Joint Conference of 1996 {nternational Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Designing a Multi-user Interactive Script Language for CSCW Systems

_ Jia-Sheng Heh, Wen-Han Lin
Dept. of Info. & Comp. Eng., Chung Yuan Christian Univ., Chung Li
Jwu-Hwa Ho :
Telecommunication Lab., Chung Li, Taiwan

Abstract

This paper proposes an interactive script model of
CSCW systems and then develops the corresponding script
language, called MISL (Multi-user Interactive Script
Language). By the study of multi-user interaction and
multi-user interface in CSCW systems, the interactive
script model treats different multi-processes working
environment as a scene and suggests the scene layout-
switching graph in a script. To establish CSCW systems, a
Multi-user Interactive Script Language (MISL) is designed
and its interpreter is implemented. To prove such idea, a
distance education system with five learning modes is built
as a real CSCW case.

Keywords: CSCW (Computer-Supported Cooperative
Work), interaction, user interface, script language.

1. Introduction

As the technology of computer multimedia and
network transmission progress, it is important to establish
application systems integrating these techniques to aid a
group of people to accomplish a specific objective. These
softwares are called groupwares and this kind of working
style is known as CSCW (Computer-Supported
Cooperative Work). [6] Up to now, there are many
application systems to support different group works. [9][7]

‘However, a CSCW system probably includes different

social norms and working environments. For example, in a
practical distance teaching system, whiteboard and audio
phone are both necessary. Therefore, a complete CSCW
system is not only a multi-user cooperative system, but also
a serial multi-processing working environments which
provide different interaction styles in a computer network.

When a receiver gets the message sent from a
transmitter, it will proceed in response to this received
message and send the result back to the sender. Based on
traditional propagation theory, these interpretation and
response form an effective two-way communication, called
interaction. [14] By such process, an interaction cycle

include message source, receiver, message and response, as
shown in Figure 1.

_

Figure 1 Propagation model proposed by Schramm (1954)

As computers are widely used, people become more
and more dependent on them; therefore, studying friendly
human-computer interaction emerges in the research areas
of programming and human factor. From the viewpoint of
propagation theory, human-computer interaction [5] is one
kind of interactive process between the human beings and
machines. However, a machine can not transmit and
receive messages as free as people, but it has to be designed
carefully; more specifically, it can only provide some
limited interaction methods. Schwier [14] mentions that
different user interfaces have different interaction levels,
including responsive interaction, active interaction and
two-way interaction. Here, we can simply define human-
computer interaction as an interactive process between
person and computer and this interaction is one kind of
two-way communication with immediate-response
interactive process, as shown in Figure 2. From this point
of view, the studying of human-computer interaction is
emphasized on the communication method between people
and machine, including how a machine receives the
message from a person, how this person receives those
message generated by this machine, and how the machine
processes and responds to the person.

Figure 2 Human-computer interaction model
A CSCW system is a multi-user multi-machine
system, by which people can effectively communicate with
other users to attain some specific objective. From' this
standpoint, the interactions of CSCW systems can be



Proceedings of International Conference on Distributed
Systems, Software Engineéring and Database Systems

categorized into three forms: human-human interaction,
human-computer interaction and computer-computer
interaction, as Figure 3 shown. For a CSCW system,
human-human interaction comes from its special social
norms. On the other hand, its human-computer interaction
is much more complex than that of single user system, since
a computer receives not only the messages delivered by the
user of this computer, but also the messages sent by other
remote user. Finally, the computer-computer interaction is
composed of the network transmission among different
computers as well as the inter-process communication
among those processes within a computer. In such multi-
user multi-computer systems, the human-human interaction
has to be accomplished by the coordination of human-
computer interaction and computer-computer interaction.

munication
work

: human-human interaction

T human-computer interaction
 computer-computer interaction

Figure 3 Interactions in a CSCW system

Based on the study of the above three kinds of
interactions, this paper proposes and analyzes an
interactive script model of CSCW systems, then develops a
Multi-user: Interactive Script Language (MISL) to build
such system. Section.2 describes the development of this
interface model. Then the interactive script and its scene
layout-switching graph are investigated in Section 3. The
design of MISL and its interpreter are illustrated in Section
4. Finally, Section 5 applies this language to construct a
real CSCW system, the distance education system with five
learning modes. Section 6 is a conclusion.

2. Interactive script model

It has been mentioned that in a CSCW system, the
interactions among multiple users are carried out through
the network and its computers. Since the users can not see
other users' responses directly, these computer must take
the responsibility of displaying other users' status and
information. This makes a proper user interface design for
presenting the multi-user interactions much more
important.

In the traditional research, Seeheim model [8] divides
a user interface into three parts: presentation, dialog control
and application, as Figure 4 shown. Presentation control
deals with the real exhibition in screen, including: input-

' output devices, screen layout, interaction methods and

380

display -skills. Dialog. control takes charge-of the dialog
(interaction) between user and computer. This means that
the user has to follow the pre-defined procedures to interact
with the computer; if not, the computer will ignore his/her
operations. Finally, application interface module defines
the interface between user interface and other programs and
manages the function calls of the application.

Figure 4 User interface model (Seeheim model)

In this model, presentation control and dialog control
interact closely. This is because presentation control
provides proper user interface and different kinds of
human-computer interactions and dialog control follows
pre-defined syntax to check the legality of user operations.
When the user's operation is legal, some message will be
passed to application mterface module and a corresponding
response will be displayed on screen. Human-computer
interactions are done through a series of such interaction
processes. In this sense, the representation of human-
computer interaction can be treated as a sequential screen
switching process in response to user's operations.

Furthermore, extending this model into multl-user
interface needs some more considerations. [71 For
examples, one application program maybe possesses
different kinds of operations or displays for different users,
and the presented screen has to suitably dlsplay some
related information and responses of other users. Many
researchers have made many efforts on multi-user interface
model, two of which are admitted as typical: centralized
architecture and replicated architecture. [4] In centralized
multi-user interface model, as shown in Figure 5, many
users share one single application program and all their
operations and screen responsés are managed by . this
program. On the other hand, every user has his/her own
application program in replicated architecture, as shown in
Figure 6. Since there is only one single application in the
former architecture, any error in this program may bring the
whole system a disaster. By comparison, the replication
architecture possesses more flexibility and error
independence. This paper will accept the replicated one as
our model of CSCW systems.

Figure 5 Centralized architecture of multi-user interface



. Figure 6 Replicated architecture of multi-user interface ‘

This paper combines multiple user-machine
interactions and multi-user - interfaces to propose an
interaction script model of CSCW systems. For a CSCW
system, it often has to provide many complex working
environments. Each working environment contains more
than one application, with which users make their
interactions. For examples, an electronic classroom can be
used as an environment of teaching, discussion or test, and
a teaching environment contains many teaching tools, such
as blackboard, textbook and notebook. All these works can
not be accomplished by simple applications, but have to be
controlled through some complex screen switchings and
their coordination. Thus, the studying point. of CSCW
systems will not fall on the display and response of simple
objects (applications) as human-computer interface
researches, but focus on interactive script flow.

" Interactive script flow control is one kind of dialog
control with high-level interaction control, whose position
in the above multi-user interaction and multi-user interface
can be understood from Figure 7, the interaction script
model of CSCW systems. In Figure 7, more than one
application tool can work together corresponding to its own
application module window. Compared to Seeheim model,
interactive script flow control is related to dialog control,
different application tools is to application program module,
and the screen constituted of application module windows
is to presentation control. Moreover, there are networking
communication among interactive script flow controls in
different machines. »

Presentation
Interface
screen

Preseontatio
interface
screen

cscw cscw
Application Application
Tools Tools

Figure 7 Interactive script architecture of multi-user interface

When a user works in some environment of a CSCW
system, this environment and the corresponding screen will
be affected by the interactions among users. The

381

“operations,

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. .

interactive script flow control will take charge of all the
switching- of complex working environments-and working
states. To regulate the switching well, the tasks of this
interactive script flow control should be carefully analyzed
and clearly defined.

3. Analysis of interactive script model

There are two basic elements of interactive script: .-
tools and scenes. Tools are a set of application program
modules, each of which possesses specific functions, such
as textbook and electrocardiogram display. A scene is a set
of windows of applications in the same screen, which forms
a working environment. Practically, different tools are-

integrated to be a working environment to attain some - .

specific goal. Take teaching as an example: the teacher
may move the contents on textbook to whiteboard; whereas,
every student records what the teacher show on whiteboard
downto its own notebook.

In interactive script model, only two kinds of three
above interactions exist: human-computer interaction and
computer-computer interaction. To accomplish the whole
objective of a CSCW system, the scenes of- different
computer users should operate cooperatively. When a user
interacts with computer to switch his/her  working
environment, the user's screen in remote site will' be
changed  accordingly through - computer-computer
interaction, as shown in Figure 8. This forms scene
switching phenomenon  among . multiple = users, which
accomplishes human-human interaction indirectly.

Human-
Computer

Human-
Computer

Interaction Interaction

. a,ure 8 Scene switching in interactive script model

The human-computer -interactions come from user's
which - introduce many kinds of scene
switchings. Different - human-computer interactions
produce different control messages, then trigger different
responses. Shneiderman [14] proposes that there are five
types of human-computer interactions: menu selection,
form filling, command language, natural language and
direct manipulation. The first one (menu selection) is
responsive interaction, both form and command are active
interactions, and the last two are two-way interactions. In
the primary study of this paper, we consider only the



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

simplest type: responsive menu selection, including the
selections from menu and button. Therefore, one specific
kind of applications, called control tool, is designed to
represent these responsive interaction. Any interaction
from user's selection, no matter whether menu or button,
can make the whole CSCW system switch to another
working environment.

On the other hand, computer-computer interactions
indicate data transmission among different computers and
processes. When a computer receives the control message
from local user, it has to make some processing and
sometimes to pass this message to remote user in suitable
way. This message transmission incurs a corresponding
scene switching. To design a CSCW system, all these
message transmission method, message format and
response method are necessary to be carefully chosen. The
overall description of these interactions are shown in Figure

* 9, where Scene-Ip and Scene-2p are the present scenes and
Scene-1q and Scene-2q are other scenes. All these scene
switchings are controlled by an interactive script control
(ISC).

opur-
Figure 9 Interactions through messages passing

omputer-

Before the development of analyzing tools of scene
switching, it is. necessary to investigate the characteristics
of this kind of scene switching in CSCW systems. Firstly,
the control flow of scene switching is a concurrent process,
that is to say, the computer screens of different users may be
switched at the same time. [9] During the interactions of
scene switching, more than one user may concurrently
deliver his/her scene switching request. If there is not any
ordering among these switching requests to ensure every
user to deal with his/her scene switching in the same order,
the inconsistency among the scene switchings of different
users may occur, then their interactions are not able to keep
going on. Therefore, we face to solve the concurrency
problem of scene switching, which can be overcome by the
concurrency study in distributed system.

The scene switching of multi-user interactive script
proceeds among several computers, then involves many
networking transmission mechanisms. In usage,

- transmission mechanisms include networking transmission
among  different computers and

communication among different processes within a
computer. Also, there are two kinds of networking
transmissions among computers: synchronous transmission
and asynchronous transmission. [11][13][16]  For
synchronous transmission, when a computer transférs-data
to another, it has to suspend and to wait for response.
Whereas for asynchronous transmission, it will not pause
but continue its successive works. All these transmission
methods induce the problem of data inconsistency.
Practically, the synchronous mechanism gives better -
assurance of data consistency.

Finally, the last characteristic of scene switching is
distributed computing. This is because several autonomous
concurrent processes do not share a single memory, but
exchange information and cooperate through message
transferring. [1] [15]

In the research area of distributed systems, there have
developed many analyzing tools, the most popular of which
is ‘Petri net. Petrinet is a directed graph with its nodes as
places representing system states and Zramsitions
representing triggering conditions among states. Through
Petri net, all the above concurrency, data consistency and
distributed computing problems can be taken into
consideration. - The following will extend Petri net to
develop our describing tool .to analyze the - dynamxc
behaviors of interactive script.

To develop the analyzing tool, it is natural to map the
above scenes to be our places in Petri net, then the
transitions among states are the above scene switching: As
Figure 9 shown, there are two triggering conditions for a
scene to be switched: one is the operation of local user,
which is the human-computer interaction of control
message (ml or m2), and the other is controlled by some
remote user, which is the computer-computer interac_tibn of
remote message (v1 or r2). In both interaction cases, when
the interactive script receives some triggering message, it
have to check what the message is, and to switch the screen
to the requested scene.

With the above deﬁnmons a Petri-net-like graph,
called scene switching graph, can be constructed to
describe the scene and scene switching in CSCW systems.
An example graph is shown in Figure 10. However, this
graph is not able to exhibit the layout of tools in a scene, not

. to say the interactions emitted from control tools. Based on

inter-process

382

such consideration, we extend scene switching- graph into
scene layout-switching graph, with the symbols defined in
Table 1.

In scene layout-switching graph, the token in Petri net
is replaced by some tools indicating the scene layout, while
the transition is merged with interaction transmitter (control
tool) and interaction receiver (message buffer). A

" corresponding scene layout-switching graph of Figure 10 is

shown in Figure 11 to depict their differences.



User-2

Computer-1

Scene-1A

Somauisrl

. Scane-2A

e

messa:
e

Scene-2B

Scene-18

Scene-1C Scene-2C

Figure 10 Scene switching graph of multi-user interactive

architecture
—
. Symbols in
. bols in
Functions S)ggtr?nset Scene layout-
switching graph
a general too! not defined
ascene
a computer
containing
several
scenes ot standard
auser's 2
_operation - a place O :::;trol o
2 message buffer ’
for ramote a place O O
Message passing : .
2 (rermiote)
© conol a token scarely used
metsago
» (remoto) a
mossago - directed directed
passhg line line
s ' ey
opecation a
‘2 message transition ' / message butter

Table 1 Symbol definitions in Petri net and scene layout-switching
graph

User-1 Computer-1 User-2 Computer-2

Figure 11 Scene layout-switching graph o
With the above scene switching and scene layout-
switching graphs, the scene switching of a CSCW system as
well as its interactions can be easily analyzed. By the
interactive script control, there are two. basic scene

gure

383

Joint Conference of 1996 International Gomputer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

switching models: centralized scene
interactive scene switching. _

. In centralized scene switching mechanism, all scene
switchings are controlled by a certain user. Other users
have no rights to determine their own scenes, all of which
are all governed by this special user. The use occasions of
such architecture is teaching and medical diagnosis. This
kind of design is simple and easy to be obtain consistent
scenes, but is lacking of flexibility and unable to- attain
two-way- interaction. Figure 12 shows an example scene
switching graph of such architecture.

switching and

User

Computer-1 Computer-2

Scene-1

message

Buton-2
P " butfar

Scene-1C|

Scene-18

mestage
[

Figure 12 Scene switching graph of centralized scene switching
model

On the other hand, in. interactive scene switching
model, each of the users is able to influence other users'
scene switchings, as Figure 10 shown. This makes effective
interaction and communication among users, but may cause
inconsistency at scene switching. Such scene inconsistency
can be avoided by some coordination mechanisms. (17}

4. MISL (multi-user interactive script language) design

After analyzing scene switching mechanism in
interactive scrip of CSCW systems, it is possible to design a
script language to employ the above multi-user interactions.
Here, a multi-user interactive script language (abbreviated
as MISL) based on the previous model is proposed to
construct CSCW systems. The syntax of MISL is listed in
Table 2.

BEGIN
ENDSCRIPT
STOP

REM comment
RESOQURCE}
SERVER server
PATH path
ALIAS alias file

43 tool in a scene

{scene!.tool

et th QAD alias t00] pos, lother-y
dremovethetool —— — —  JUNLOAD {scene} tool"
Hhide the tool HIDE { scene}.tool
SHOW {scene}.tool -

u

ev 00

Fmove the tool MOVE {scene}.tool




Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

selective control

messa ge from nmer
message from menu item

Table 2 Basic Syntax design of MISL
With the above language syntax, it is possible to

develop an interactive script program. As shown in Table 3,

a general script program structure is divided into two parts:
the initialized resource declaration block and a serial scene
definition blocks. As mentioned, the resource declaration
block defines several utilities of tools, including server,
directory path and alias of tool's filename. Also, each scene
definition block in a script is composed of two parts: scene
layout and scene switching. The layout part of a scene
illustrates what appearance the screen is for this scene. It
arranges every tools appropriately on the screen by basic
scene arranging actions (LOAD and SHOW). The
switching part of a scene defines all its switching conditions
and the corresponding next scenes (post-conditions). The
switching conditions contain a series of selected statements
"IF condition THEN action-statements ENDIF
selective statement", whose conditions have three
triggering conditions: button, timer and menuitem and each
action-statement may have the following three
components:

(1).next-scene switching: using SWITCHTO instruction.
(2).post-conditions: including a series of scene clearing

actions (UNLOAD, HIDE and MOVE).
(3).remote message sending: using REMOTEMESSAGE
instruction.

esource}

server

Path c:\>XXXXXX

Alias XXX c:\XXX\filename.exe

cene {Scene1}
Load XXX "xx,yy,ww, hh'"
Load YYY 'tittle1,xx,yy,ww,hh"
witchCondition
if PRESSED=button1 then
switchTo {Scene2}
RemoteM
Unload XXX
endif
if CHOSEN=ch1 then
switchTo {Scene3}
RemoteMessage messagez
Unicad YYY
endif

m

cenes (soeneN}
Load XXX "xx,yy,ww,hh"
Load YYY "title1,5x,yy,ww,hh"
witchCondition
if PRESSED=buttonN then
5w|tchTo {soenez} -
Rery
Unioad XXX
endif
if cHOSEN=chN then
switchTo {Scene3}
Remoteh

je
Unload YYY
endif

Table 3 MISL program structure

When executed, an interactive script starts with

declaring resources, including server machine, tools' path

384

and filenames' aliases. Subsequently, the scenes in the
interactive script will interact with ISC to achieve the
human-computer interactions and - computer-computer
interactions, as shown in Figure 9. In the beginning, the
foremost scene block of the scene definition part is the first
scene to be executed. However, the execution order of
ensuing scenes depends not on the programmed order of
scenes, but on the scene switching mechanism. When each
scene is executed, only the preconditions (scene layout) are
satisfied, i.e. the screen will be arranged as defined layout.
Meanwhile, the control right of computer belongs to its user.
If the user's operation (control message emitted from menu,
button or timer-expiration) satisfies the switching condition
of any scene, this scene will be the next scene and its
corresponding actions, ‘as mentioned ' post-conditions,
remote message sending and new scene switching, will be
executed.

The user's control message in the precondition is so-
called human-computer interaction; whereas, the remote
control message is computer-computer interaction. Both of
these interactions should be analyzed by use of the above
scene layout-switching graph beforehand.

Beside the above human-computer and computer-
computer interactions, there still exist interactions between
the scripts and ISC. When user operations are transformed
into control messages (m1 or m2 in Figure 9), ISC should
check each of the switching conditions to determine the
next scene, then to proceed its post-conditions, including
current-scene clearing, new-scene switching and remote-
message sending. When sending remote messages, an ISC
in one computer will connect with the ISC in another
computer. This means the computer-computer interactions
are ipso facto realized by the interaction between ISCs.

In summary, the tasks of ISC can be itemized as the
following:

(1).Interpretation of " all the precondltlons and . post-

conditions read from the assigned scene in the script.

(2).Execution of these preconditions and post-conditions,
including dismantlement of tools in old scene and
establishment of tools in new scene.

(3).Communication with other ISCs through remote
messages, and last but not the least.

(4).Suspension of control to let user operate the scene's

. tools amongst the scene switching, that is, waiting for

the control message from control tools.

By this reason, the implementation of ISC is not
suitable by a compiler, but by an interpreter, which is
possible to meld the execution of the script with human-
computer interaction. ‘

In essence, ISC is an control program, which
manages all the other programs (tools) in the screen. These
management rule is written in the designated script. Hence,
strategically this ISC program (interpreter) has to be run



first of all. Then an interactive script is selected to execute.
Sequentially, all the tools are loaded/cleared one by one
with prescribed positions and attributes. In the meantime,

each of the users/operators can get involved in front of
* his/her own computer.

The interpreter implementation of the scrlpt control
brings out many difficulties in checking the legality of an
interactive script. An interactive script for being smoothly
executed has to satisfy the following constraints:

(1).All used tools in all scenes, either control or general,
must be existent when being loaded.

(2).Each user interface of control tools must be effective,
that is, all its post-conditions are executable.

(3).All scenes are reachable by some switching conditions.

(4).The destination for passing the remote control messages
must be reachable.

-The second and third constraints are related to the
execution flow of the script and can be checked when
analyzing through Petri-net or scene layout-switching
graph. The next section will show examples. On the other
hand, the first and fourth constraints can only be detected
while executing. This suggests the user (the operator, not
the programmer of the script) to check these execution
environment before the use of interactive scripts.

5. Implementation and example system

This section builds a complete system to demonstrate
the practicability of multi-user interactive scripts and their
interactions with ISCs. This demonstration system is a
distributed distance education environment in social
learning, called Electronic Classroom. [10] Within this
system, the ISC is implemented as an independent
interpreter program and there are two kinds of scripts:
teacher's and student's. The designated course is BCC
(Basic Computer Concept), which can learned through
several designated scenes (learning modes).

The platform of the above system is IBM compatible
Personal Computer with CPU faster than Intel 486 DX2-66.

. The operating system can be Microsoft Windows NT or
Windows 95. The basic networking mechanism is Ethernet,
but WAN (Wide-Area Network) and PSTN (Public
Switching Telephone Network) are both possible since the
demonstration system is built on the popular TCP/IP
protocol and Windows  socket interface. There are more
than three machines in this system, one for the teacher and
others for students; this constitutes a classroom of some
course in computer network, as Figure 13 shown. In
general, this system allows more than one course held at the
same time. Moreover, this implementation includes several
media, including text, audio and image, and even video is
possible only if the bandwidth is broad enough.

385

Joint Conference of 1996 International Computer Symposium -
December 19~21, Kaohsiung, Taiwan, R.0.C.

Student-1

Student-
Teacher clent-2

Stuctent-3
Figure 13 Electronic Classroom on computer network

The ISC interpreter is implemented in Borland C++
4.0. - As all tools of user interface are designed separately,
they can be implemented in other programming languages.
For the time being, some are implemented in Visual BASIC
such as textbook, some are in Borland C++ 4.0 such as
whiteboard and coordinator, and some are in Microsoft
Visual C++ 2.0 such as audio phone. The integrated
coordinator is a manager to perform the overall
coordination works, such as group management, access
control and floor control. [17] Many real-time multimedia
toolboxes are devised to process some cooperative works,
such as whiteboard, audio phone, question box. [12] All
these tools work in the control of the ISC and its interactive
script.

In general, dlstance education is a tutoring and
learning style, in which teachers and learners are separate.
Recently, social learning system [2] is proposed as one
kind of environment where computer-simulated or real
agents works at the same computer or across computer
network to process learning activity. Hence, a distributed
social learning system supports a group of persons in
different locations tutoring/learning together through
computer network. ,

According to OCTR learning model [3], four
learning modes are used in our distance education
environment: lecture (including inquiry), discussion; test
and self-education. All these learning modes are designed
as scenes in interactive scripts. ‘To complete the operation
of the whole system, a login scene is introduced in this
design. Scenes of the teacher and students and their
switching have to be kept consistent, and the corresponding
screens can be carefully laid out. All these works are done
through the previous scene layout-switching graph.

The above system provides a practical, feasible and
low-cost distance education environment. By real
experiment, this system can work well through network or
telephone line. All the process is recorded as a video tape
and Figures 14 and 15 shows the snapshots of teacher's and
student's screen in lecture scene.



Proceedings of international Conference on Distributed
Systems, Software Engineéring and Database Systems

RO (BCC, Basic Compater

Concept)

« WM (nformatiory
« REaTE
i ﬂ'ﬁl {compurter)

F-HEPER (BCC, Basic Computer i
Concept)

Figure 15 Snapshot of students' lecture scene
6. Conclusion

~ Up to now, an interactive script model of CSCW
systems is investigated and its script language is developed.
The study of this interactive script model of CSCW systems
includes the analysis of its interaction interface, the tools
and  scenes for different working environment. To
represent the layout of a scene and the interactions among
scenes, the scene layout-switching graph of a script is
proposed. For the establishment of such CSCW system, a
Multi-user Interactive Script Language (MISL) is designed
and its interpreter is constructed as the interactive script
control. Finally, based on such a developing environment,
we build,a real CSCW system, the distance education
system with five learning modes. This demo system is built
on Wintel (Windows and Intel) system and performs well
on  Internet and PSTN (Public Switching Telephone
Network).

References

[1] H. E. Bal, J. G. Steiner and A. S. Tanenbaum,
"Programming languages for distributed systems,"
ACM Computing Surveys, Vol.21, No.3, Selp.1989,

386

pp.262-231

[2] T.-W. Chan, "A tutorial on soc1al learning systems,"
Emerging 'Computer Technologies in Education
(edited by J. Self and T.W. Chan), AACE, 1996

[3] T.-W. Chan, C. Lin, S. Lin and H. Kou, "OCTR: A
model of learning stages," AIED-93, 1993, pp.257-
264

[4] P. Dewan and R. Choudhary, "A high-level and flexible
framework for implementation multiuser interfaces,”
ACM Transaction. on Information Systems, Vol.10,
No.4, 1992, pp.345--380

[5] A. Dix, J. Finlay, G. Abowd and R. Beale, Human-
Computer Interaction, Unalis Co., Taiwan, 1993

[6] C. A. Ellis, S. J. Gibbs and G. L. Reln, "Groupware:
some issues and experiences," Communication ACM,
Vol.34, No.1, Jan. 1991, pp.36-58

[7] C. Ellis and J.' Wainer, "A conceptual model of
groupware," CSCW'94, Chapel Hill, 1994, pp.79-88

[8] M. Green, "A survey of three dialogue models," ACM
Transaction on Graphics, Vol.5, No.3, July 1986,
pp.244-275

[9] S. Greenberg and D. Marwood "Real time groupware
as a distributed system: concurrency control and its
effect on the interface," CSCW'94, Chapel Hill, Oct.
1994, pp.207-217

[10] J.-H. Ho, W.-H. Lin, J.-S. Heh and T.-T. Wu, "An
interactive  distributed  distance education
environment," ED-Media'96, Boston; 1996, p.363

[11] T. Kirsche, R. Lenz, H. Luhrsen, K. M. Wegener, H..

Wedekind, M. Bever, U. Schaffer, C. Schottmuller,

"Communication support for cooperative work,"

Computer Communication, Vol.16, No.9, Sept.1993,

Pp.594-602

J.-S. Lin, P.-C. Chang and J.-S. Heh, "Building a

real-time  multimedia system through an efficient

replication algorithm," HD-Media'95, Talwan 1995,

pp. OA-3-13-18

J. Palme, "Standards for the asynchronous group

communication," Computer Communication, Vol.16,

No.9, Sept.1993, pp.532-538

[14] H. Peng, "A study of the nature of human-computer
interaction," Computer Graphic Workshop, Taiwan,
1994, pp.121-125

[15] S. M. Shatz, Development of Distributed Software
Concepts and Tools; Macmillian Pub. Co., 1993

[16] L. Tou, S. Berson, G. Estrin, Y. Eterovic and E. Wu,
"Prototyping synchronous group applications," JEEE
Computer, May 1994, pp.48-57

[17] C.-H. Yuan, Research on Integrated Coordmator of
CSCW Systems, Ms. thesis, Dept. of Info and Comp.
Eng., Taiwan, 1995 '

(12]

(13]



