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Multiprimitive segmentation of planar curves --- A two-level
breakpoint classification and tuning approach
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Abstract

A two-level breakpoint classification and tuning
approach is  proposed for the multiprimitive
segmentation of planar curves. The advantages of the
proposed scheme are that it is simple, fast, threshold-
Jiree, and robust to noise and quantization and
preprocessing errors, thus allowing it to be employed in
a variety of application such as matching and
recognition. . '

Keywords: multiprimitive segmentation, classification,
breakpoint, tuning.

1. Introduction

Segmentation of digitized planar curves is one of
* the most important jobs in early image processing since
a segmented outline can be used to describe an object in
a meaningful and compact form to facilitate higher level
vision processing, such as pattern recognition and shape
analysis. Most authors adopt polygonal approximation
in which curves are divided into a series of adjoining

line segments (see Pavlidis [1]; Teh [2]; Sheu [3); and .

their references).
Polygonal approximation is simple but is rarely
used for further shape analysis. To go from
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segmentation to shape analysis, one could include
higher order primitives such as circular arcs, ellipses,
splines etc. in the segmentation. In most applications,
since circular arcs and line segments [4] can be used to
approximate an arbitrary curve quite well they will be
considered in this research.

In the segmentation of planar curves into line
segments and circular arcs, Wu and Rodd [5] have
presented a 'seven-criteria’ approach by first doing angle
detection [6] to locate sharp corners, and then
determining whether the segment between a pair of
corners is better represented by a line segment, a circular
arc or a combination segment by testing against
thresholds. If it is a combination segment, the Gaussian
convolution is used to insert new joints. The interesting
property is that accurate estimation and fast convergence
of the parameters of the circular arcs are achieved.
However, the results are strongly influenced by the
threshold selections. ‘

Rosin and West [7, 8] have described a line and arc
detection (LAD) algorithm for multiprimitive
segmentation. The first stage in their approach is to find
line segments by using Lowe's work [9] and a
significant measure. Arc approximation of the curve is
then exercised using the same idea as in polygonal
approximation until there are less than three line
segments. An interesting advantage of the LAD method

is that no threshold is required.. - However, the

computation cost for both determining the parameters of
the arcs and establishing the tree can be high. Besides,
two parts of the supposedly same arc may not be merged
if they do not belong to the same branch in the
interpretation tree.

Ichoku et. al. [10] have developed a dynamic
focusing algoritim (DFA) that employed a fit-and-
decrement procedure to detect lines and circular arcs.
The interesting property of the DFA is its simplicity.
However, the precision of the results are influenced by
the thresholds for curve fitting and the step-size chosen.
Besides, the computation cost is also high in curve
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fitting and the results may not be the same if starting
from different point.

In this paper, breakpoints are assumed to be
available, which can be detected by any method in the
literature.  In the proposed two-level breakpoint
classification and tuning approach, an adaptive k-
curvature (AKC) function is proposed to identify a
breakpoint as either a corner or a smooth joint. Then, a
projective height function (PHF) is employed to further
identify the type of a breakpoint to be corner-//, corner-
la, corner-aa, smooth joint-/a or smooth joint-aa. Here,
Il means that the segments on both sides are line
segments; /a stands for a joint of a line segment and an
arc; and aa represents a joint of two arcs. Subsequently,
the joints are tuned to merge consecutive segments or
insert new joints and adjust their locations to achieve
more accurate and stable segmentation.
suggested joint tuning, which has not been seen in the
literature,” recovery of line segments and merging/

- splitting of circular arcs are accomplished.  The

advantages of the proposed method include: simplicity,
reduced computation cost, and no threshold required.
. Besides, the proposed’scheme is robust to noise and
quantization _errors, and the set of the identified
breakpoints is the same even start working at different
point and/or in different direction.  Further, the
proposed scheme can also correct the wrong results
obtained in breakpoint detection.

2. Two-level breakpoint classification

In this section, the two-level breakpoint
classification approach is illustrated. In level 1, the
AKC function is defined and is used to classify the
breakpoints into corners and smooth joints. In level 2,
the proposed PHF is employed to further identify the
types of segments on both sides of a breakpoint. The
reasons of using the AKC function in breakpoint
classification and PHF to distinguish the segment types
are that the AKC function is sensitive to the type of
breakpoirits but is susceptible to quantization errors
whereas the PHF is robust to quantization errors yet is

- not sensitive to the breakpoint-type.

2.1 Adaptive k-curvature function

. Asada and Brady [11] have divided the breakpoints
into two types: corner and smooth joint, both
indicate isolated curvature changes. The former
corresponds to a discontinuous tangent to the contour,
as shown in Fig. 1 for which many algorithms have
been developed successfully {2, 3, 6, 12]; whereas the
latter is associated with continuous tangent but
discontinuous curvature, as shown in Fig. 2 and the

localization of which usually need more elaboration [5,

With the

Asada and -Brady [11] then determined these
breakpoints by the multiscale convolutions of the curve
with the first and second derivatives of Gaussian. Such
an approach, although seems complete in the sense of
scale and has theoretical values, is computationally
intensive. In our method, the AKC function is used to
divided into corners and smooth joints the breakpoints
using an accurate and efficient rotationally invariant
method [3] although many methods in the literature can
be used as well.

/_/_>
\//\

(e)
Fig. 1 Corners.

”\

(a)
Fig. 2 Smooth Jomts

- The AKC function is defined based -on the k- ‘

curvature values [13] as follows. Consider three
consecutive breakpoints P_,, F ‘and F, and two
starting at F_,
joining at P, and ending at F,. Let the lengths of S
and S;,, be /; and /,, respectively, and k = min(/, 5).
P be [P -k, P +k], as

shown in Fig. 3, where k= k/2 and define the k-vector

consecutive segments S; and S

Let the region of support for

A at a point Pj elP 41\7,1’,~+Iz] as

11]. Having defined the corner and smooth joint,

B-63

ay =(P. ()= B (), P ()= () (12)
By =(P- (0= F(), P-()=F() (1b)
where P} =P +kand Pj‘ =P - k, then thek - cosine

between @, and by, is

s boffsllbsl @

Define the AKC function- of £, be the values i

VP, e[P -k, P +k], then the type of a breakpoint 7

can be determined by considering only the associated
AKC function, independent of other breakpoints. The
independence from other breakpoints is important for
precise breakpoint-type discrimination, since the type of
both the breakpoint and the segments on both sides are
completely determined.
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Fig. 3 The region-of-support of AKC function.

The AKC functions for the curves shown in Figs. 1
and 2 are given in Fig. 4 (the locations corresponding to
the breakpoints are indicated by arrows). The meaning
of the AKC functions shown in Figs. 4(a)~4(f)
corresponding to corner-type breakpoints is explained as
follows.  Since the tangent at the breakpoint is
discontinuous, the k-cosines there are greater than those
at other points in the region of support. Hence, the AKC
function has a global maximum at a cormer-type
breakpoint. On the other hand, for smooth joints, since
the tangents are continuous, the associated k-cosines
vary smoothly, and local maximum is not so obvious at
the breakpoint, as shown in Figs. 4(g)~4(i). Obviously,
if there is a global maximum at the breakpoint, then it is
a corner; otherwise it is considered a smooth joint. The
advantage of using AKC functions is that the waveform
of the AKC function is merely flipped-over horizontally
at the breakpoint yet the location of the breakpoint

remains the same if the order of the segments is reversed.

This overcomes the drawback of DFA in which the
results may not be the same if starting from different
points or in different directions.
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Fig. 4 The AKC functions for the curves of Figs. 1~2.
(2)~(f) for Fig. 1(a)~1(f); (g)~(i) for Fig. 2(a)~2(c).

The proposed AKC function can also be used to
determine the orientations of the segments joining at a
breakpoint. The orientations of consecutive segments
are defined as follows:

Definition 2-1

A piece consecutive segments is said to be in a

convex direction if there are zero or two valleys on both

sides of the breakpoint in the AKC function. It is in a
concave direction if there is a single valley.

From the geometry and the definition of the AKC, if
the orientation of segments is concave such as Figs. 1(b)
and 1(f) then there must be a point at which the vertices
of the k-vector, i.e., Pj- , P, and Pj+ , are co-linear
hence a global minimum (a valley) on one side of the
breakpoint results, whereas for a convex piece, either no
valley (such as Fig. 1(c)) or two valleys (such as Fig.
1(d)) can be obtained.

Although the AKC function can be used to
discriminate corners from smooth joints, the type of the
segments on both sides are not completely determined.
This can be realized from Fig. 4 where a local maximum
in the AKC function may arise from either a smooth
joint or quantization errors. The scheme in Section 2.2
is developed to deal with this problem.

2.2 Projective height function
Consider three points F,, B and F. with k-
curvature cos& shown in Fig. 5, and define a projective

height (PH) / as the shortest distance from Py to Py F- .
The PH is then used to discriminate a line segment from
a circular arc since it is less sensitive to quantization
errors that may mislead one from taking a line segment
as an arc. The robustness of the PH with respect to
quantization error is illustrated as follows. Consider a
line segment under different orientations from 0° to 45°
with 3° increment and the k-vectors with arm lengths
varying from 5 to 50 with increment 5. The
conventional k-cosines and the PHs of the k-vector are
plotted in Fig. 6. Other angles of orientation can be
obtained from this plot by symmetric property. The
worst situation occurs when the k-cosine of the line
segment is -0.981 (~168.8°) at an about 11° of
orientation. In contrast, by using the projective height
of the A-vector, the maximum deviation is reduced to be
no more than 0.5 (pixel).

bcusing sat Projactve he-gh of et

(@)
Fig. 6 The influence of quantization errors. (a) The k-
cosine; (b) The projective height.
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Now, if the interval of the AKC function is
[ 5 -k, P, +k], then the intervals for evaluating the
PHs of the segments on both sides of the breakpoint F
are set to be [F -131\:/2,1:;—1\7/2] for the segment
between P, and F, and [F +/Z/2,P,. +3]\:/2] for the
segment between B and B,,, where the k-vector is
evaluated over a range of +k/2 to insure that the

associated boundary for PHs does not exceed the length
of the segment between F_; and B or £ and F,.
Consider a point P; E[P,. -—313/2,1’,-.— 13/2], and the
associated endpoints 13j_ = Pj -I;/ 2 and 131, = PJ +I\:/2.
Then, the parametric form for the line segment between
the endpoints for k-vector evaluation is
x= Pj- (X)+A.t

] L refo, 1
y=P (i, =10, 1l | )

where 1, = J3j+ (x)- }3].- (x) and A, = ﬁ’} (- 131.- (»
and the projective height of P; is

2P -B (=2, (B0 =P )]
oy 0

R+ ®

The PH function (PHF) defined as the projective
heights #(F;) over the interval of [ £ -3k[2,P,-k[2]

or [P, +k/2,F; +3k/2] is then used to discriminate a
line segment from an arc. Define two accumulators, a
line accumulator and an arc accumulator, on the region
of support of PHF. From Fig. 6(b), since the maximum
projective height of a digitized line segment is no more
than 0.5 pixel under any orientations, thus 0.5 is
selected to determine every point in the region of
support of PHF whether it belongs to a line or an arc

segment. If 7(F;) < 0.5, then the line accumulator is

incremented by 1; otherwise add 1 to the arc
accumulator. The type of segment is determined by
comparing the values in the two accumulators. If the
value in the line accumulator is greater, then the
segment is identified as a line; otherwise it is an arc.
By using the PHF the types of segments on both sides of
a breakpoint can be efficiently detected and a
breakpoint can be further divided into types //, /a or al,
and aa. In this paper, since the order in connecting two
segments makes no difference, types /o and al are
treated in the same way, using type /o only. Combining
the two-levels, the breakpoints are categorized as
corner-!l (c-Il), comer-la (c-la); corner-aa (c-aa),
smooth joint-/a (s-la) and smooth joint-aa (s-aa)..

The two-level breakpoint classification scheme can
also be used to correct the wrong results obtained in the
breakpoint-detection algorithms. For example, if a
smooth joint-// is detected, then this breakpoint is
illegal hence is removed.
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3. Joint tuning

If the breakpoint is a corner, then the segments on
both sides can not be merged. However, if it is a
smooth joint which may involve line and/or arc
segments, then the associated segments may possibly be
merged. Line-segment type of smooth joints exist only
between type // and /a joints, whereas arc-type smooth
joints will be used to connect only type /a and aa joints.
Both will be further exploited in the following.

3.1 Recovery of line segments

Ideally, since a line segment must exist between
two consecutive type c-// joints, a type ¢/l and c-la (or
s-la) joints or two consecutive type ¢-la (or s-/a) joints,
type c-// (or c-la) joints can be followed by only type c-
la (or s-la) joints, but not type c-aa (or s-aa) joints, etc.
Practically, however, due to the errors in breakpoint-
detection, two situations may be brought about. The
first is that a type c-// joint may be followed
immediately by a type c-aa (or s-aa) joint, as shown in
Fig. 7(a) and the second is that a type ¢-/a joint may be
surrounded immediately by two type c-aa (or s-aa)
joints, as shown in Fig. 8(a). Both indicate that a
missing line segment has to be recovered by inserting a
type s-/a joint at the point in the original curve that is
farthest from the line connecting types c-// and s-aa
(Fig. 7(b))/types ¢-la and s-aa (Fig. 8(b)).

el s-aa cﬂ——f:-{f.a_f‘.aa
s

-aq S-aq
s-aa §-aa
s-aa s-aa
L b s-aa

s-la
®)

c-ll s-aa c-ll
(@)
Fig. 7 Recovery of type s-la joints in {c-/l, s-aa} case.
cla c-la s-la
$-aa $-aa
s-aa seqa $-aq, .
3-aa s-aa
s-aa s-aa s-aa s-aa
 cla $-aa ¢-la s-la 5782
(@ (®)
Fig. 8§ Recovery of type s-la joints in {s-aa, c-la, s-aa}
case.

3.2 Merging/splitting of circular arcs

In addition to inserting a new type s-la joint
between a line segment and a circular arc, one must
also detect consecutive circular arcs for possible
merging or splitting. To determine a circular arc, it is
necessary to estimate both the center and the radius of
the arc. The least-mean-square (LMS) approach is
popular and simple in which an improved Landau's
parameter-estimation algorithm [5], employed in this
paper, for fast and accurate estimation of the parameters
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is developed. Also, it suffices to consider only type s-/a,
¢-la, s-aa and c-aa joints. ,

In the arc-merging/splitting procedure, define the
measure of significance of arc, denoted by 7, as the
ratio of the maximum deviation divided by the
associated arc length. Then, using Algorithm 3-1 two
smaller arcs are merged into a largér one if the larger
arc has smaller measure 77 whereas the arc is split into
two by inserting a new type s-aa joint if the measure 7
of the new arc is larger than the one of the original arc.
The merging/splitting procedure is repeated until the
entire curve can not be modified.

Algorithm 3-1:

" Let the Jth set of the arc segments be
{Qj,js(l),f’(Z),,,,,f’(N),QjH}, where Q~j and Qj+1
E may be type c-la, s-la or c-aa joints and P(;) is the ith
s-aa joint in set /.

Step 1: Calculate the center, radius and 7 for the arc

{0, B(D)}. Let Moww=1 and i=2.

Step 2: Extend the region-of-support to P(i). That is,
calculate the center, radius and 77,,, for the arc on
the interval {0;, P(l),..., P(i)}.

Step 3: If 77, < 77,44 then merge {Qj, P(D),..., P(i)y
into an arc and let 7,4, = 7,,,, =+1, and then
repeat from Step 2. Otherwise, let B = P(i-1),
B =P, |

Step 4: Split the segment {E',P;} by inserting a new
joint Q" = (B + P;)/Z into the interval. Calculate
the center, radius and 7,,,, on the region-of-support
{0;, PQ),..., P(i-1), O°).

Step 5: If {B - P |<3,then goto Step 7.

Step 6:'If 77,4, < Totd s Ehen let oty = Tlyers B =0
otherwige, let 7, = Q. Repeat from Step 4.

Step 7: Assign point Q" as a new type aa joint and
remove the type aa joints in the interval {0;,0"}.
Update the remaining set of type aa joints between
Q" and Qj,; and let 0" = 0, then repeat from Step
1 until there is no more type aa joint in the interval
{0, 0j.1}, and then stop.

In Algorithm 3-1, steps 2 and 3 are for merging
- whereas steps 4 and .6 are used to split an arc into
appropriate pairs of arcs. As a whole, Algorithm 3-1
accomplishes joint tuning by doing both merging and
splitting.
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Consider the sequence of type aa joints in Fig 9(a).
Using Algorithm 3-1, the arcs connecting the type aa
joints are merged and a new type s-aa joint is generated
that connects arcs C; and C,, as shown in Fig. 9(b).

s-aa

(2)

(b)

Fig. 9 Merging/splitting of circular arcs.

4. Experimental results

The experiments have been done on a PC486-33
computer. The image of a cutter is shown in Fig. 10(a),
the detected edges [14] are given in Fig. 10(b), and the
final results using the proposed scheme, the 'seven-
criteria’ approach, the LAD and the DFA are shown in
Figs. 10(c)~10(f), respectively. It can be seen from Fig.
10(c) that, in the result with the proposed scheme, there
are five line segments, two arcs and two circles with
each circle represented by a single arc segment, -in
contrast to the results of the 'seven-criteria', the LAD
and the DFA approaches where more than oné arc

segments are derived, as shown in Figs. 10(d)~10(f).

() -

Fig. 10 Segmentation of a cutter. (a) Original image; (b}

The edge; (c)~(f) for the results using the proposed

method, 'seven. criteria’' approach, LAD and DFA,
respectively.
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In general, the higher the maximum deviation is,
the worse the data fidelity will be. On the other hand,
the higher the compression ratio is, the better the
performance of the multiprimitive scgmentation is.
Hence, it is eligible to define the measure of
performance of curve segmentation scheme as [3]

> (maximum deviatiorysegment length)

u= - ‘ &)
compression ratio

where compression ratio is defined as the ratio of the
total points divided by the paramcters of primitives.
The execution time, the measure 4 and the number of
segments are shown in Table 1. indicating that the

proposed method is better.

Table 1. The performance for Figs. 10(c)~10(f).

Total points : 8§96

Method Time H Segment| Threshold-
(sec) 1o. free
The proposed | 0.32 | 7.42x107 9 Yes

method

1seven-criteria’ | 0.31 | 199 %1072 13 No
LAD 0.67 | 1.01x107 11 Yes
DFA 0.56 | 183x107° 12 No

5. Conclusions

A two-level approach for both breakpoint
classification and joint tuning is proposed for the
multiprimitive segmentation of planar cunves. In level
1, AKC functions are employed to divide breakpoints
into corners and smooth joints. - In level 2, PHFs are
used to further determine the segments on both sides of
the breakpoints hence the types of the breakpoints.
Also, with the suggested joint tuning procedure,
recovery of line segments and merging/splitting of
circular arcs are accomplished.  Since joint-type
provides useful information for an arbitrary curve. they
are included in multiprimitive scgmentation in addition
to line segments and circular arcs.  Besides, the
proposed scheme not only can detect and rcmove the
errors made in breakpoint-detection algorithms but also
is robust to quantization errors.

In the multiprimitive segmentation using the
proposed scheme, since no threshold is required, the
result is not influenced by the selection of thresholds
that frustrates the 'seven-criteria’ approach. Besides,
the drawback of LAD, i.e., the expensive computation
for establishing complex scarch trees and the problem
that the supposedly same arc may not be merged if they
are not in the same branch, are also overcome. Further,
the drawback of DFA, i.e., segmentation may not be the
same if starting from different points. will not happen
using the proposed method. As can be seen from the
experimental results, the proposed schcme is fast,

accurate, simple, and threshold-free.

References

[1] T. Pavlidis and S.L. Horowitz. Segmentation of
plane curves. JEEE Trans. Comput., 23, 860-370,
1974.

CH. Teh and R.T. Chin. On the detection of
dominant points on digital curves. JEEE Trans.
Pattern Anal. Mach. Intell.,, 11, 859-872, 1989.
H.T. Sheu and W.C. Hu. A rotationally invariant
two-phase scheme for corner detection. Pattern
Recognition, 29, 819-828, 1996. 7

F.T. Farago. Handbook of Dimensional
Measurement. 2nd Ed. Industrial press Inc., New
York, 1982.
QM. Wu

(2]

and M.G. Rodd. Boundary
segmentation and parameter estimation for
industrial inspection. [EE Proc. E, Computers
and Digital Techniques, 137, 319-327, 1990.
H. Freeman and L.S. Davis. A corner finding
algorithm for chain coded curves. JEEE Trans.’
Comput., 26.297-303, 1977.
PL. Rosin and G.A.W. West. Segmentation of
edges into lines and arcs. Image Vision Comput.,

- 7,109-114, 1989,

G.A.W. West and P.L. Rosin. Techniques for
segment  image curves  into meaningful
descriptions.  Pattern Recognition, 24, 643-652,
1991.

D.G. Lowe. Threc-dimensional object recognition
from single two-dimensional images. Artif. Intell,
31, 355-395, 1987.

{10] C. Ichoku, B. Deffontanies and J. Chorowicz.
Segmentation of digital plane curves: a dynamic
focusing approach. Pattern Recognition Lett., 17,
741-750, 1996.

[11] H. Asada and M. Brady. The curvature primal
sketch. JEEE Trans. Pattern Anal. Mach. Intell.,
8, 2-14, 1986.

[12] HT. Sheu and HZ. Yang Open cunve
seginentation via a two-phase scheme. Pattern
Recognition, 26, 1839-1844, 1993.

[13] A. Rosenfeld and E. Johnston. Angle detection on
digital curves. IEEE Trans. Comput., 22, 875-878,
1973.

[14] S.C. Zhu and A. Yuille. Region competition:
unifying snakes, region growing and Bayes/MDL
for multiband image segmentation. [EEE Trans.
Pattern Anal. AMach. Intell., 18, $34-900, 1996.

(el

171

(8]

19



