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Abstract

A cooperative model is the action strategy in which every
individual cooperates with others in a team. Thus, the
better cooperative model the team has, the higher
performance it has. However, every individual in the team
can not detect all state of others. It only detects the
change of the surroundings, and all individuals in the
team are act independently. So, it is difficult to find an
efficient cooperative model by human being. The genetic
programming (GP) can program automatically by
simulating the evolutionary mechanism and process on
computers. When a program evolves using the GP
technique, an efficient program often can be generated
for solving a particular problem that the human being
doesn't understand in detail how to solve it. So, in this
research, we try to use GP to evolve the cooperative
model for the ant colony under both the single program
architecture and the multi-agent architecture. Then, ants
can efficiently transport the food to the nest under the
generated model. It is proved that the GP technique can
be used to evolve an efficient cooperative model. This
research not only can be used to related research, but also
can be applied to develop more complex cooperative
models such as the cooperative models for robots and
cooperative learning model.

1. Introduction

When observing the cooperative strategy of a good
teamwork, it can be found that “emergent behavior” arises
in the team when every individual in this team cooperates
with others in certain strategy to complete a task
efficiently. The “emergent behavior” is a complex and
integrated behavior arising in a team consisting of many
simple individuals when applying seemingly simple rules
to every individual in this team repetitively [1]. So, an
appropriate cooperative model is a set of rules on which
the group of individuals can show expectable emergent
behavior. However, it is sometime difficult to find a set of
apropos rules for all individuals of the team such that
expectable emergent behavior appear in it. Because all
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individuals in the team are act independently at the same
time and they can only detect the change of the
surroundings, consequently it is hard to predict the overall
behavior of the team at the stage of plan. Nonetheless,
there are many cooperative model and emergent behavior
in nature and in computer science, for example, central
place foraging behavior of the ant colony and majority
classification problem of the cellular automata [1].
Therefore, when researching emergent behavior or
cooperative model, it is important to develop an efficient
strategy to find the appropriate rules on which the whole
team can show expectable emergent behavior.

When developing the best cooperative models for
the team, it is convenient to solve this difficulty for
predicting the emergent behavior by using genetic
programming (GP) [9, 10]. Genetic programming is a
new research area of computer science. It provides a new
approach for computer to solve the problem by itself. It
has been proved by a variety of researches that the genetic
programming can be used to evolve programs for solving
different applications, and the performance of the
programs evolved by GP are very well. Up to the present,
the performance of many programs evolved by GP is
supervisor to that of algorithms written by knowledgeable
human investigator [1].

Genetic programming is based on genetic algorithm [6,
7, 12, 13], and its objective is to evolve a program to
solve the given problem. The set of programs, called
program space, in which all programs can be constructed
from basic components, is similar to the search space of
genetic algorithm. So, how to take advantage of the
mechanics of natural selection and natural genetics, and
how to make use of the operations of crossover, mutation
and reproduction to find the fittest program in program
space, are mainly investigated in the region of genetic
programming. The characteristics of GP are that only a
few related knowledge of the specific problem is
necessary when a program evolved using the GP. So,
when facing a difficult problem of which only a few
knowledge is available (e.g., evolving a set of rules to
make expectable emergent behavior appear, or automated
discovery of an analog electrical circuit for a
difficult-to-design asymmetric band-pass filter [11]), this



characteristic is very useful.

So, in this research, we try to use GP with simple
functions and terminals to evolve the cooperative model
for the ant colony (e.g., a program controlling each ant in
the ant colony). As for the architecture of cooperative
model, we try to respectively evolve the cooperative
model under the single program architecture and the
multi-agent architecture. The cooperative model of single
program architecture is a cooperative model for the ant
colony only consisting of one program tree. This program
tree detects states of the surroundings and the ant itself,
and than makes this ant do an appropriate action at every
time step. The cooperative model of multi-agent
architecture is a cooperative model for the ant colony
consisting of more than one program tree (called agent).
Every agent detects states of the surroundings and the ant
itself, and then suggests an appropriate action. Then, the
ant performs all actions under a specific order. For the
multi-agent architecture, the interaction among all agents
can be viewed as another kind of emergent behavior. In
this research, we also compare these two architectures
and suggest a better architecture for developing
cooperative model. It will be very useful for developing
the cooperative models and related searches by using GA.

2. Genetic Programming

Genetic programming (GP) is an extension of the
conventional genetic algorithm in which each individual
in the population is a computer program. To evolve the
program for a specific application is the object of the
genetic programming. The operations of GA: crossover,
mutation and reproduction are also used in GP to find the
fittest program for the specific application among all
possible programs. So, the fitness of the program can be
defined by the accuracy and the performance of it.

For a program, it can be represented with the tree
structure (as shown in Figure 1). Terminal nodes are the
variables or constants of the program, and internal nodes
are operators or functions of the program. Internal nodes
return the value computed with the values of its’ children
to the parent, or choose one of the sub-trees to execute.
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Figure 1. A simple example of program tree.

So, before evolving programs by using genetic
programming, we should determine function set and
terminal set of the program tree first. The functions
contained in function set should operate with one or more
arguments. They are always the internal nodes of the
program tree and compute values returned from its’
sub-trees or its’ arguments. Terminals contained in
terminal set are variables, constants or functions that do
not need arguments, and they are always terminal nodes
(e.g., leaves) of the program tree.

Just like the genetic algorithm, the fitness functions are
different for various applications and they effect the
direction of evolution of the population. The better
definition of fitness function leads to a better performance
of evolved programs and a shorter period of evolution.

The genetic programming contains three important
operations to generate the offspring. They are crossover,
mutation and reproduction. These operations are
described below:

(1) crossover: This operation randomly select a
sub-tree from two program trees respectively and
then swap these two selected sub-trees and
generate two new program trees (offspring). (as
shown in Figure 2)
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Figure 2. A simple sample of crossover for
programs 1 and 2.

(2) reproduction: This operation directly copy a
program tree to generate a new offspring. The
parent and the offspring are all the same.

(3) mutation: This operation randomly select a
sub-tree from the program tree, then replace this
sub-tree with a new sub-tree generated randomly.
(as shown in Figure 3)
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Figure 3. A simple sample of mutation on the
terminal node “D0.”

In summary, the process of genetic programming is

composed of three steps:

(1) Initialize a population of programs, of which
every program is randomly generated. The
process of randomly generating a program tree is
to select a function from the function set or a
terminal from the terminal set randomly. If a
function is selected, then it’s sub-trees are
recursively generated as before.

(2) Iteratively perform the following sub-steps until
the termination criterion has been satisfied:

(a) Execute each program in the population and
assign it a fitness value using the fitness
function.

(b) Create a new population of computer
programs by choosing the “parent” programs
with a probability value and then applying the
operations:  crossover,  mutation  and
reproduction for generating the offspring.

(3) Among all generations, the program having the
best fitness is the result of the genetic
programming for this run.

3. Multi-Agent Architecture

Multi-agent architecture is also a new research region
of artificial intelligent. On this architecture, an intelligent
individual is composed of many agents that can only do
something simple independently. These agents consist in
the individual on a special architecture so that the
expectable overall behavior arises by the cooperation of
all agents to show the intelligent behavior.

The definition of the whole multi-agent system is as
follow [5]:

(1) An environment, E, that is, a space which

generally has a volume.

(2) A set of objects, O. These objects are situated, that
is to say, it is possible at a given moment to
associate any object with a position in E. These
objects are passive. That is, they can be perceived,
created, destroyed and modified by the agents.

(3) An assembly set of agents, A, which are specific

objects (AcO), representing the active entities of
the system.

(4) An assembly set of relation, R, which link objects
(agents) to each other.

(5) An assembly of operations, OP, making it possible
for the agents of A to perceive, produce, consume,
transform and manipulate objects from O.

(6) Operators with the task of representing the
application of these operations and the reaction of
the world to this attempt at modification, which we
should call the lows of the universe.

In this research, not only the cooperative models for
the ant colony under the single program architecture (i.e.,
every ant is controlled by a single program tree) are
evolved, but it is attempted to evolve cooperative models
under the multi-agent architecture. With the multi-agent
architecture, a cooperative model consist of more then
one program tree, and the behavior of an ant is the result
from the interaction of all agents of the cooperative model.
By using multi-agent architecture, we hope that the
simulated ants can be more similar to the real ants.
Moreover, when complex cooperative models are evolved,
cooperative models under the multi-agent architecture can
be more complex than that under the single program
architecture.

4. Central Place Foraging Problem

For evolving cooperative models by using genetic
programming, we choose central place foraging problem
[3] as an example. In physical world, the real ants forage
for foods cooperatively. The ant finds food source and
leaves pheromone on the ground while returning to the
nest, thereby creating a trail of pheromone between the
food source and the nest. When other ants detect the odor
of this pheromone, they respond by following the
pheromone trail, finding the food source and join in
transforming the foods to the nest [8]. This process is a
complex cooperative behavior, but the operation of every
ant is relative simple. The organization of real ants can
lead to the cooperation of them by detecting the states of
surroundings. Moreover, the relative simple rules of an
ant in the ant colony bring about the complex emergent
behavior. The objective of his research is to evolving a
cooperative model for an ant colony, and by applying the
evolved cooperative model to every ants of the ant colony,
it is hoped that ants can forage for foods efficiently. To
solving the central place foraging problem of this research,
the ants can choose to complete the work alone rather
then cooperate with others. However, the performance of
the ant colony with better cooperative model is better (i.e.,
transporting more foods in shorter time). Indeed, it is the
objective of this research.

The ant colony world consists of a 32 by 32 toroidal
grid. A 3 by 3 nest is centered at grid location (20, 11) (an



example, the location of the nest can be assigned
optionally). An ant carrying a food will put the food down
automatically when moving into the nest. There are a total
of 144 food pellets located in two 3 by 3 food areas and
each of them have 72 food pellets (i.e., 8 food pellets in a
grid). One food area is located at (5, 17) and the other is
located at (15, 29) (the locations of the food areas can be
also assigned optionally). The ant colony consists of 20
ants. At first, each ant is randomly located within the nest
and face in a random direction. Each ant can only
transport one food pellet at a time step. Because the ant
colony world is toroidal, the ant wandering off the edge
will reappear on the opposite edge. The pheromone decay
linearly and disappears after 50 simulation time steps.
The ant colony world is shown in Figure 4.
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Fiogure 4. A 32 x 32 ant colony world.

In the ant colony world, every ant is moved under the
same cooperative model, and it can only perform an
action in every time step. The simulation (i.e., the
evaluation for the certain cooperative model) is finished
when all the food pellets are transported to the nest or the
maximum number of time steps (4,000) is reached. Then,
we can score for this cooperative model (i.e., the fitness
of this cooperative model), and generate the next
generation of the cooperative models by the GP’s
operators.

5. Evolving the Cooperative Model under
the Single Program Architecture

For the single program architecture, a cooperative
model is composed of a single program tree. At each time
step of the simulation, each of the 20 ants in the colony
determines the state of the surroundings and decides to do
a certain appropriate action by evaluating the cooperative
model for the ant colony. Moreover, NO-ACTION is
excluded from the terminal set of cooperative model
under the single program architecture. Table 1 lists the
related information for the central-place foraging problem
for an ant colony under the single program architecture.
Use this configuration, we already evolved some effective
cooperative model for the ant colony [4].

Table 1. related information for the central-place
foraging problem for an ant colony under
the sinsle nrosram architecture.

IF-FOOD-HERE -
I[F-FOOD-FORWARD -
IF-SMELL-FOOD >
[F-CARRYING-FOOD -
IF-FACING-NEST -
IF-PHEROMONE-HERE >
IF-PHEROMONE-FORWARD -
IF-SMELL-PHEROMONE -
IF-NEST-HERE

Function set

MOVE-FORWARD -
MOVE-RANDOM -

TURN-LEFT » TURN-RIGHT -
GRAB-FOOD >
DROP-PHEROMONE-AND-MOVE

Terminal set

Fitness case One fitness case

f(x) =(4000—time) /10 + pellet +1

Where :

time = the amount of time steps spent on
the fitness evaluation

4000 is the maximum number of allotted
time steps

pellet = the amount of food pellets the
ants transport to the nest

Fitness

The number of food pellets that the ant

Hits colony has transported to the nest

Population size M=100
Maximum number of generation to be
run G=100
The percentages for the
operation are:
80% for crossover,
17% for reproduction,
3% for mutation

enetic
Parameters £

6. Evolving the Cooperative Model under
the Multi-Agent Architecture

In addition to evolving the cooperative model under
the single program architecture, the multi-agent
architecture is also used to evolve the cooperative models
for the ant colony. The cooperative model under the
multi-agent architecture for the ant colony is composed of
many program trees and each of them is viewed as a
simple agent. So, in this research, it is hoped that the
expectable emergent behavior of the whole agents
appears — the ants can cooperatively and efficiently
transport the food pellets to the nest.



The cooperative models under the multi-agent
architecture are composed of many simple agents, and
these agents are not in order or prioritized. Each agent is
executed in parallel. An example is shown Figure 5.

IF-FOOD-HERE MOVE-FORWARD IF-CARRYING-FOOD
Y N Y N
GRAB-FOOD
- @ @ MOVE-RANDOM

Figure 5. An example of multi-agent
architecture with three agents.

For the multi-agent architecture, a cooperative model
is executed when the evaluation begins or all actions
suggested by the agents are finished. When the
cooperative model is executed, each agent of the
cooperative model proposes an action appropriate to the
occasion. After all agents propose actions, the ant
performs the suggested actions in the follow order:
GRAB-FOOD, DROP-PHEROMONE-AND-MOVE,
TURN-LEFT, TURN-RIGHT, MOVE-RANDOM, and
MOVE-FORWARD. The ant spends one simulation time
step for each action. Moreover, if there are more than one
agent suggesting the same action, the action still be down
once. As shown in Figure 5 , if this cooperative model is
evaluated for an ant and this ant is not carrying food on a
grid location with food, then the ant will performed the
actions with the order: GRAB-FOOD, MOVE-RANDOM
and MOVE-FORWARD. In this research, the cooperative
model contains at most sex agents, and the size of an
agent (i.e., amount of functions and terminals
constructing the agent) is not limited. When evolving
cooperative models under the multi-agent architecture,
the operations of crossover and mutation are modified to
operate properly. The operations are modified as fallows:

(1) crossover: This operation first choose two
cooperative models in the population with a
probability, and then randomly select an agent
respectively from them to apply the operation of
crossover as described in session 2.

(2) mutation: This operation first choose a
cooperative model in the population with a
probability, and then randomly select an agent to
apply the operation of mutation as described in
session 2.

In order to provide the genetic programming with the
ability to modify the number of agents, when evolving
cooperative models under the multi-agents architecture,
two new operations are used to generate offspring. These
two operations are as follow:

(1) Agent duplication operation: This operation
randomly copies a agent from a selected
cooperative model and inserts it into the same
cooperative model. At this time, there are two
identical agents in the selected cooperative model.
However, the cooperative model has the chance to

change the agents by using crossover and mutation
operations. If the selected cooperative model
contains the maximum number of agents, then do
nothing.

(2) Agent deletion operation: This operation deletes
an agent that is randomly selected from the
cooperative model. If the selected cooperative
model only has one agent, then do nothing.

The configuration of evolving cooperative models
under the multi-agent architecture is the same as that of
evolving cooperative model under the single program
architecture except NO-ACTION terminal and some
parameters. The parameters are as follow:

Population size, M = 100.

Maximum number of generation to be run, G = 100.

Maximum number of agents in an cooperative model

is 6.

The percentages for the genetic operation are: 80% for

crossover, 15% for reproduction, 1% for mutation, 3%

for agent duplication, and 1% for agent deletion.

7. Simulations Results

The best cooperative model evolved under the single
program architecture is shown in Figure 6. The fitness
curves for evolving are shown in Figure 7, and the hit
curves for evolving are shown in Figure 8. By using this
cooperative model, the ant colony can cooperate
efficiently. By observing the cooperation of the ant colony,
it is found that the ants search for food pellets randomly,
and if an ant finds food pellets, it will grab one food pellet
and return to the nest along the shortest path. In addition,
the ant will lay pheromones on the ground while returning
to the nest. When other ants detect the pheromones on the
ground, they can find food pellets fast by following the
pheromone trail, and then join in transporting food pellets.
So, the performance of the whole ant colony is efficient.
However, if there is not any food pellet at the end of the
pheromone trail, the ants following the pheromone trail
will stay at the end of the pheromone trail until the
pheromone decay entirely.

In addition, this cooperative model is capable of
finding adjacent food pellets with the sense of smell.
When the ant is adjacent to food pellets but not facing to
the food pellets, it will change the direction it is facing
and then move forward to the grid location of food pellets.
It is also a reason of the high performance of this
cooperative model.

The best cooperative model evolved under the
multi-agent architecture is shown in Figure 9. The fitness
curves for evolving are shown in Figure 10, and the hit
curves for evolving are shown in Figure 11. All agents in
Figure 9 are not complex, and when they operate alone,
each of them can’t lead the ant colony into an efficient
cooperation. Even each of them can’t lead the ant colony
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Figure 6. The best cooperative model evolved under the single program
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Figure 7. Fitness curves of the process of evolving cooperative model under the
single program architecture.
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Figure 8. Hit curves of the process of evolving cooperative model under the single
program architecture.
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Figure 9. The best cooperative model evolved under the multi-agent architecture.
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Figure 10. Fitness curves of the process of evolving cooperative model under the
multi-agent architecture.
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Figure 11. Hit curves of the process of evolving cooperative model under the
multi-agent architecture.



into transporting any food pellets to the nest. But, when
we organize them into a multi-agent system, the
cooperative model can perform efficiently.

From the simulations results, it is found that the fitness
value of the cooperative model evolved under the single
program architecture is significantly better then that
evolved under the multi-agent architecture. This result is
involved with the architecture of the agents in this
research. Under the multi-agent architecture, according to
the states of the ants during executing the cooperative
models, the agents propose actions to the occasion.
However, other agents may change the states of the ants
afterward. So, when the number of agents increases, the
agents coordinate their results hard and it is harder by
using GP to find a group of appropriate agents that can
cooperate with others efficiently.

8. Conclusion

From the simulation results, an efficient cooperative
model, which can let the ants transport 144 food pellets to
the nest, is evolved under both the single program
architecture and the multi-agent architecture. In this
research, we also find that several local optimal solutions
exist when cooperative models are evolved under both of
the architectures. Moreover, the local optimal solutions
are similar. All of them lead the ants into transporting the

food pellets alone without taking advantage of pheromone.

This problem may be improved by using related
techniques of avoiding local optimal solutions, for
example, pre-optimized initialization [14] and local
search [2]. These techniques will be helpful when
evolving cooperative models by using genetic
programming.

In this research, cooperative models under the single
program architecture can be view as a special case of
cooperative models under the multi-agent architecture. In
other words, a cooperative model under the single
program architecture is a legal cooperative model under
the multi-agent architecture. But in the process of
evolving cooperative models under the multi-agent
architecture, the population is evolved in the direction of
multiple simple agents rather than in the direction of a
single complex agent. When ants operate on cooperative
model under the multi-agent architecture, all agents
operate simultaneously. From the above properties,
cooperative models under the multi-agent architecture are

closer to real lives than these under the single program
architecture. If an excellent architecture is used, it will be
very useful to organize the agents for evolving more
complex cooperative models.
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