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Abstract|Learning naive Bayesian classi�ers is an impor-

tant approach to probabilistic induction. However, no study
has been done on naive Bayesian classi�ers when a query

vector includes interval-valued data, and little is known
about how a set of query vectors from the same unknown
class can be accurately classi�ed. In this paper, we present

a new training approach to the problems above. This ap-
proach is based on the \perfect aggregation" property of the
Dirichlet distribution, which is usually assumed to be the

prior of the variables in a Bayesian classi�er. The exper-
imental results show that when we merge an appropriate

number of query vectors with the same unknown class and
the interval-valued data are formed, the acccuracies of a
trained naive Bayesian classi�er can be promoted signi�-

cantly. This paper also reports a successful application of
our approach in speaker recognition.
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Machine Learning, Data Mining

I. Introduction

Learning naive Bayesian classi�ers is an important ap-
proach to probabilistic induction. In spite of its simplicity,
naive Bayes constantly outperforms competing algorithms
in the experiments reported in the literature. Remarkably,
in KDD-CUP-97, two of the top three contestants are based
on naive Bayes [1]. Meanwhile, Domingos and Pazzani [2]
reported an experiment that compared naive Bayes with
several classical learning algorithms such as C4.5 with a
large ensemble of real data sets. The result also showed
that naive Bayes can signi�cantly outperform those algo-
rithms. Hence, the naive Bayesian classi�er is becoming
a popular tool for classi�cation. Naive Bayes can handle
discrete variables and continuous variables assuming that
their priors are Dirichelet distribution and Normal distri-
bution, respectively [3]. It has been shown that when a
continuous variable is not normal, the performance will be
inferior to discretization.
Several researchers have studied how to handle contin-

uous variables for Bayesian classi�ers [3{7]. However, no
study has been done on naive Bayesian classi�ers when a
query vector including interval-valued data [8], and little
is known about how a set of query vectors from the same
unknown class can be accurately classi�ed. The relation
between these two problems can be illustrated by the fol-
lowing example. Suppose we pick up two leaves dropped
from a tree, we would like to use their features, such as
their length, to classify what kind of tree they were on.
In general, the length of the two leaves will not be equal.
Conventionally, we can classify each individual leaf by a

classi�er. But if the classi�cation results are not the same,
we will have to come up with a method to resolve the dif-
ference. Alternatively, we can merge each feature of the
two leaves to form a new interval-valued data, and then
classify the merged data.
Consider a data set that comes from three di�erent

classes. We want to classify two query vectors. Assum-
ing that we do not have any prior knowledge about the
class distribution. Hence, suppose we randomly assign a
class label to each vector. The expected accuracy will be
(1 � 1=3 � 1=3+ 2 � 0:5 � 1=3 � 2=3+ 2 � 0 � 2=3 � 2=3 = 1=3).
On the other hand, suppose we know that the two vec-
tors belong to the same unknown class, and randomly
assign their class. The expected accuracy will still be
(1 � 1 � 1=3+1 �0 �2=3= 1=3), regardless of our knowledge
that they come from the same class. This shows that a clas-
si�er must deliberately take advantage of that knowledge
or the knowledge will not improve the expected accuracy.

In this paper, we present a method that allows a
naive Bayesian classi�er to have the abilities of process-
ing interval-valued data. This method is then extended
to classify merged query vectors when we know these vec-
tors have the same unknown class label. The key of our
approach is based on our study on the Dirichlet distribu-
tion and its properties. A discrete variable as well as a
discretized continuous variable in a naive Bayesian classi-
�er are usually assumed to have a Dirichlet prior. Per-
fect aggregation of Dirichlets implies that we can estimate
the class-conditional probabilities of discretized intervals
regardless of how other region of the domain of the contin-
uous variable is discretized. Those are the reasons of why
we can process multiple interval-valued data. The experi-
mental results show that when we use interval data which
were formed by merging an appropriate number of query
vectors with the same unknown class label, the accuracy of
a naive Bayesian classi�er will be promoted signi�cantly.

II. Preliminary

A. Dirichlet Distribution and Perfect Aggregation

Random vector � = (�1; �2; : : : ; �k) has a k-variate

Dirichlet distribution with parameters �j > 0 for j =
1; 2; : : : ; k + 1 if it has density

f(�) =
�(
Pk+1

j=1 �j)Qk+1

j=1 �(�j)

kY

j=1

�
�j�1

j (1� �1 � � � � � �k)
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for �1 + �2 + � � � + �k � 1 and �j � 0 for j = 1; 2; : : : ; k.
This distribution will be denoted Dk(�1; �2; : : : �k;�k+1).
ABeta distribution is a univariate Dirichlet distributions
and usually denoted Beta(�1; �2). critical to our approach.
These properties greatly simplify the computation of the
moments of the Dirichlet distribution in Bayesian analysis.
Suppose random vector � = (�1; �2; : : : ; �k) has a Dirich-
let distribution Dk(�1; �2; : : : ; �k;�k+1), then by [9] any
subvector (�n1; �n2; : : : ; �nm) of � has an m-variate Dirich-
let distribution Dm(�n1; �n2; : : : ; �nm;��

Pm

j=1 �nj). We
call this subvector lemma. Also by [9], the sum of any
subset � � f�1; �2; : : : ; �kg has a Beta distribution with
parameters

P
j2� �j and � �

P
j2� �j), where � = �1 +

�2 + � � �+ �k+1. This is called sum-of-subset lemma.
Another important property of Dirichlets is that a

Dirichlet distribution is conjugate to the multinomial sam-
pling [10]. This property basically states that the posterior
distribution of a Dirichlet given our observation is also a
Dirichlet. Formally, let D = fy1; y2; : : : ; yk+1g be a data
set for the outcomes in n trials, where yj denotes the num-
ber of trials turning to be outcome j. When the prior
distribution p(�) is a Dirichlet distribution with parame-
ters �j for j = 1; 2; : : : ; k + 1, and the likelihood function
L(Dj�) follows a multinomial distribution, then the pos-
terior distribution p(�jD) is also a Dirichlet distribution
with parameters �0j = �j + yj for j = 1; 2; : : : ; k + 1. Sim-
ilarly, the Beta distribution is conjugate to the binomial
sampling.
The expected value for �j given D is E[�j jD] =

�j+yj
�+n

,
for j = 1; 2; : : : ; k + 1. This expression can be rewritten as
follows:

E[�j jD] =
�j + yj
�+ n

=
�

�+ n

�j
�

+
n

�+ n

yj
n

= wE[�j ] + (1� w)
yj
n
;

where w = �
�+n

. Note that E[�j ] and yj=n are the prior and
the sample means of �j , respectively. Hence, w and 1� w
can be thought of as the weights of prior and sample means,
respectively, and the weights for all j are all identical. This
reveals the advantage that a Bayesian analysis considers
both prior information and training data.
Let � be a subset of f�1; �2; : : : ; �kg, and let the

probability of interest q be the sum of the variables in
�; i.e. , q =

P
j2� �j . Suppose the prior distribu-

tion of � = (�1; �2; : : : ; �k) is a Dirichlet distribution
Dk(�1; �2; : : : ; �k;�k+1). A straightforward application
of the Bayesian approach is to use the training data
D to update the prior distribution to obtain the poste-
rior distribution f(�jD), which is a Dirichlet distribution
Dk(�1 + y1; �2 + y2; : : : ; �k + yk;�k+1 + yk+1): Then the
posterior distribution f(qjD) is derived from f(�jD). By
subvector lemma and sum-of-subset lemma, f(qjD) is a
Beta distribution:

Beta(
P

j2�(�j + yj); �+ n�
P

j2�(�j + yj)) (1)

However, by the properties of the Dirichlet distribution,
there exists an alternative and simpler way to compute

f(qjD). We can �rst derive the prior distribution for the
probability of interest f(q) from the prior distribution of
f(�). Then we can convert the training data D into a new
set of training data D0 in terms of q by computing the sum
of the observations of our interest in D. Now, we can use
D0 to update the prior distribution of f(q) to obtain the
posterior distribution f(qjD0).

We can show that in general it is always the case that
f(qjD) = f(qjD0). Since the multinomial likelihood func-
tion L(Dj�) implies that the trials for obtaining data set
D are all independent, the likelihood function L(D0jq)
will follow a binomial distribution. By sum-of-subset
lemma, the prior distribution of f(q) has a beta distribu-
tion Beta(

P
j2� �j ; � �

P
j2� �j) when � has a Dirichlet

distribution. Since the beta distribution is conjugate to the
binomial sampling, the posterior distribution f(qjD0) will
have a Beta distribution with parameters

P
j2�(�j + yj)

and � + n �
P

j2�(�j + yj). This is exactly the same as
Equation (1). This property is always true for the Dirich-
let distribution and is �rst derived by [11], called \perfect

aggregation" [12, 13].

For example, suppose that we are interested in the prob-
ability of showing odd number in throwing a die. Let �j
be the probability that the die shows number j in a trial,
and let yj be the number of trials that the die shows j
in n trials. Then the probability of interest can be rep-
resented as q = �1 + �3 + �5. In the straightforward ap-
proach, we derive the distribution f(qjD) from the data
fy1; y2; : : : ; y6g, while in the alternative approach, we can
use D0 = fn; y1+y3+y5g instead and will obtain the same
result.

B. Naive Bayesian Classi�er

A naive Bayesian network classi�es a feature vector x by
selecting class c that maximizes the posterior probability

p(cjx) / p(c)
Y

x2x

p(xjc); (2)

where x is a variable in x. p(xjc) is the class-conditional

density of x given class c. Let � denote the vector whose
elements are the parameters of the density of p(xjc). In
a Bayesian learning framework, we assume that � is an
uncertain variable [10] and can be learned from a training
data set. This estimation is at the heart of training in a
naive Bayes.

Suppose x is a discrete variable with k+1 possible values.
In principle the class label c of the data vector x dictates
the probability of the value of x. Thus the appropriate
p.d.f. is a multinomial distribution and its parameters are
a set of probabilities f�1; �2; : : : �k+1g such that for each
possible value Xj , p(x = Xj jc) = �j and

P
j �j = 1. Now,

let � � (�1; �2; : : : �k). We choose a Dirichlet distribution
with parameters �1; : : : ; �k+1 as the prior for �. Given a
train data set, we can update p(x = Xj jc) by its expected
value:

p̂(x = Xj jc) =
�j + ycj
�+ nc

; (3)
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Fig. 1. Partition independence assumption

where nc is the number of the training examples belong-
ing to class c and ycj is the number of class c examples
whose x = Xj . Since a Dirichlet distribution is conjugate
to multinomial sampling, after the training, the posterior
distribution of � is still a Dirichlet, but with the updated
parameters �j + ycj for all j. This property allows us to
incrementally train a naive Bayes.

In practice, we usually choose the Jaynes prior [14] �j =
� = 0 for all j and have p̂(xjc) =

ycj
nc

. However when the

training data set is too small, this often yields p̂(xjc) =
0 and impedes the classi�cation. To avoid this problem,
another popular choice is �j = 1 for all j. This is known
as smoothing or Laplace's estimate [15].

If x is a continuous variable, discretization is often used.
Generally, discretization involves partitioning the domain
of x into k + 1 intervals as a pre-processing step. Then
we can treat x as a discrete variable with k + 1 possible
values and conduct the training and classi�cation. More
precisely, let Ij be the j-th discretized interval. Training
and classifying in a naive Bayes with discretization is to
use p̂(x 2 Ij jc) as an estimate of p̂(xjc) in Equation (3) for
each continuous variable. This is equivalent to assuming
that after discretization, the class-conditional density of x
has a Dirichlet prior. We call this assumption \Dirichlet

discretization assumption". Apparently, this assumption
holds for all well-known discretization methods, including
ten-bin, entropy-based, etc. See [4] for a comprehensive
survey.

Dirichlet discretization assumption is reasonable because
of another implicit assumption described below. Let f(xjc)
be the \true" probability density function of p(xjc). As-
suming that f(xjc) is integrable everywhere. Then for
any discretized interval Ij , the \true" probability of p(x 2
Ij jc) =

R
Ij
f(xjc)dx. By choosing equivalent sample size

�, the Dirichlet parameter corresponding to random vari-
able \x 2 Ij jc" is �

R
Ij
f(xjc)dx. We call this assumption

\partition independence assumption." By partition inde-
pendence assumption, any discretization of x can have a
Dirichlet prior.

Partition independence assumption implies that for any
interval, the Dirichlet parameter corresponding to this in-
terval depends only on the area below the curve of the
p.d.f. f(xjc), but is independent of the shape of the curve
in the interval. In Figure 1, the shape of the p.d.f. curves
in [a1; a2] are di�erent, yet the Dirichlet parameters corre-
sponding to this interval for these two p.d.f. are identical.

C. Implications of Perfect Aggregation

An implication of perfect aggregation is that to esti-
mate the posterior probability of a union of disjoint events,
there is no need to estimate the probabilities of individual
events. Another implication is that when perfect aggrega-
tion holds, identifying the exact outcome of an observation
in D will not be necessary. In this case, we only concern
about whether the result of an observation is an outcome
included in the event corresponding to the probability of
interest. Thus, when a probability of interest is known be-
fore training, perfect aggregation property can simplify the
training e�ort in identifying the outcome of an observation
in D. These implication allow us to derive a lazy discretiza-
tion method and a multi-interval classi�er for naive Bayes.
In our previous work [16], we proposed a lazy discretiza-

tion method for continuous variables. This method waits
until one or more test data are given to determine the cut
points for each continuous variable. This method produces
only a pair of cut points surrounding the value of a test da-
tum for each variable. That is, it creates one interval (de-
noted as I) and leaves the other region untouched. From
the training data, we can estimate p̂(x 2 I jc) by the expres-
sion given in Section II-B and use this estimate to classify
the test datum. This method can invoke di�erent instan-
tiations to determine the cut points. For example, we can
select a pair of cut points such that the value of x is in
the middle and the distance between the cut points is the
same as the width of the intervals created by ten-bin1 We
will call it \lazy ten-bin." Similarly, we can have \lazy
entropy," \lazy bin-log," etc.
This discretization method is derived from the perfect

aggregation and other properties of the Dirichlet distri-
bution. Suppose that partition independence assumption
holds. Then by the sum-of-subset lemma of the Dirichlet
distribution, \xjc" will have a Beta prior with parameters
�
R
I
p(xjc)dx and �(1�

R
I
p(xjc)dx), where c is a class and

� is an equivalent sample size. By perfect aggregation, we
can estimate p̂(x 2 I jc) by counting how many c examples
with x 2 I and how many are not. In other words, there
is no need to check the exact value of x for those examples
whose value of x is not in I . This way, it may simplify the
training e�ort.
In order to show that the lazy ten-bin can perform as well

as well-know discretization methods, we empirically com-
pared lazy ten-bin, ten-bin, entropy-based, and a Gaussian
version of naive Bayes on ten real data sets from UCI ma-
chine learning repository [17]. Table I gives the average
results of the ten real datasets with di�erent discretization
methods. The detail can be found in [16].

III. Classifying Set and Interval Data

A. Set and Interval Data

We begin with some necessary de�nitions.
De�nition 1: A variable is said to have Set Values if its

value is a set.

1Ten-bin is a discretization method that divides the domain of a
continuous variable into ten equal width bins.
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TABLE I

Average accuracies of naive Bayes with different discretization methods.

Dataset Lazy Ten-bin Ten Bins Entropy Gaussian

Average 75.99 75.27 75.76 69.93

Win:Loss { 8:2 5:5 9:1

For example, a variable X with its value equal to fa; b; cg
is said to have a set value, where a; b; c are some possible
states of X .

De�nition 2: A variable is said to have interval values if
its value can be an interval; a vector is a piece of interval
data if one of its element variable has an interval value.

For example, V1 includes a variable A, and A = [20:5; 38:5].
Then V1 is an interval data.

De�nition 3: When an element of a vector has a set value
which consists of interval members, this vector is aMulti-

Interval Data.

For example, V2 includes a variable B, and B =
f[20:5; 38:5]; [50:5; 60:5]g, then V2 is a multi-interval data.

B. Training and Classi�cation for Set and Multi-Interval

Data

In the Section II-A, we described the approach of Lazy
Discretization. If a query vector contains interval data,
we can simply let the discretized interval I be the given
interval and no more discretization is necessary. That is a
direct extension of Lazy Discretization for Interval Data.
Furthermore, when we are interested in several di�erent
segments of a variable simultaneously, the class-conditional
density of our interested segment given class c can be done
by p(x 2 Imjc), where Im = fI1; I2; :::; Ikg, and k is the
number of the segments we are interested in. By the perfect
aggregation and the sum-of-subset lemma of Dirichlets, we
can estimate p̂(x 2 Imjc) by the Equation (4).

p̂(x 2 Imjc) =
�m + ycm
�+ nc

: (4)

It is the extension of Equation (3), where ycm is the number
of class c examples whose x 2 Im, and the �m = �1+�2+
:::+ �k.

So, we can handle a multi-interval data by Equation 4.
When the variable is a discrete variable and has set value,
the Equation (4) is also can be used. Note that we still
assume the query examples to contain discrete and contin-
uous values are usually.

To speed up the estimation of p̂(x 2 I jc) in our imple-
mentation, we can divide each domain of continuous vari-
able into a large number of equal-width bins. Then we
count the number of training examples falling in each bin
for a given class c and save them in a table. After that,
we can calculate an approximate value of p̂(x 2 I jc) by
examining the table. The larger number of bins that we
divide in advance, the closer the estimated will be to the
real value. In our experiments, we divided each continuous
variables into one thousand equal-width bins.

C. Merging Point Data into Set and Interval Data

Now, we will describe that how more than one query
vectors can be merged and classi�ed a single query vector
when we know these vectors have the same unknown class
label, then we can form interval-value data. Consider the
tree classi�cation problem in Section I. If the di�erence of
the two leaves' length is not very large, it may be reasonable
to assume that this kind of trees have leaves with length
within the interval formed by the length of the two leaves
that we have got. Then, we can use our multi-interval query
method that was discussed in Section III-B to classify the
merged query vector. So, when we observe the set of query
vectors with the same unknown class label, we will form an
interval for each continuous feature that is bounded by the
minimum and the maximum values of each feature in that
set.

But we can not use the interval for query without fur-
ther consideration, because there are some situations that
may not improve the performance. Hsu and Huang [16]
concluded that to avoid performance degradation, a dis-
cretization method should partition the domain of a con-
tinuous variables into intervals such that their cut points
are close to decision boundaries to minimize the distortion
due to the discretization and their width should be su�-
ciently large to cover su�ciently many training examples.
Similar reasoning applies to this case. If the interval is too
narrow, the number of examples in the training data set in
that interval will be too small to allow accurate estimation
of p̂(x 2 I jc). To avoid this, we will set a minimal inter-
val threshold. If the interval is smaller than that threshold
value, we will extend both ends of the interval to reach the
minimal threshold.

If the interval is too wide, it may contain decision bound-
aries, and degrade the performance. Consider the two con-
ditional distributions as shown in Figure 2, and assume
data D1 and D2 have the same class label C1. Based on
our previous discussion, we will form an interval I , but the
interval I will include decision boundaries. If we classify
the data D1 and D2 individually, the results will be correct
(both D1 and D2 will be classi�ed to class C1). But if we
use the interval I to classify them, the result will be wrong
(Both D1 and D2 will be classi�ed to class C2) because the
area under the p.d.f given C1 is smaller than the area of
the p.d.f given C2.

To avoid this, we must set a maximal interval threshold.
If an interval is larger than that threshold, we will divide it
into multiple intervals, based on a suitable width SI . In the
case of Figure 2, we will form two intervals I1 and I2 such
that one of them includes data D1 or D2 and the width
of them were set as the width of SI . When we use the
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Fig. 2. Two conditional distribution

intervals I1 and I2 for the query, the result will be correct
in this case.

However, consider the conditional distributions as shown
in Figure 3 and assume that interval I is too wide. If there
are other query examples whose values fall in the region of
interval I , and we only use the intervals (I1 and I4) created
by the boundaries(D1 and D5), then we will lose the infor-
mation from other query examples (D2, D3, D4). To avoid
this, we also create other intervals (the interval's width are
set to be SI too) in order to include the information of the
other data. For example, in order to include all �ve data
in Figure 3, we discrete the interval I into four intervals
(I1, I2, I3, and I4), then we can use the information from
D2 to D4.

In all our experiments, we set the minimal interval
threshold of each feature equal the width of "�fty-bin",
which was derived by dividing the domain of each continu-
ous variables in the training set into �fty equal-width bins
for all the data sets, except the data set "Iris". We set the
minimal interval threshold for the data set "Iris" equal to
the width of "�fteen-bin", because the size of this data set
is too small. We set the maximize interval threshold equal
to "four-bin",2 We set the width of SI equal to "�fty-bin"
by taking the maximum number of bins in the experiment
of [16].

In summary, to improve performance, when an interval
is too narrow, we will extend it to as wide as SI . If it is
too wide, we will divide it into multiple intervals and the
width of each subinterval is also set to SI . Then we can
use our multi-interval classi�er.

IV. Experimental Results and Discussion

A. Experiment

To observe the e�ectiveness of our approach to real world
problems, we select �ve data sets from the UCI machine

2We investigated the experiments in [16] and found that when the
number of discretized equal-width bins is larger than four bins, the
accuracies reach plateau situations for most data sets.

Fig. 3. Two conditional distribution

learning repository [17] for our experiments. We �rst par-
titioned each data set into several subsets (the number of
subsets is equal to the number of classes in that data set)
according to the data's class label. In each subset, we ran-
domly selected twenty percentage of each class for test and
the remnant for training. In the test set, we merged two
test vectors from the same class according to the approach
described in Section III-C. We also used the same sets
(training and test) to obtain the results of the "lazy ten-
bin" which was proposed by [16]. In this case, only one
query vector is classi�ed at a time.
We repeated the experiment ten times and reported the

average and the standard deviation of the accuracies. For
comparison, we also list the experimental results of "Ten-
bin", "Entropy" and "Gaussian" for the same set of data
sets. However, the accuracies reported here were obtained
by running �ve-fold cross validations. Table II gives the
result, which reveals that our method is signi�cantly better
than the "lazy ten-bin" in all the data sets.

B. Discussion

We will show that a classi�er must deliberately take ad-
vantage of that knowledge or the knowledge will not im-
prove the expected accuracy, and this is the case in gen-
eral. Consider a \random" classi�er which randomly guess
the class of query vectors. Suppose that two query vectors
were classi�ed individually with this \random" classi�er
into one of n classes. The expected value of the accuracy
can be derived as follows.

E1 =
�

2

2

�2
2
(
1

n
)2 +

�
2

1

�1
2

1

n

n� 1

n
+
�

2

0

�0
2
(
n� 1

n
)2

=
1

n2
+

1

n

n� 1

n
=

1

n2
+
n� 1

n2

=
n

n2
=

1

n

Now, suppose we know that the two vectors actually be-
long to the same class and classify them together using the
\random" classi�er. The expected value of the accuracy is:

E2 =
�

1

1

�2
2

1

n
+
�

1

0

�0
2

n� 1

n
=

1

n
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TABLE II

Accuracies of naive Bayes with different approach

Dataset Merge Lazy Ten-bin Ten Bins Entropy Gaussian

breast 98.60�1.31 94.39�2.46 94.37�2.16 94.37�1.93 92.79�2.61

iris 100.00�0.00 97.00�4.33 94.67�3.40 95.33�1.63 96.00�3.89

pima 81.71�4.22 76.12�3.51 75.01�4.64 74.47�2.92 74.34�2.57

sonar 85.71�6.68 78.57�6.12 75.55�3.8 72.69�5.88 69.21�5.88

vehicle 64.22�5.36 61.08�2.71 62.06�1.39 62.29�2.15 43.26�3.82

Average 86.05 81.43 80.33 79.83 75.37

Win:Loss - 5:0 5:0 5:0 5:0

Fig. 4. Two conditional distribution

The expected value of the two cases are equal. This result
implies that the information that we know the two vectors
come from the same class seems not helpful for improving
the accuracy. However, why were the accuracies improved
signi�cantly in all the data set in our experiments?

Consider the two class-conditional density functions of
a variable x given class C1 and C2 as shown in Figure 4.
Assume the data D2 belongs to class C1 actually and falls
in the region of Bayes error3 of class C1.

If we classify data D2 individually based on the Bayes
decision rule, D2 will be classi�ed as C2 which is incorrect.
But if we classify data D2 with another data D1 which be-
longs to class C1 actually and is far away from the region
of Bayes error of C1. Now, if we classify data D2 and D1

together based on the area under C1 and C2 within the in-
terval I , we can obtain the correct result. It is because the
area under the p.d.f given C1 is larger than the area of the
p.d.f given C2. Hence, if a data falls in the region of Bayes
error of its actual class and the data can be classi�ed with
another data having the same class, it is more likely that
the data will be classi�ed correctly. We called this situa-
tion as Case1. But if data D2 is classi�ed with unsuitable
data then the area under the p.d.f given C1 is smaller than
the area of the p.d.f given C2, the classi�ed result of data

3Bayes error is the probability that a sample is assigned to the
wrong class when the Bayes decision rule is applied. The region of
Bayes error of a class C for a variable x is the region in the domain
of x where x will be misclassi�ed if x is of class C.

D2 still is wrong. We called this situation as Case2. For
example, data D2 is classi�ed with data D3 which also be-
long to class C1 actually and is near the region of Bayes
error of C1, then the Case2 is occurred.

In general, if a class can be di�erentialed, the region
of Bayes error of this class usually appears on the region
which has lower probability. Hence, in our experiments
if one data falls in the region of Bayes error of its actual
class, the probability of the another data with the same
class label which is near or falls in the same region is also
lower. So, the frequency of Case1 occurred that is often
larger than the frequency of Case2. That is why the accu-
racies were improved signi�cantly in all the data set in our
experiments.

In the experiment of Section IV-A, we only merged two
test-data have the same unknown class label for classi�ca-
tion. We also study the e�ect of our method, if we merge
more than two data that have the same unknown class label
in our approach. We selected a larger data set "waveform"
from UCI, and repeated the experiment in Section IV-A
with di�erent number of test-data being merged (from 2
to 50). Figure 5 shows the results. The �rst value in Fig-
ure 5 was generated by considering only one test-data and
the lazy ten-bin was applied. The result show that as the
number of the merged test-data increased the curve rise
and then reach a peak before it drops gradually. We will
try to explain this phenomenon.

In the �rst phase, the curve rise, because with the num-
ber of merged test-data increased the occurrence of Case1
will be more often than Case2. That is because with the
number increased the probability that both end points of
the interval I fall in the same region of Bayes error of a
class will descend. However, why dose the accuracy drops
gradually? Recall that if the query interval I is too wide, it
may degrade a performance which was mentioned in Sec-
tion III-C. Hence, we will discretize it into multiple inter-
vals. This is to avoid the situation as shown in Figure 2.
But when the interval I in Figure 2 include too many other
test-data, the combination of those multiple intervals which
we will discretize may approach to the original interval I .
Hence, the disretization will not helpful to when there are
too many test-data. So, if we merge too many test-data,
the situation like the above may occur. That explains why
the curve drops gradually.

When the curve reaches a peak, then it is the optimum
region where the number of test-data we should merge.
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Fig. 5. Accuricies of di�erent number of merged test-data

Di�erent data set has di�erent distribution and the opti-
mum number of mergence is also di�erent. The optimum
number is case dependent.

V. Application to speaker Recognition

The proposed method was applied to a text-
independence and close-set speaker recognition task. This
task is particularly relevant to our approach because in this
task, we usually know which set of feature vectors is from
the same unknown speaker. Since a large number of feature
vectors can be extracted from a short speech sentence, and
obviously those vectors must come from the same speaker,
a speaker recognition system should take advantage of this
information.
The database for the experiments reported in this paper

is a subset of the MAT2000Edu which is a speech database
of Mandarin Chinese collected from many colleges in Tai-
wan. We used the speech data that were recorded in the
National Chiao-Tung University. All speech signals were
digitally recorded in a laboratory using a personal com-
puter with a 16-bit sound blaster card and a head-set mi-
crophone. The sampling rate was 16 kHz. A 30-ms Ham-
ming windows was applied to the speech every 10 ms. For
each speech frame a 12th-order linear predictive and a log
energy analysis were performed. A feature vector for query
was consisted of the twelve linear predictive parameters and
a log energy parameter of a frame. There are more than
ten sentences that were recorded from each speaker and
each sentence could be extracted more than four thousand
feature vectors. In our experiments, all the original feature
vectors were considered to use and no silence-removing al-
gorithm was applied. We randomly selected 2 to 6 speakers
from the subset.
The evaluating procedures were described in the follow.

We set the number of merged test-data to forty, which
was determined empirically, and the other parameters (the
minimal interval threshold, the maximal interval threshold,
and the SI ) were set the same as the experiments in Sec-
tion IV-A. We randomly selected �ve sentences for each
speaker, one for test and the others for training. And we

randomly selected one thousand feature vectors from each
sentence. Hence, for each speaker there were four thousand
feature vectors for training and one thousand feature vec-
tors for test. We ran the procedures ten times of each ex-
periment on di�erent number of speakers and reported the
average and the standard deviation of the accuracies. We
also showed the results of the method "lazy ten-bin". Ta-
ble III gives the results. The results show that our method
outperformed the "lazy ten-bin" signi�cantly in the experi-
ments, especially when the number of speakers is increased.

VI. Conclusions and Future Work

A discrete variable as well as a discretized continuous
variable in a naive Bayesian classi�er are usually assumed
to have a Dirichlet prior. Perfect aggregation of Dirichlets
implies that we can estimate the class-conditional proba-
bilities of discretized intervals regardless of how other re-
gion of the domain of the continuous variable is discretized.
Because of perfect aggregation of Dirichlets, we have pre-
sented a new approach that could process multiple interval
queries of naive Bayes classi�ers. In order to form inter-
val data, we merged more than one query vectors from the
same unknown class to one. Experimental results against
standard data sets from UCI repository show that when
we merged two query vectors with the same unknown class
label, our approach can outperform traditional approach
which only one query vector at a time. The approach can
be applied successfully to the task of speaker recognition.
We show that by merging an appropriate number of query
vectors with the same unknown class, the acccuracies of
naive Bayesian classi�ers will be promoted signi�cantly.
Hence, if query vectors include interval data or the knowl-
edge of which data come from the same unknown class, our
approach will be suitably applied.
Although our approach improves the accuracy of naive

Bayes classi�er when we merged more than one query vec-
tors, some parameters need to be set to obtain optimal
results. But the setting of parameters is case dependant.
In our experiments, those parameters were determined em-
pirically. Hence, our future work includes to develop a ap-
proach to set those parameters automatically, and we also
plan to investigate whether our approach can be applied
on general Bayesian classi�ers.
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