
Maintenance of Association Rules in Data Mining

Tzung-Pei Hong
Department of Information Management

I-Shou University
Kaohsiung, 84008, Taiwan, R.O.C.

tphong@isu.edu.tw

Ching-Yao Wang
Institute of Computer and Information Science

National Chiao Tung University
Hsinchu, 300, Taiwan, R.O.C.

cywang@cis.nctu.edu.tw

Abstract

In real-world applications, developing a mining
algorithm that can incrementally maintain discovered
information as a database grows is quite important. In the
past, we proposed an incrementally mining algorithm that
used a lower support threshold and an upper support
threshold to reduce the need for rescanning original
databases and to save maintenance costs. In this paper,
we extend it and propose a new incrementally mining
algorithm also based on the upper and lower thresholds.
The number of new transactions allowed for not
rescanning databases is fixed, and the lower support
threshold is dynamically set close to the upper support
threshold, making the additional overhead decreasing in
maintaining the consistency of association rules with the
updated databases.

Keywords: data mining, association rule, large itemset,
pre-large itemset, incremental mining.

1. Introduction

Finding association rules [1-3][6][7][9][10-13] from
transaction databases is most commonly seen in data
mining. Conventional mining algorithms usually considers
the database size static and focuses on batch mining. In
real-world applications, however, new records are usually
inserted into databases, and designing a mining algorithm
that can maintain association rules as a database grows is
thus critically important. Cheung and his co-workers
proposed an incremental mining algorithm, called FUP
(Fast UPdate algorithm) [4], for incrementally maintaining
mined association rules and avoiding the shortcomings
mentioned above. The FUP algorithm modifies the Apriori
mining algorithm [2] and adopts the pruning techniques
used in the DHP (Direct Hashing and Pruning) algorithm
[10]. It first calculates large itemsets mainly from newly
inserted transactions, and compares them with the
previous large itemsets from the original database.
According to the comparison results, FUP determines
whether re-scanning the original database is needed, thus
saving some time in maintaining the association rules.

Hong et al. also proposed an incrementally mining
algorithm [8] that used a lower support threshold and an

upper support threshold to reduce the need for rescanning
original databases and to save maintenance costs. The
upper support threshold is the same as that used in
conventional mining algorithms. The count of an itemset
must be larger than the upper support threshold in order to
be considered large. The lower support threshold defines
the lowest count above which an itemset can be
considered pre-large. In that algorithm, the lower support
threshold is fixed and the number of new transactions
allowed for not rescanning databases increases
dynamically as databases grow. In this paper, we extend it
and propose a new incrementally mining algorithm based
on the upper and lower thresholds. The number of new
transactions allowed for not rescanning databases is fixed,
and the lower support threshold is dynamically close to
the upper support threshold, making the additional
overhead reduced in maintaining the consistency of
association rules with the updated databases. The
correctness of the algorithm is also proven.

2. Review of the FUPAlgorithm

Cheung et al. proposed the FUP algorithm to
incrementally maintain association rules when new
transactions are inserted [4][5]. Using FUP, large itemsets
with their counts in preceding runs are recorded for later
use in maintenance. As new transactions are added, FUP
first scans them to generate candidate 1-itemsets (only for
these transactions), and then compares these itemsets with
the previous ones. FUP partitions candidate 1-itemsets
into two parts according to whether they are large for the
original database. If a candidate 1-itemset from the newly
inserted transactions is also among the large 1-itemsets
from the original database, its new total count for the
entire updated database can easily be calculated from its
current count and previous count since all previous large
itemsets with their counts are kept by FUP. Whether an
original large itemset is still large after new transactions
are inserted is determined from its support ratio as its total
count over the total number of transactions. By contrast, if
a candidate 1-itemset from the newly inserted transactions
does not exist among the large 1-itemsets in the original
database, one of two possibilities arises. If this candidate
1-itemset is not large for the new transactions, then it
cannot be large for the entire updated database, which
means no action is necessary. If this candidate 1-itemset is

large for the new transactions but not among the original
large 1-itemsets, the original database must be re-scanned
to determine whether the itemset is actually large for the
entire updated database. Using the processing tactics
mentioned above, FUP is thus able to find all large
1-itemsets for the entire updated database. After that,
candidate 2-itemsets from the newly inserted transactions
are formed and the same procedure is used to find all large
2-itemsets. This procedure is repeated until all large
itemsets have been found.

3. Pre-large Itemsets

In [8], we propose the concept of pre-large itemsets. A
pre-large itemset is not truly large, but promises to be
large in the future. A lower support threshold and an upper
support threshold are used to realize this concept. The
upper support threshold is the same as that used in the
conventional mining algorithms. The support ratio of an
itemset must be larger than the upper support threshold in
order to be considered large. On the other hand, the lower
support threshold defines the lowest support ratio for an
itemset to be treated as pre-large. Pre-large itemsets act
like buffers in the incremental mining process and are
used to reduce the movements of itemsets directly from
large to small and vice-versa.

Considering an original database and transactions
newly inserted using the two support thresholds, itemsets
may thus fall into one of the following nine cases
(illustrated in Figure 1).

Figure 1: Nine cases arising from adding new
transactions to existing databases

Cases 1, 5, 6, 8 and 9 above will not affect the final
association rules. Cases 2 and 3 may remove existing
association rules, and cases 4 and 7 may add new
association rules. If we retain all large and pre-large
itemsets with their counts after each pass, then cases 2, 3
and case 4 can be handled easily. Also, in the maintenance
phase, the ratio of new transactions to old transactions is
usually very small. This is more apparent when the
database is growing larger. An itemset in case 7 cannot
possibly be large for the entire updated database as long as
the number of transactions is small compared to the
number of transactions in the original database.

4. Notation

The notation used in this paper is defined below.
D : the original database;
T : the set of new transactions;

U : the entire updated database, i.e., D∪ T;
d : the number of transactions in D;
n : the number of transactions in T;
Sl : the lower support threshold for pre-large itemsets;
Su : the upper support threshold for large itemsets, Su

>Sl;
D
kL : the set of large k-itemsets from D;
T
kL : the set of large k-itemsets from T;
U
kL : the set of large k-itemsets from U;
D

kP : the set of pre-large k-itemsets from D;
T

kP : the set of pre-large k-itemsets from T;
U

kP : the set of pre-large k-itemsets from U;

Ck : the set of all candidate k-itemsets from T;
I : an itemset;
SD(I) : the count of I in D;
ST(I) : the count of I in T;
SU(I) : the count of I in U.

5. Theoretical Foundation

As mentioned above, if the number of new transactions
is small compared to the number of transactions in the
original database, an itemset that is small (neither large
nor pre-large) in the original database but is large in the
newly inserted transactions cannot possibly be large for
the entire updated database. In the maintaining phase of
databases on real applications, the numbers of new
inserted transactions are usually small compared to the
sizes of the entire databases. Lower support thresholds can
thus be set close to upper support thresholds. This is
proven in the following theorem.

Theorem 1: let Sl and Su be respectively the lower and
the upper support thresholds, and let d and t be
respectively the numbers of the original and new

transactions. If Sl ≤)1(uu S
d

t
S −− , then an itemset that

is small (neither large nor pre-large) in the original
database but is large in newly inserted transactions is not
large for the entire updated database.

Proof: The following derivation can be obtained from

Sl ≤)1(uu S
d

t
S −− :

Sl ≤)1(uu S
d

t
S −− (1)

⇒ t(1-Su) ≤ (Su- Sl) d

⇒ t-tSu ≤ dSu- dSl

⇒ t+ dSl ≤ Su(d+t)

⇒
td

dSt l

+
+ ≤ Su.

If an itemset I is small (neither large nor pre-large) in
the original database D, then its count SD(I) must be less
than Sl∗ d, therefore,

Large itemsetsSmall itemsetsOriginal
database

Upper thresholdLower threshold

New
transactions

Case 2Case 2

Case 1Case 1

Case 8Case 8

Case 9Case 9

Case 7Case 7 Case 3Case 3Case 6Case 6

Case 5Case 5

Case 4Case 4

Upper thresholdLower threshold
Pre-large itemsets

Large itemsetsSmall itemsets Pre-large itemsets

SD(I) < dSl.

If I is large in the newly inserted transactions T, then:

t ≥ ST(I) ≥ tSu.

The entire support ratio of I in the updated database U

is
td

IS U

+
)(, which can be further expanded to:

td

ISIS

td

IS DTU

+
+

=
+

)()()(

<
td

dSt l

+
+

< Su.

I is thus not large for the entire updated database. This
completes the proof.

Example 1: Assume D=100, t=10 and Su=60%. An
appropriate Sl can be derived as follows:

Sl =)1(uu S
d

t
S −− =0.6 - 0.1(1-0.6)=0.56.

Thus, if the lower support threshold is equal to or less
than 0.56, then I is absolutely not large for the entire
updated database.

From theorem 1, the lower support threshold required
for efficient handling of case 7 is determined by Su, t, and
d. It can easily be seen from Formula 1 that if d grows
larger, then Sl will be larger too. Therefore, as the database
grows, the overhead of our proposed approach becomes
small. This characteristic is especially useful for
real-world applications.

As more new transactions are added to the original
database, Sl can thus be set at a higher value. The
following corollary can thus be achieved. It proof is
omitted here.

Corollary 1: Assume the number t of newly inserted

transactions is fixed each time. If new
lS =

td

SSt
S

old

old
luold

l +
−

+
)(,

then an itemset which is small (neither large nor pre-large)
for the lower support threshold old

lS before t new

transactions are inserted into the database but is large in
the newly inserted transactions, is not large for the lower
support threshold new

lS after t new transactions are

inserted into the database.

6. The maintenance algorithm based on
dynamic lower support thresholds

According to the discussion above, an efficient
maintenance algorithm can be designed for incrementally
inserted transactions. The large and pre-large itemsets
with their counts in preceding runs are recorded for later
use in maintenance. As new transactions are added, the
proposed algorithm first scans them to generate candidate
1-itemsets (only for these transactions), and then

compares these itemsets with the previously retained large
and pre-large 1-itemsets. It partitions candidate 1-itemsets
into three parts according to whether they are large or
pre-large for the original database. If a candidate 1-itemset
from the newly inserted transactions is also among the
large or pre-large 1-itemsets from the original database, its
new total count for the entire updated database can easily
be calculated from its current count and previous count
since all previous large and pre-large itemsets with their
counts have been retained. Whether an originally large or
pre-large itemset is still large or pre-large after new
transactions have been inserted is determined from its new
support ratio, as derived from its total count over the total
number of transactions. On the contrary, if a candidate
1-itemset from the newly inserted transactions does not
exist among the large or pre-large 1-itemsets in the
original database, then it is absolutely not large for the
entire updated database as long as the number of newly
inserted transactions is within the predefined number of
new transactions. In this situation, no action is needed.
When transactions are incrementally added and the total
number of new transactions exceeds the predefined
threshold, the original database is re-scanned to find new
pre-large itemsets for a new lower support threshold. The
proposed algorithm can thus find all large 1-itemsets for
the entire updated database. After that, candidate
2-itemsets from the newly inserted transactions are formed
and the same procedure is used to find all large 2-itemsets.
This procedure is repeated until all large itemsets have
been found. The details of the proposed maintenance
algorithm are described below. A variable, c, is used to
record the number of new transactions since the last
re-scan of the original database.

The proposed maintenance algorithm:

INPUT: A predefined upper support threshold Su and new
transaction number threshold t, a set of large
itemsets and pre-large itemsets in the original
database consisting of (d+c) transactions, a set of
n new transactions, and a dynamic lower support

threshold old
lS , which is

 −−=)1(uu

old
l S

d

t
SS .

OUTPUT: A set of final association rules for the updated
database.

STEP 1: If c+n ≥ t, set:

)(

)(

ncd

SSt
SS

old
luold

l
new
l ++

−+= ,

Otherwise, set old
l

new
l SS = .

STEP 2: Set k =1, where k records the number of items in
itemsets currently being processed.

STEP 3: Find all candidate k-itemsets Ck and their counts
from the new transactions.

STEP 4: Divide the candidate k-itemsets into three parts
according to whether they are large or pre-large
in the original database.

STEP 5: For each itemset I in the originally large

k-itemsets D
kL , do the following substeps:

Substep 5-1: Set the new count SU(I) = ST(I)+ SD(I).
Substep 5-2: If SU(I)/(d+c+n) ≥ Su, then assign I as a large

itemset, set SD(I) = SU(I) and keep I with
SD(I),

Otherwise, if SU(I)/(d+c+n) ≥ new
lS , then

assign I as a pre-large itemset, set SD(I) =
SU(I) and keep I with SD(I),
Otherwise, neglect I.

STEP 6: For each itemset I in the originally pr-large
itemset D

kP , do the following substeps:

Substep 6-1: Set the new count SU(I) = ST(I)+ SD(I).
Substep 6-2: If SU(I)/(d+c+n) ≥ Su, then assign I as a large

itemset, set SD(I) = SU(I) and keep I with
SD(I),

Otherwise, if SU(I)/(d+c+n) ≥ new
lS , then

assign I as a pre-large itemset, set SD(I) =
SU(I) and keep I with SD(I),
Otherwise, neglect I.

STEP 7: For each itemset I in the candidate itemsets that
is not in the originally large itemsets D

kL or

pre-large itemsets D
kP , do the following

substeps:
Substep 7-1: If I is in the large itemsets T

kL or pre-large

itemsets T
kP from the new transactions,

then put it in the rescan-set R.
Substep 7-2: If I is small for the new transactions, then do

nothing.

STEP 8: If c+n < t or R is null, then do nothing, else
rescan the original database to determine whether
the itemsets in the rescan-set R are large or
pre-large.

STEP 9: Form candidate (k+1)-itemsets Ck+1 from finally
large and pre-large k-itemsets (U U

k
U
k PL) that

appear in the new transactions.

STEP 10: Set k = k+1.

STEP 11: Repeat STEPs 4 to 10 until no new large or
pre-large itemsets are found.

STEP 12: Modify the association rules according to the
modified large itemsets.

STEP 13: If c+n ≥ t, then set d=d+c+n, c=0 and
old
lS = new

lS ; otherwise, set c=c+n.

After Step 13, the final association rules for the
updated database can then be found.

7. An example

In this section, an example is given to illustrate the
proposed incremental data-mining algorithm. Assume the
initial data set includes 8 transactions, which are shown in
Table 1.

Table 1: An original database with TID and Items

Incremental database
TID Items
100 ACD
200 BCE
300 ABCE
400 ABE
500 ABE
600 ACD
700 BCDE
800 BCE

Also assume the predefined upper support threshold Su

is set at 50%, the new transaction threshold t is set at 2,
the current old lower support old

lS is 37.5%, which is

calculated as:

old
lS = %5.37375.0)5.01(

8

2
5.0)1(==

 −−=

 −− uu S

d

t
S .

Moreover, the sets of large itemsets and pre-large
itemsets for the given initial data are shown in Tables 2
and 3.

Table 2: The large itemsets for the original database

Large itemsets
1 item Count 2 items Count 3 items Count

A 5 BC 4 BCE 4
B 6 BE 6
C 6 CE 4
E 6

Table 3: The pre-large itemsets for the original
database

Pre-large itemsets
1 item Count 2 items Count 3 items Count

D 3 AB 3 ABE 3
AC 3
AE 3
CD 3

Assume one new transaction is inserted into the data
set with TID=900, Items={A,B,D,F}. The variable c is
initially set at 0. The proposed incremental mining
algorithm proceeds as follows.

STEP 1: Since c+n(=0+1)<t(=2), set new
lS =0.375.

STEP 2: k is set to 1, where k records the number of items
in itemsets currently being processed.

STEP 3: All candidate 1-itemsets C1 and their counts from
the new transaction are found, as shown in Table
4.

Table 4: All candidate 1-itemsets for the new
transaction

Candidate 1-itemsets
Items Count

A 1
B 1
D 1
F 1

STEP 4: From Table 4, all candidate 1-itmesets {A}{B}
{D}{F} are divided into three parts, {A}{B},
{D}, and {F} according to whether they are
large or pre-large in the original database.
Results are shown in Table 5.

Table 5: Three partitions of all candidate 1-itemsets
from the new transaction

Large 1-Itemsets
for the initial

data set

Pre-large
1-Itemsets for
the initial data

set

Neither Large
Nor Pre-large

1-itemsets for the
initial Data set

Items Count Items Count Items Count
A 1 D 1 F 1
B 1

STEP 5: The following substeps are done for each of the
originally large 1-itemsets {A}, {B}, {C} and
{E}:

Substep 5-1: The final counts of the candidate 1-itemsets
{A}, {B}, {C} and {E} are calculated using
ST(I)+ SD(I). Table 6 shows the results.

Table 6: The final counts of {A}, {B}, {C} and {E}

Items Count
A 6
B 7
C 6
E 6

Substep 5-2: The new support ratios of {A}, {B}, {C} and
{E} are calculated. For example, the new
support ratio of {A} is 6/(8+1) ≥ 0.5. {A} is
thus still a large itemset. In this example,
{A}, {B}, {C} and {E} are all large and
retained in the large 1-itemsets with their
new counts for the updated database.

STEP 6: The following substeps are done for itemset {D},
which is originally pre-large:

Substep 6-1: The final count of the candidate 1-itemset {D}
is calculated using ST(I)+ SD(I) (= 4).

Substep 6-2: The new support ratio of {D} is 4/(8+1) >
0.375 but <0.5, {D} is thus a pre-large
1-itemset for the updated database. {D} with
its new count is retained in the set of
pre-large 1-itemsets for the updated
database.

STEP 7: Since the itemset {F}, which was originally
neither large nor pre-large, is large for the new

transactions, it is put in the rescan-set R.

STEP 8: Since c+n(=0+1) < t(=2), rescanning the database
is unnecessary, so nothing is done.

STEP 9: From Steps 5,6 and 7, the final large 1-itemsets
and pre-large 1-itemsets for the updated database
are {A}, {B}, {C}, {D} and {E}. All candidate
2-itemsets generated from them are shown in
Table 7.

Table 7: All candidate 2-itemsets for the new
transactions

Candidate 2-itemsets
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

STEP 10: k = k+1=2.

STEP 11: Steps 4 to 10 are repeated to find large or
pre-large 2-itemsets. Results are shown in Table
8.

Table 8: All large 2-itemsets and pre-large 2-itemsets
for the updated database

Large 2-Itemsets Pre-large 2-Itemsets
Items Count Items Count
BE 6 AB 4

BC 4
CE 4

Large or pre-large 3-itemsets are found in the same way.
No large 3-itemsets were found in this example.

STEP 12: The association rules derived from the newly
found large itemsets are:

B⇒E (Confidence=6/7), and
E⇒B (Confidence=6/7).

STEP 13: Since c+n(=0+1)<t(=2), c=c+n=0+1=1.

8. Conclusions

In this paper, we have extended our previous method
and proposed a new incrementally mining algorithm based
on the concept of pre-large itemsets. The pre-large
itemsets act as a gap to avoid small itemsets becoming
large in the updated database when transactions are
inserted. The number of new transactions allowed for not
rescanning databases is fixed, and the lower support
threshold is dynamically set close to the upper support
threshold, making the additional overhead decreasing in
maintaining the consistency of association rules with the
updated databases. If the size of the database grows larger,

then the lower support threshold will be larger too.
Therefore, as the database grows, our proposed approach
becomes increasingly efficient. This characteristic is
especially useful for real-world applications.

References

[1] R. Agrawal, T. Imielinksi and A. Swami, “Mining
association rules between sets of items in large
database,“ The ACM SIGMOD Conference, Washington DC,
USA, 1993

[2] R. Agrawal and R. Srikant, “Fast algorithm for mining
association rules,” The International Conference on Very
Large Data Bases, pp. 487-499, 1994.

[3] R. Agrawal, R. Srikant and Q. Vu, “Mining association
rules with item constraints,” The 3th International
Conference on Knowledge Discovery in Databases and
Data Mining, Newport Beach, California, 1997.

[4] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong,
“Maintenance of discovered association rules in large
databases: An incremental updating approach,” The 12th
IEEE International Conference on Data Engineering, 1996.

[5] D. W. Cheung, S. D. Lee, and B. Kao, “A general
incremental technique for maintaining discovered
association rules,” The 5th International Conference On
Database Systems For Advanced Applications (DASFAA),
Melbourne, Australia, pp. 185-194, 1997.

[6] T. Fukuda, Y. Morimoto, S. Morishita and T. Tokuyama,
"Mining optimized association rules for numeric attributes,"

The ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 182-191, 1996

[7] J. Han and Y. Fu, “Discovery of multiple-level association
rules from large database,” The 21th International
Conference on Very Large Data Bases, Zurich, Swizerland,
pp. 420-431, 1995.

[8] T. P. Hong, C. Y. Wang and Y. H. Tao, "Incremental data
mining based on two support thresholds," submitted to The
11th National Conference on Artificial Intelligence (AAAI),
2000.

[9] H. Mannila, H. Toivonen and A. I. Verkamo, “Efficient
algorithm for discovering association rules,” The AAAI
Workshop on Knowledge Discovery in Databases, pp.
181-192, 1994.

[10] J. S. Park; M. S. Chen and P. S. Yu, “Using a hash-based
method with transaction trimming for mining association
rules,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 5, pp.812-825, 1997.

[11] N. L. Sarda and N. V. Srinivas, “An adaptive algorithm for
incremental mining of association rules,” The 9th
International Workshop on Database and Expert Systems,
1998.

[12] R. Srikant and R. Agrawal, “Mining generalized association
rules,” The 21th International Conference on Very Large
Data Bases, Zurich, Swizerland, pp. 407-419, 1995.

[13] R. Srikant and R. Agrawal, “Mining quantitative association
rules in large relational tables,” The ACM SIGMOD
International Conference on Management of Data, Monreal,
Canada, June, pp. 1-12, 1996.

