into two in-
terleaved sublists and merge them with the remaining
of Ly and Lo, respectively, using the classi¢ merging
technique and reuse their free locations from avail to
indez; and indexy. After merge, indez; and indez
are adjusted to include those elements from @, and
@ becomes empty again. The interleaved mergesort
continues its task from here.

The second procedure simply allocates more space
for Q when needed. Depending on the memory man-
agement routines provided by the programming lan-
guage chosen to implement the algorithm, it might be
necessary to copy the contents in Q. If this is the case,
increasing the queue size linearly will result in a total
running time worse than O(n logn) in the worst case.
However, if we double the queue size every time, the
worst-case running time can be reduced.

The worst case running time and space requirement
depend on which overflow-handling method is used.
They will be discussed later.

3 Analysis :

Clearly the core in mergesort is the merge opera-
tion. Our analysis of interleaved mergesort focuses on
merge process first and then move on to the whole
sorting algori*thm. The number of operations and
space utilization are the two major concerns in this
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Figure 4: Data Movement in Interleaved Merge

analysis. We introduce the traveler’s lattice model to
simulate the problems.

3.1 Traveler’s Lattices

Recall that if two interleaved sublists can be merged,
their sizes should not differ by more than one. We
therefore assume any two sublists to be merged have
the same size for simplicity.

Suppose there are two sorted interleaved sublists
Ly and L, both of size n satisfying the conditions
of interleaved merge. To merge them, comparisons
only take place between their current leaders. Assume
that the leaders of L, and Lo have an equal chance
of winning the comparisons. How often one list can
dominate the other is similar to how far a random
walker can travel away from the origin.

An equivalent model called traveler’s lattice helps
us analyze the time and space complexity of inter-
leaved merge. Consider an n by n lattice diagram
illustrated in Figure 5(A) as a di-graph with only top-
to-bottom and left-to-right edges. A vertex is labeled
zy (or z,y to avoid ambiguity) if it is z units away
from the left border and y units away from the top
border. A traveler travels from S(00) to D(nn).
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the original sublists. The input list becomes sorted
when there is only one sublist left.

Figure 2 illustrates the idea of interleaved merge-
sort. Using the definition given earlier, L is an In-
terleaved list with an offset 1. Interleaved mergesort
views L as an interleaved list and partitions its el-
ements to form two interleaved sublists, L; and Lj.
The first one, L1, starts at the first element of the orig-
inal list and the other, L2, starts at one offset from
the first element (i.e., the second element). The new
offset of both sublists is twice of the original offset.
By applying the same scheme on both L; and L re-
cursively, the list will finally becomes single elements
before the second phase starts.
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Figure 2: The Scheme of Interleaved Mergesort

This split scheme looks a little more complicated
than that in segmented mergesort. However, it does
not require any data comparison at all. This scheme
does not produce any drag on speed in the split phase
and benefits the second phase in terms of space uti-
lization. The effect will be discussed in the later sec-
tions. :

In order to be merged into a larger interleaved sub-
list which fits in the original space, two sorted inter-
leaved sublists must meet the following criteria. They
must have the same offset. The indices of their first
elements must differ by one half of the offset. And
their sizes should not differ by more than one. In the
case when their sizes differ by one, the list-leader of
the longer sublist must have a smaller index than the
list-leader of the other sublist. For example, a possi-
ble partner to merge with an interleaved sublist with
indices 1, 9, 17, 25 and 33 is the one with 5, 13, 21
and 29. Both sublists have the same offset 8. The
difference between the first indices of lists, 1 and 5, is
half of the offset. The first sublist has only one more
element than the second sublist. They conform to all
the conditions for interleaved merge.

These conditions may seem awfully difficult to
meet. Fortunately, in each iteration of interleave
mergesort, the two sublists generated in the split
phase satisfy these conditions automatically and can
be merged and stored back to their original space with
the algorithm described below.

The flowchart in Figure 3 depicts the process of
interleaved merge, which merges two interleaved sub-
lists into a larger interleaved sublist in-place using a
queue as a buffer for temporarily holding those ele-
ments that are not in their final locations. The fol-
lowing discussion assumes elements are to be sorted
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into non-decreasing order. For non-increasing order,
it can be obtained similarly. ) :

aif_offest :x offsel /2 .
START index, := index of L,'s flst-leader NOTE:  OF = Quaue Franl
4 Indexy := index of L,'s Hiat-leader QR = Gusus Resr
avaif :s MIN (index,, index;} .
) NO

index, += offset
avail += haif_ofiset

index, += offsst
avall += half_ofiset

[ovai := (index,] [avaif} := {index,]

il (avail = index,)
{QR] := [Index,)
index, += offset

(avaif) := [index |

avall v halt_ofiset fe—1

Index, += offset index, += offset

_ ~f*Append Q and the
K YES-» rest of dominated «YES
list to the end 7 i
NO NO |
n‘ Y

Gt >

NO

It (avail = index))
[QR] := {index,]
index, += offset

[avaif := [index ]
L-—. avall += hall_offset

NO

'S 'S
it (avail = index,) If {avail = index,)
{QR] := [Index,} [QR] := [index,)
Index, += affaet Index, += otiset
| avaim := (0F] {avaif) = {QF)
avall += hall_ofiset avail += half_ollset

\—res @ Ko xo @ ves—

Figure 3: Flowchart of Interleaved Merge

In the merge process, two indices, Zndex; and
indezs, are used to point to the current leaders of
L; and L, respectively, and the queue @Q is used as a
temporary storage. Initially, indez; and indez, point
to the list-leaders of Ly and L, respectively, and @ is
empty. Another pointer, avail, points to the posi-
tion available for next element to be moved in. It is
assigned to the smaller value of indez; and indezs
initially. It points to the next available location after
all preceding interleaved elements have been merged.

There are three major regions in the flowchart. In
the upper region, @ is empty and no data movement is
required in this region. The lower-left and lower-right
regions are for sending elements to their final locations
and preserving data in Q before it is overwritten.

When Q is empty, indez, and inder, will move
along L; and Ly respectively and awail will follow
if the elements pointed by index; and indezs are in
proper order. Otherwise, we say dominatzon happens
and Q comes to play. The sublist contains the smaller
leader is called the dominating list and the other list is
called the dominated list. The leader of the dominated
list releases its position for the leader of the dominat-
ing list after it is moved to @ for preservation. The
utilization of @ will increase in this case.
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of queue still helps reduce the number of operations
when queue is larger than 1,200 positions.

4.2 Interleaved versus Segmented

The following experiment is conducted to compare in-
terleaved and segmented mergesort. Different sizes
of data were sorted by both algorithms. The size of
queue for interleaved mergesort was set to 120% of
square root of n. The average of four trials is plotted
in Figure 9.

Operstions {x 1,000,000}
g 8 8

0 500 1,000 1500 2000 2500 3000 3500 4,000 4500 5000
Data Sire (x1,000)

Figure 9: Operations, Interleaved vs. Segmented

The numbers of comparisons in the two algorithms
are almost the same for any data size in our experi-
ments. They are both slightly larger than twice of the
data sizes. However, the number of data movements
has a significant difference. The difference comes from
those standing elements discussed earlier. Interleaved
mergesort uses fewer data movements than segmented
mergesort does to complete its tasks. The difference
increases as the size of data increases. The execution
time results are plotted in Figure 10.
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Figure 10: Performance, Interleaved vs. Segmented

For a small data size, interleaved mergesort spends
more time than segmented mergesort does because
interleaved mergesort has a larger overhead. As the
data size increases, interleaved mergesort picks up
its performance and catches up segmented mergesort
when the data size larger than 4,000,000. There are
two reasons for the this result. First, as the data
size increases, the difference between the numbers of
data movements in two algorithms increases. Inter-
leave mergesort gradually overcomes its overhead and
catches up segmented mergesort. Second, segmented
mergesort uses much larger extra space than inter-
leaved mergesort does. It will cause more page faults

when the program running on an operating system
using virtual memory, such as UNIX. The savings in
both numbers of data movements and size of extra
space attain this achievement.

5 Conclusion _

When we sort data of large size, the execution time
and the size of space required are the two major con-
cerns. ‘In this ‘paper, we present a new algorithm
which- we call interleaved mergesort. The intention
to design this algorithm was to provide a trade-off
between time and space. The analysis and empirical
results surprisingly show that it actually saves space
without wasting time for large input.

The algorithm sorts elements in O(nlogn) time
which is the lower bound to the complexity of any
sequential comparison-based sorting algorithins. To
sort a large list using interleaved mergesort, the num-
ber of comparisons is the same as the classic merge-
sort, but the number of data movement is less. The
analysis shows that the number of data movements
which the new algorithm can spare is proportional
to the data size. Although interleaved mergesort
involves some overhead, it outperforms the classic
mergesort by reducing the number of data movements
when the size of inpiit-data is large. Moreover, it uses
extra space only of O(/n) size which is much less
than the extra space used in the classic mergesort al-
gorithm.

The primary use of mergesort is for external sort-
ing. It is not obvious how interleave sort can be
adapted to an external sort. This will be an inter-
esting topic for further study.
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