Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Optimal Prefix Circuits with Fan-out 2

Yen-Chun Lin
Dept. of Electronic Engineering, National Taiwan Institute of Technology
P.O. Box 90-100, Taipei 106, Taiwan

Abstract

Given n values vy, vy, ... , v, and an associative
binary operation, denoted by o, the prefix problem is to
compute the n prefixes vy o vy 0..0v;,1<i<n
Because of the importance of prefix computation, many
combinational circuits for solving the prefix problem,
called prefix circuits, have been designed. It has been
proved that the size s(n) and the depth d(n) of an n-input
prefix circuit G(n) satisfy the inequality d(n) + s(n) 2
2n - 2; thus, a prefix circuit is optimal if d(n) + s(n) =
2n — 2. For the first time in this paper, we present a
systematic method to construct optimal parallel prefix
circuits with fan-out 2. We also solve an open problem
by building a class of optimal prefix circuits with fan-out
2 whose depth can be any integer between n ~ 1 and
2 |.Ig nl-1,or2 I_Ig nl depending on the value of
n. The optimal prefix circuits have corresponding
optimal prefix algorithms running on a fully connected
message-passing multicomputer.

1. Introduction

Given n values vy, vy, ..., v, and an associative

binary operation, denoted by o, the prefix computation
problem, or simply the prefix problem, is to compute the
n prefixes vy 0vy 0..0v;, 1 <i<n. Prefix
computation has been extensively studied for its broad
applications [2, 6, 11, 13, 16]; for example, it is used in
loop parallelization, the evaluation of polynomials, the
solution of linear recurrences, and list ranking. Because of
the importance of prefix computation, many
combinational circuits for solving the prefix problem,
called prefix circuits, have been designed and studied [3, 5,
8, 12-14, 18). An n-input prefix circuit can be regarded
as a directed acyclic graph G(n) containing operation
nodes and duplication nodes; unless otherwise stated, we
assume n is the number of inputs and n need not be a
power of two. As shown in Fig. 1, the operation node
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takes two inputs to perform the operation o. The
duplication node, also depicted in Fig. 1, takes an input to
produce multiple, actually only two in this paper, copies
of the input as output. As shown in the figure, an
operation node is represented by a black dot, while a
duplication node is denoted by a small circle. The size
s(n) of G(n) is defined to be the number of operation
nodes in G(n). The depth d(n) of G(n) is the
maximum number of operation nodes on any directed
path. It has been proved that for all G(n), d(n) +
s(n) 2 2n — 2 [18]. Thus, G(n) is depth-size optimal,
or simply optimal, if d(n) + s(n) = 2n —2. A node
has unbounded fan-out if the fan-out is not fixed and is a
function of n. The fan-out of a circuit is the maximum
of the fan-out of all nodes in the circuit; thus, a circuit has
fan-out 2 if every node has at most fan-out 2, and a circuit
has unbounded fan-out if one of its nodes has unbounded
fan-out. Because a node having more fan-out is slower
and bigger [21], for a circuit to be of practical use, the
fan-out should be bounded and as small as possible.

u 1% v
uoy uovy v v

Fig. 1. Operation node and duplication node.

No systematic approach has been known for designing
optimal parallel prefix circuits with bounded fan-out.
Ladner and Fischer [12] introduce the depth-size trade-off
in parallel prefix circuits; that is, the size can be decreased
by increasing the depth. They also design non-optimal
prefix circuits of minimum depth d(n) = [1g n] and
s(n) < 4n; the circuits have unbounded fan-out and thus
are not practical. Brent and Kung [3] present a non-
optimal parallel prefix circuit with fan-out 2, for n equal
to a power of two; it has d(n) =2 lgn — 1. Fich [8]
derives lower and upper bounds for the size of parallel
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prefix circuits when n is a power of two. Snir [18] not
only proves that d(n) + s(n) = 2n - 2 holds for all
prefix circuits but also constructs a class of optimal prefix

circuits with unbounded fan-out for any d(n) in the range -

max([lg nl, 2l1g n] -2) <d(n)<n - 1
Lakshmivarahan, Yang, and Dhall [14] design a class of
optimal parallel prefix circuits with unbounded fan-out and
Mg nl<d(n) < max(ig nl, 2[1g nl-3).

For the first time in this paper, we present a
systematic, recursive method to construct optimal parallel
prefix circuits with fan-out 2. We also solve an open
problem by building a class of optimal prefix circuits
with fan-out 2 whose depth can be any integer between
n—-1and 2l1gnl-1,or2llg n] depending on the
value of n. v

The optimal prefix circuits with fan-out 2 can be
mapped to optimal prefix algorithms running on a fully
connected message-passing multicomputer of which each
PE can only send or receive a message to or from any
other PE in a communication step. The prefix algorithms
are optimal because the sum of the number of
communication steps and the number of méssages equals
2n - 2. This new computer model will be called the
send-or-receive model.

The send-or-receive model of communication is very
important [10]. Because it is the weakest communication
model on a fully connected multicomputer, upper bounds
of this model apply to other communication models, and
lower bounds of this model are upper bounds for lower
bounds of other models. - Algorithms developed for this
model are suited to implementation on leading-edge
message-passing multicomputers, such as the IBM
Scalable POWERparallel 2 (SP2) [1], nCUNE 2 [15], and
CM-5 {20]. Although a PE of a modern message-passing
parallel computer can send a message to a directly
connected PE and, in the same step, receive a message
from another directly connected PE, it usually takes longer
to send and receive in a step than to send only or receive
only due to the inherent hardware capability and software
overhead [9]. Similarly, while the SP2 can be
programmed as fully connected computers, the multistage
interconnection may make it take longer to pass more
messages in a communication step [19]. On an n-PE
system, the send-or-receive model insures that no more
than | n/2] messages are communicated in a
communication step and thus a communication step will
not take too much time.

The fully connected model has some advantages in
algorithm development [4]. First, it adds portability to
algorithms on computers that can dynamically allocate
PEs and that can tolerate PE faults. In addition, designing
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algorithms for the fully connected model need not consider
the tedious details of routing messages, insights may be
gained for developing algorithms on computers with a
particular interconnection among PEs. Further, if the
communication requirement of an algorithm for the fully
connected model can be efficiently mapped to another
target model, that algorithm can be transformed into a new
one for the desired model. - :

Many parallel prefix algorithms have also been
presented for running on various parallel computer
models. Of all parallel computer models, the concurrent-
read concurrent-write (CRCW) parallel random-access
machine (PRAM) model is the strongest. When the
initial values v;, 1 <i <n, are O(log n)-bit numbers,
Cole and Vishkin solve the prefix sums problem, in
which the associative binary operation is the arithmetic
addition, on a CRCW PRAM in O(log n/log log n)
time using n log log nflog n PEs [6]. Note that the
prefix sums problem is a special case of the prefix
problem we solve; the two problems are not quite the
same. : : .

On an exclusive-read exclusive-write (EREW) PRAM,
as well as on a CRCW PRAM, Ladner and Fischer’s
algorithm can solve the prefix problem in ©(log n) time
using ©(n/log n) PEs [12]; the time complexity serves
as a lower bound for all models. Furthermore, on an
EREW PRAM with p <n PEs, prefix computation
takes O(n/p + log p) time [17], which is time-optimal
and cost-optimal when p = ©(n/log n). '

On an n-PE send-or-receive model, Lin and Lin design
a family of prefix algorithms that take ©(log n) time,
thus are time-optimal [22-23]. With only p <n PEs,
Lin and Lin also present a prefix algorithm that takes
O(n/p + log p) time and is time-optimal and cost-
optimal when p = ©(n/log n) [22].

Section 2 presents the recursive method to construct
optimal parallel prefix circuits with fan-out 2. Section 3
solves an open problem by constructing optimal prefix
circuits with fan-out 2 and greater depths. Section 4
shows how an optimal prefix algorithm running on the
send-or-receive model can be derived directly from an
optimal prefix circuit with fan-out 2. Section 5 concludes
this paper.

2. Optimal prefix circuits with fan-out 2

This section constructs a class of optimal prefix
circuits with fan-out 2, and we will use L(n) to denote
an n-input circuit in this class. L(2) and L(3) are
shown in Fig. 2, which are in fact serial circuits. For
ease of presentation, i:j is used to represent the result of
computing v; 0 v;,1 0 .. 0 v;, where i <j. Note



that as shown in Fig. 2, 1:2, for example, on the right-
hand side of an operation node denotes that the node
produces 1:2,

Fig. 2. Prefix circuits L(2) and L(3).

Given L(2) and L(3), the prefix circuit L(n), where
n > 3, can be constructed recursively as depicted in Figs.
3 and 4 for n odd and n even, respectively. Specifically,
when n is odd and n > 3, the first level of L(n)
contains Ln/2] operation nodes; the ith node from the
left computes (2i — 1):2i. The outputs of these Ln/2]
operation nodes are fed to the circuit L({n/2J) to produce
1:4, 1:6, ..., L:(n — 1). At the last level of L(n),
Ln/2] operation nodes are used to generate 1:3, 1:5, ...,
1:n.

When n is even and n > 3, the first level of L(n)
contains n/2 — 1 operation nodes; the ith node from the
left also computes (2i — 1):2i. The outputs of these
/2 — 1 operation nodes and the (n—1)th input of L(n)
are fed to the circuit L(n/2) to produce 1:4, 136, ...,
1:(n - 4), 1:(n - 2), and 1:(n - 1). At the last level of
L(n), n/2 — 1 operation nodes are used to generate 1:3,
1:5, ..., Li(n - 5), L:(n — 3), and 1:n. To illustrate the
construction, L(4), L(5), and L(6) are shown in Fig. 5.
Note that L(4), like L(2) and L(3), is also a serial
circuit; however, for n > 4, L(n) is no more serial.

1 2 3 4 n-2 n-1 n

L({n/2))

N

Fig. 3. Prefix circuit L(n), where n is odd and n > 3.
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Fig. 4. Prefix circuit L(n), where n is even and n > 3.

Fig. 5. Prefix circuits L(4), L(5), and L(6).
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Theorem 1. L(n) is optimal; that is, d(n) +
s(n)=2n-2.

- Proof: We shall prove by induction on n. From
Fig. 2, d(2) =s(2) = 1, and d(3) = 5(3) = 2. So, the
claim holds for n=2 and n = 3. \

. Assume that the claim holds for n < k, where k2
3, we show that the claim also holds for n =k + 1.
From Figs. 3 and 4, we have

d(n) = dLif2ly + 2, o
- stmy=s(nr2 #n-1, if n> 5 and n 0dd;
. S(n)=s(n/2) +n-2, if n >4 and n even.

We have two cases to consider.

Case (i) n =k + 1 2.5 and n is odd.

From Egs. (1) and (2),

d(n) + s(n) =dk + 1) + stk + 1)
=dl(k+1D2h+2
+sQk+D2h+ k+1)-1
= dl.(k + D2)) + sk + 1)/2))
+k+2
=20k + D) -2+ k+2
=k-2+k+2
=2n-2.
Case (ii) n = k + 1 > 4 and n is even.
From Egs. (1) and (3),
din) +s(n) =dk+ 1)+ s(k+ 1)
=d((k + 1)/2) + 2 + s((k + 1)/2)
+k+1)-2
=d((k + 1)/2) + s((k + 1)/2)
+k+1
=2k + 1)/2)-2+k+1
S =2n-2.

ifn24; (1)
)

€)

QE.D.

Theorem 2. For L(n),
dmy=2Ugnl-1, if2<n<3x2-landi21;
d(n)=2Llg nl, if3x2i-l<n<2tlandi> 1.
Proof: We will use the following equation [7]:
for any integer n and integer k # 0,
LLnls 21=Lns2el.
In addition, we will also use d(2) = 1 and d(3) =
which follow from Fig. 2.. Clearly, the claim holds for n
=2and 3.
Let 2 <n < 2+l where i > 2. From Figs. 3 and
4,
d(n) = dLn/2y + 2
=d(n/al)+4
= dln2-1h) + 2G - 1).
Thus, when 2 <n<3x2-landi2>2,
dny=d2)+2(-1)
=2i-1
=20lignl-1.
On the other hand, when 3 x 21 <n < 2*landi 2
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2,
dmy=d3)+2(i-1)=2i=2lignl QED.
Note that when n is a power of two, the depth of
L(n) equals the depth of the n-input Brent-Kung circuit,
BK(n), mentioned earlier. If we generalize BK(n) to
allow n not to be-a power of two as presented in [13],
then the derivation of d(n) in Theorem 2 also holds for
the depth of BK(n). That is, the depth of L(n) equals
the depth of BK(n) for any n 2 2; however the size of
L(n) is smaller than that of BK(n) for n 2 4, which
makes L(n) optimal and BK(n) non-optimal.

3. Optimal prefix circuits with greater
depth '

This section solves an open problem about the
existence of a class of optimal prefix circuits with
bounded fan-out [18] These circuits are constructed by
using L(n) and a property of prefix circuits combined
from two smaller circuits described below.

Given two prefix circuits G 1(n) and G o(m) with n
and m inputs, respectively, we can combine G;(n) and
Go(m), as depicted in Fig. 6, to obtain a prefix circuit
G(n+m-1)=G1(n)Gyo(m) with n +m -1
inputs. If G l(n) and G ((m) are optimal, then
G1(n)-Go(m) is also optimal [18]. Let dy and dj be
the depths of G(n) and G(m), respectively. "Clearly,
if G1(n) generates 1:n at the last level, or level dq,
then the depth of Gl(n) Go(m) equals dy +dy. This
property will be used in the proof of Theorem 3 to derive
a class of optimal prefix circuits with fan-out 2 and with
greater depths than the depth of L(n). For ease of
presentation, we define an n-input prefix circuit to be
persistent if it generates 1:n at the last level. As can be
seen from Figs. 2, 3, and 4, all L(n) circuits are
persistent.

n-1

l
G(n)

|

Fig. 6. Combination of G{(n) and Gy(m).

n n+l n+2  n+m-1

G, (m)




Theorem 3. For any n >2 and any ¢ in the range
2llgn)-1<tsn=1,
1f2‘<n<3x2‘" andi21;
2|.lgnJStSn-—1
if3x2-1<n<2tlandiz 1,
there exists an n-input optimal, per51stent preﬁx circuit
with fan-out 2 and depth .

Proof: We shall prove by induction on n. The
theorem can be checked for n < 5 by examining the L(2)
and L(3) in Fig. 2, the L(4) and L(5) in Fig. 5, and the
5-input serial prefix circuit. Let n > 5 and assume the
theorem is true for all n” < n. Consider the following
two cases.

Case (i) 3x2-1<n< 2l andi22.

If . .

n=3x21=15x2,
then

2<n-1<3x2-]
from the induction hypothesis, there exists an (n-1)-
input optimal, persistent prefix circuit with fan-out 2 and
depth # in the range

2lg(r-1]-1<t<(r-1)-1,

ie.,

2lignl-1<t<n-2.
By combining such a circuit with L(2), we can obtain an

n-input optimal, persistent prefix circuit with fan-out 2
and depth 7 in the ran
flg nl<t<n-1.

On the other hand, if
3x2-1 < <2t
then
3x2-l<pn—1<2i,
from the induction hypothesis, there exists an (n-1)-
input optimal, persistent prefix circuit with fan-out 2 and
depth ¢ in the range
2lg(n-1l<rsr-1-1,
ie.,
2|.lgn_]$t$n—2.
By combining such a circuit with L(2), we can obtain an
n-input optimal, persistent prefix circuit with fan-out 2
and depth ¢ in the range
2lignl+1<r<n-1.
Furthermore, from Theorem 2, the depth of L(n) is
2l1g n] when 3 x 2--1 < n < 2i+1, Therefore, there
exists an n-input optimal, persistent prefix circuit with
fan-out 2 and depth ¢ in the range
2llgnlse<n-1.
Case (i) 2 <n<3x2-1andi23.
If
n=2,
then
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3x22<n-1<2k
from the induction hypothesis, there exists an (n-1)-
input optimal, persistent prefix circuit with fan-out 2 and
depth t in the range

o 2lgm-Dlgic(-1-1,

ie.,

2lignl-2<t<n-2.
By combining such a circuit with L(2), we can obtain an

n-input optimal, persistent preﬁx circuit with fan-out 2

and depth ¢ in the range

2lignl-1<r<n-1.

On the other hand, if :

2i<n<3x2i*1,
then

2i<n-1<3x2-]
from the induction hypothesis, there exists an (n-1)-
input optimal, persistent prefix circuit with fan-out 2 and
depth ¢ in the range

2lg(-]-1gt<s(n-1)-1,

i.e.,

2ngnJ— 1<¢<n-2.
By combining such a circuit with L(2), we can obtain an

n-input optimal persistent prefix circuit with fan-out 2
and depth ¢ in the ran
flg nl<t<n-1.

Furthermore, from Theorem 2, the depth of L(n) is
2l1g n] - 1 when 2f < n <3 x 2i-1. Therefore, there
exists an n-input optimal, persistent prefix circuit with
fan-out 2 and depth ¢ in the range
2lgnl-1<r<n-1. Q.ED.
4 . Optimal algorithms on the send-or-
receive model

In this section, we show how an optimal prefix circuit
with fan-out 2 can be mapped to an optimal prefix
algorithm running on the send-or-receive model. Every
operation node in Figs. 2-5 that computes i:j on line j
by performing (i:k) o (k+1:j) can be interpreted as a
communication operation and a computation on the send-
or-receive model: transferring i:k from PE k to PE j,
which contains k+1:j before the transfer, and performing
(i:k) o (k+1:j) by PE j, where 1 < i <k <j<n,
Thus, each of the optimal prefix circuits with fan-out 2 in
this paper corresponds to a prefix algorithm running on
the send-or-receive model.

~ It should be noted that the fan-out 2 of an operation
node or duplication node on line i of a prefix circuit
insures that PE i of the send-or-receive model can send
out at most a message in a step. Further, as an operation
node on line i of a prefix circuit always has fan-in 2, it
means that the corresponding PE i of the send-or-receive
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model can receive at most a message in a step.

The depth of a prefix circuit corresponds to the number
of parallel communication steps needed on the send-or-
receive model, while the size of a prefix circuit
corresponds to the total number of messages transferred.
Carrying over the inequality d(n) + s(n) 22n -2
from the circuit model to the send-or-receive model, the
sum of the number of communication steps and the
number of messages is greater than or equal to 2n — 2
[18]; the prefix algorithms running on the send-or-receive
model are optimal because the sum of the number of
communication steps and the number of messages equals
2n -2,

5. Conclusion

We have presented a systematic approach to
constructing optimal parallel prefix circuits with fan-out
2. We have also solved an open problem by building
optimal n-input prefix circuits with fan-out 2 and depth
tintherange 2 Lignl-1<t<n-1,if20<n <3
x 2i~1 and i > 1; or depth ¢ in the range 2 Lig nl<t
<n-1,if3x2-1<n <2+ and i 2 1. Further,
it has been shown that an optimal prefix circuit with fan-
out 2 corresponds to an optimal prefix algorithm running
on the send-or-receive fully connected multicomputer.
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