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ABSTRACT 

Peak detection is needed in many computer applications. 
For the real-time demand and not to become a bottleneck, 
this process requires parallel hardware for much faster 
operation. In this paper, a series of VLSI array processor 
designs are proposed for various needs of peak detection 
from multi-dimensional data array. We have designed the 
row sequential comparator and 3-row delayed comparator 
to compose a basic pipelined 3 x 3 maximum filter. Based 
on such module, the 3 x 3 or 5 x 5 pipelined peak detector 
can be easily configured. The design can be extended to the 
three-dimensional 3 x 3 x 3 and 5 x 5 x 5 peak detection, 
detecting local peaks of broader range, or even the cases of 
higher dimension. To further raise the peak-detection speed, 
we also propose some array processors to extract peaks (of 
3 x 3 range) in parallel, column by column. And once again, 
our parallel detector design can be extended to the higher 
dimension and to detect local peaks of broader range. 

1. INTRODUCTION 

The peak detection is a process often encountered in 
various computer applications such as operation research, 
computer vision, and artificial intelligence. Taking Hough 
transform [1-3] in computer vision as an example, it 
requires peak detection over the accumulator memory as 
the last step of its procedure. The Hough transform method 
is useful and robust, yet it is time-consuming. In recent 
years, a few VLSI array processors have been proposed for 
the Hough transform applications such as line detection 
and circle detection [3-11]. As the speed of Hough 
transform (more specifically, the voting process) is much 
improved due to the array parallel processing, the process 
of peak extraction from accumulator array will then 
become a bottleneck, if no improvement is given to its 
hardware. The process of peak detection demands a much 
faster provision. 

So far, little research has been done in this aspect. The 
design of parallel processors for the peak (within 3x3 range) 
extraction from two-dimensional data array may look 
somewhat simple. But we should consider the design’s 
modularity and VLSI feasibility. For the various needs of 
different peak extraction cases, we should also consider the 
chip interconnection compatibility so that only a few types 
of VLSI array processor chips would be adequate to 
construct larger processor array. 

In this research, we consider the design of parallel 
processor for the pipelined detection of peaks from data 
array. We first present the design of a pipelined 3x3 
maximum filter, while this basic processor module is 
composed of two sub-modules: the row sequential 
comparator and 3-row delayed comparator. Based on such 
module, the pipelined peak detector (of the 3 x 3 or 5 x 5 
range) can be easily configured with the adding of a simple 
data filter. Under similar scheme, the design can be 
extended to the three-dimensional 3 x 3 x 3 and 5 x 5 x 5 
peak detection, or even the cases of higher dimension, or 
detecting local peaks of broader range. 

To further raise the peak-detection speed for one order of 
magnitude with respect to the multi-dimensional data array, 
we have also investigated the parallel extraction of peaks in 
this research. We propose some array processors to extract 
peaks (of 3 x 3 range) in parallel, column by column. 
Using the same constituent processor arrays, the peak 
extractor of 5 x 5 range can be composed as well. In this 
paper, the extension of our parallel peak-extractor design to 
higher dimension is also depicted. 

2. THE BASIC CONSTRUCTION UNITS 

For the 3 x 3 local peak detector, there are different ways to 
design it, depending on how the data are input. One 
popular way to input the two-dimensional array data is by 
the raster-scanning scheme. That is, the data are read from 
one side of the first row, one bye one, till the other side of 
the same row; then read the second row in a similar way, 
and then continue such a sequence until the whole data 
array is completely read. 

With such raster-scanned data input, a simple way to 
design the 3 x 3 peak detector is to let it have a single 
channel of input and single channel of output, and let the 
parallel hardware perform the pipelined processing. To find 
the local peak (maximum value) in the 3 x 3 range of input 
data, the comparison operations can be partitioned into two 
parts. In our design, the first part gathers three consecutive 
input data in a row, compares them to obtain the maximum 
value out of the 1 x 3 local area. While the second part 
takes the output from the first part in sequence, it gathers 
and compares the three extracted maxima from the same 
column of three consecutive rows to obtain their maximum. 
By acquiring the maximum of three consecutive 1 x 3 local 
maxima in the same column, we have indeed obtained the 
maximum value of the 3 x 3 window from this design. 
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To simplify the input interface in designing the hardware 
for the first part, we should stick with the specification of 
using only a single channel (or stream) of data rather than 
using three channels to input the three consecutive data (of 
the same row) in parallel. The use of three consecutive data 
in a row to obtain the 1 x 3 local maximum in each 
processing cycle, on the other hand, can be viewed as 
having a specific data value used for three consecutive 
cycles. Partially taking the idea from the previous work 
[12], we have a broadcast provision added to the pipeline 
of one register and two processing elements (or PEs in 
short) to form the design of the first part hardware. The 
circuit of this sub-module, called the Row Sequence 
Comparator (RSC), is shown in Figure 1. 
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Figure 1.  The block configuration of the Row Sequence 

Comparator (RSC) 

With the row sequence comparator in operation, the 
maximum value of any three consecutive data can be 
always extracted in three comparison cycles. In the first 
cycle, the first data enters the register. It enters the first PE 
at the beginning of the 2nd cycle, when the 2nd data is 
broadcast and also enters the first PE via the bus. The two 
data are then compared in this first PE to have their 
maximum value turned out by the end of the 2nd cycle. In 
a similar way, this larger value enters the second PE at the 
beginning of the 3rd cycle, when the 3rd data enters the 
second PE via the broadcast bus. The 3rd data and the larger 
value of the first two data are then compared in the second 
PE to have their maximum value turned out by the end of 
the 3rd cycle. The value thus present at the output of this 
RSC module is indeed the maximum value we are seeking 
for the 3-data sequence. 

The circuit design of the PE mentioned above is quite 
simple. The PE in our design consists of a basic 
comparator with two input registers and a multiplexer 
controlled by the comparator output to select the larger 
value out of the two registers. The circuit diagram is shown 
in Figure 2. 

Reg.

R2 Comp.
MUX

>=

<

Reg. R1

clock Input A

Input B

Output

 
 

Figure 2.  The circuit diagram of the PE 

To compose the 3 x 3 peak-detector, we need the second 
part of the module, which gathers and compares the three 
extracted maxima from the same column of three 
consecutive rows to obtain their maximum. The circuit 
design of this sub-module is quite straightforward that two 
delay buffers are used to acquire the two data from the first 
two rows to join the one in the third row for comparison to 
obtain their maximum. Thus this sub-module is called the 
3-Row Delayed Comparator (3-RDC) and its circuit is 
shown in Figure 3. 
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Figure 3.  The configuration of the 3-Row Delayed 

Comparator (3-RDC) 

Note that the labels “Nx” and “Nx+1” denote the length of 
delay buffers in Figure 3, where Nx is the number of data in 
a row of our data array. With two PEs compare the three 
gathered data of the same column, the maximum value of 
the 3 x 1 column segment is thus obtained. 

3.  PROCESSOR MODULE FOR 2-D PIPELINED 

PEAK DETECTION 

>From the description and reasoning of the previous 
section, it is easy to see that the concatenation of the two 
sub-modules RSC and 3-RDC can form a pipelined 
maximum-value extractor (or called max. filter) of the 3x3 
window. The complete configuration diagram of this 
processor module is shown in Figure 4. As designed in the 
previous section, the data input for this pipelined maximum 
filter is in raster-scan sequence. That is, the data are input 
one by one, from one side (either left or right) of the row 
toward the other end; and after finishing one row, take the 
next row from its starting side again, and so on. 
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Figure 4.  The block configuration of the 3x3 Max filter 

In Figure 4, again, Nx stands for the number of data in a 
row of our 2-D (two-dimensional) data array. Note that the 
last input data of a given row is consecutive to the first data 
of the next row according to our raster-scan sequence. To 
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avoid errors from the 3 x 3 max filter, we may neglect the 
maximum values on the margin of the output data array by 
replacing them with zero values. (Without losing the 
generality of our design, we assume that all the input data 
are non-negative integer. Thus 0 is the minimum of our 
input data). 

With the 3 x 3 max filter in operation, we may get the 
maximum value of any 3 x 3 window output in the 
sequence as that of the input data. Yet the goal of our 
design is to detect the local peaks out of the data array. The 
maximum value output corresponding to a specific position 
only tells us the maximum for the 3 x 3 window centered at 
that specific position. For the local peak we want to extract 
here is the data which is also the maximum over the 3 x 3 
window centered at its position. Thus a simple scheme to 
identify the local peaks is to compare the max filter output 
with the corresponding original input data. If they are not 
equal, then this original data is not a maximum in the local 
window. The original data is a peak only when the two 
values are equal. 

To distinguish the peaks from others, we choose not to 
attach any extra label bit(s) to the original data. We adopt a 
simple policy that sets all the non-peak data to zero while 
keeps the peak data unchanged. (Zero can not be any peak 
value, since zero is the minimum value of the data array. 
The peak and non-peak data cannot be mixed.) Thus in 
designing our pipelined peak detector, we use a 3 x 3 max 
filter (module of Figure 4) and a delay buffer of proper 
length, connecting their output to a Data Filter which 
compares their values to filter out the non-peak data for the 
final output. The configuration diagram of this 3 x 3 peak 
detector design is shown in Figure 5. 

The array
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Figure 5.  The configuration of the pipelined 3 x 3 peak 

detector 

Note that the delay buffer provides a delay of Nx+4 units 
(operation cycles) which is to match the timing of the 
original input data with the maximum value output of the 3 
x 3 window centered at the same position. The design of 
the data filter is simple that it is a comparator in essence. 
When the comparison result indicates “equal”, one operand 
is copied to the output. Otherwise, the output of the data 
filter is set to 0. In many practical applications, we may 
want to detect only the peaks above certain threshold. For 
this requirement, we need only add another comparator to 
compare the previous output further with the given 
threshold. If it is no less than the threshold value, then keep 
the same peak value output; else, set the final output to 0. 
And this completes the array processor design for the 
pipelined 3 x 3 peak detector. 

For some applications, it may be desirable to have peak 

detector, which extracts peaks from the 5 x 5 window. 
Based on the processor modules we have developed so far, 
such a pipelined peak detector of the 5 x 5 window-size 
can be easily configured as shown in Figure 6. The 5x5 
detector design is based on the mathematical principle that: 

Max { Max3x3(x, y) | for x = i –1 to i+1, and y = j –1 to j+1} 

= Max { S (x, y) | for x = i –2 to i +2, and y = j –2 to j +2 } 

where Max is the maximum function, S(x, y) is the data 
value at the position (x, y), and Max3x3(x, y) = Max{ S(x, y) 
| for x =i –1 to i +1, and y = j –1 to j +1 } 
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Figure 6.  The configuration of the pipelined 5 x 5 peak 

detector 

As in the previous design, we use a delay buffer and a data 
filter in addition to the max filter module. The 
two-dimensional data are input in the raster-scanned 
sequence, exactly the same as the previous case. The data 
filter is to compare the original input data with the output 
of the 5 x 5 max filter to get the final output of either peak 
data or non-peak zeros. While the delay buffer is to control 
the timing of the original input data to meet with the 
corresponding output of the 5 x 5 max filter. 

4.  PIPELINED PEAK DETECTION FOR 

EXTENDED DIMENSION 

For some cases of applications, we are dealing with data 
arrays of high-dimension (higher than 2). Naturally, the 
peak detection will be more complicated. To perform the 
peak detection for a three-dimensional data array, for 
example, the local peak value must be extracted out of a 
3x3x3 volume (or space). 

To design an array processor for the pipelined extraction of 
the above 3x3x3 case, the processor module of the 3 x 3 
max filter (shown in Figure 4) can be used as a basic 
construction block again. With the understanding of data 
input being in raster-scan sequence, the 3-D array data are 
input in the same way as previously mentioned for its first 
plane (or 2-D data plane). And after the input of the first 
layer, the data of the 2nd plane will be input following the 
same scanning sequence. A similar flow follows for the 3rd 
plane, and so on. 
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The output of the 3 x 3 max filter follows the sequence of 
its data input as well, except for a few steps of time delay. 
That is, the maximum values (over the 3 x 3 window) will 
come out one by one, row by row, and then one plane 
followed by its next plane. In order to extract the maximum 
value of the 3 x 3 x 3 space, our parallel processor must 
have some way to gather the three 3 x 3 maximum values 
out of the same 2-D position on three consecutive data 
planes. Knowing the 3 x 3 max filter output being in 
raster-scan sequence, the three data to be gathered are 
present at time separation of Nx*Ny units each. Thus, we 
may use the delayed comparator similar to the sub-module 
3-RDC but with the delay time of Nx*Ny units instead of 
Nx units. 

In this design, we incorporate the data filter once again to 
perform the peak filtering, with the original input data 
delayed for Nx*Ny+ Nx+ 6 time units. The configuration of 
the array processor design is shown in Figure 7. 
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Figure 7.  The configuration of the pipelined 3x3x3 peak 

detector 

With the same design methodology, we may extend our 
parallel processor design to 5 x 5 x 5 peak detector, or to 3 
x 3 x 3 x 3 higher-dimension peak detector. For the former 
case, we need only concatenate two copies of the processor 
module (excluding the data filter) in Figure 7, to form a 5 x 
5 x 5 max filter. After incorporating the data filter and 
delay buffer of proper length, the pipelined 5 x 5 x 5 peak 
detector is achieved. For the latter case, we may take the 
processor module of Figure 7 (excluding the data filter), 
and add another delayed comparator similar to the 
sub-module 3-RDC but with the delay time of Nx*Ny*Nz 
units instead of Nx*Ny units. Again, after incorporating the 
data filter and delay buffer of proper length, we have the 3 
x 3 x 3 x 3 peak detector for our usage. 

5.  DESIGN OF ARRAY PROCESSORS FOR 

PARALLEL DETECTION 

The design of pipelined peak detector uses only a small 
number of PEs (unit-comparators), and it is not 
complicated. Nevertheless, the pipelined peak detector 

takes input from the data array, one data at a time. The 
speedup of such pipelined parallel processor is quite 
limited, only up to ten- or twenty-fold in most cases, 
comparing with the traditional general-purpose processor. 
Moreover, with the use of VLSI array processors in some 
applications, the speed of processing to generate the array 
data (the input source) could be much facilitated. The data 
could be produced with an oncoming rate of one row or 
one column at a time.  Thus in order not to become a 
bottleneck, the parallel peak detection for the same order of 
magnitude (such as one column at a time) is highly 
desirable. 

To design the parallel peak detector for two-dimensional 
data array, we may make use of the RSC sub-module (see 
Figure 1) which obtains the maximum value out of three 
consecutive row data. And to acquire the maximum data 
out of each row of the data array in parallel, we propose to 
use an array of RSCs, with the number of RSCs equal to 
the number of rows and each RSC connecting to the output 
terminal of each row. Now since we can get each row’s 1x3 
maximum at the same time, we may compare the 
maximum values of any three consecutive rows directly 
without the use of the 3-Row Delayed Comparator. There 
are more than one way to design this 3-row comparator to 
get their maximum. To reduce the complexity of the circuit, 
we choose to adopt the configuration shown in Figure 8 for 
our 3-Row Comparator (3-RC) sub-module. 
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Figure 8. The configuration of the 3-Row Comparator 

(3-RC) 
 

By connecting the RSC output of any three consecutive 
rows (any row, its upper one row and lower one row) to the 
three input channels of a 3-RC sub-module, a 3x3 max 
filter for one row can be formed. Repeating such 
construction up to the number of rows, we have the parallel 
3 x 3 max filter for the given 2-D data array. 
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Figure 9.  The configuration of the parallel 3x3 max filter 

For the final step of peak detection, we use the data filter 
and delay buffer in our design similar to the scheme 
described in the previous section. The circuit diagram of 
the 3 x 3 peak-detection for one row is shown in Figure 10. 
With the delay buffer of 4 time-units, it is adequate to 
match the timing for peak filtering. 

One-row
data stream
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Data
Filter

Delay

RSC of
upper row

RSC of
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( 4 )
 

Figure 10.  The circuit diagram of the 3 x 3 peak detector 
for one row 

Redrawing the above addition into the whole array 
processor design, we have the array configuration for the 
completed parallel 3 x 3 peak detector shown in Figure 11. 
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Figure 11.  The array configuration of the parallel 3 x 3 
peak detector (the block DF stands for the data 
filter) 

6.  PARALLEL PEAK DETECTION FOR 

MULTI-DIMENSIONAL DATA 

For many applications, the data array is of dimension 
higher than two. To furnish our design for various cases, 
we investigate the parallel detection of peaks for data 
arrays of higher-dimension. Working on the 
three-dimensional case, first, we should clarify the way of 
which the array data are input to our parallel detector. So 
far in this paper, we consistently assume that the data in a 
row be shifted to the right (or the data be read from the 
right end of the row). 

For our parallel detection on a two-dimensional data array, 
the data are read from the right side of the 2-D memory 
plane, column by column. For the three-dimensional case, 
similar to the raster-scan sequence we have adopted, right 
after the first data plane is completely read out, the 2nd data 
plane will be accessed, starting from its rightmost column. 
Focusing on a specific row in this data array, such a data 
reading sequence is just like the previous pipelined case. 
The data in a row are read one by one (from right to the 
left); after finishing one row, the next row (the row at the 
same position of the next data plane) will be read in the 
same sequence. Following this way, the data are read one 
row by one row (or one data-plane by one data-plane from 
the parallel-operation points of view) until the last data 
plane is finished. 

From the design of the previous section, the processor 
array of the 3x3 max filter has been able to acquire the 
maximum values (over the 3x3 window in the same data 
plane) in parallel for each row. For the design of a 3x3x3 
max filter, what we need to do is to gather the 3x3 
maximum values from the same position of three 
consecutive rows (i.e. three consecutive data-planes for a 
specific row processor module). Knowing the data input 
sequence in our case, the three 3x3 maximum data on three 
consecutive data-planes to be gathered are present at time 
separation of only Nx units each. (Here Nx is the number of 
data in a row of our data array.) And our design must 
compare these three values to get their maximum for our 
3x3x3 max filter output. Just like the case of our pipelined 
3 x 3 max filter, the design of the 3-row delayed 
comparator  (3-RDC of Figure 3) fits the above functions 
exactly. Hence by attaching one 3-RDC to the output of 
each row (construction module) of the array processor of 
Figure 9, we have completed an array processor design of 
parallel 3 x 3 x 3 max filter for the three-dimensional data 
array. 

Similar to the previous design, by incorporating the data 
filter and delay buffer to the above 3 x 3 x 3 max filter, we 
will have the complete parallel 3 x 3 x 3 peak detector as 
shown in Figure 12. The delay of Nx+6 time units is 
counted to match the timing. 
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Figure 12.  The configuration of the parallel 3x3x3 peak 

detector 

With the array processor modules we have developed so far, 
we can easily configure these construction blocks to form 
the parallel peak detectors of different specifications. 
Taking the parallel 5x5 peak detector as an example, we 
may concatenate two array processor modules of Figure 9 
to form a parallel 5 x 5 max filter. Incorporating an array of 
the data filters and delay buffers of proper length, we have 
a parallel 5 x 5 peak detector. 

As to the parallel peak detector for higher-dimension, we 
may extend our design using the previously proposed 
processor modules. For example, we may add in another 
array of 3-RDC modules (of proper delay length reflecting 
the time separation due to the fourth dimension) before the 
Data Filter stage in Figure 11. By setting an appropriate 
time delay length to the “Delay” block, the design of a 
parallel 3x3x3x3 peak-detector for 4-D data array can be 
furnished. 

7. VLSI IMPLEMENTATION AND PEAKS 
REPORTING 

In this research, none of the pipelined peak detectors 
proposed requires many circuit components or modules. 
There is no difficulty for a VLSI chip to implement the 
whole circuit of any such detector. As the data are 
pipelined in operation, only an input channel and an output 
channel are required. There is no problem with the number 
of I/O pins for the chip. And since the filtered peak or 
non-peak data comes out one at a time, the host computer 
should have adequate time or memory bandwidth to collect 
the address and/or value of the peak. No extra provision is 
needed to report the peaks. 

For the parallel peak detector, the situation is different in 
several aspects. First, the circuit complexity of our array 
processor is about proportional to NR, the number of rows 
of our parallel detection (or processing). On the other hand, 
due to the possibly large number of rows processed in 
parallel, the number of input/output channels of our array 
processor module may require too many I/O pins to be 
implemented on one VLSI chip. (For NR = 64 and word 

length of 8-bit, the chip would need as many as 1024 I/O 
pins for just a middle size NR.) 

To reduce the number of I/O pins across the chip boundary 
and the cost (or effort) for inter-chip connection, it is 
possible to implement the parallel peak detector circuits in 
the same chip of the data array. Depending on the 
applications and design, the data in the data array may be 
generated from certain operations such as the Hough 
transform parallel processing, with the original source data 
coming from a single or a small number of input channels 
(for such example, refer to [6]). In this way, the output pins 
of the data array and the input pins of our peak-detector 
array processor across the VLSI chip boundary can be 
eliminated. And we save a large effort for chip 
interconnection. 

As to the parallel peak-detector output, it is desirable to 
reduce the number of output channels as well. The reasons 
for this are three-folded. First, it is better to reduce the I/O 
pins across the VLSI chip such that the size of the chip can 
be smaller. Second, the host computer (or host processor) 
taking this output usually does not have such a broad data 
bandwidth. The I/O interface of the host computer would 
become a severe bottleneck. The third, which is even more 
important, is that the number of peaks extracted from the 
data array is usually scarce with respect to the number of 
data for most applications. (The circle-detection 
Hough-transform is an example of this.)  For the above 
reasons, a peak-data concentrator that filters the parallel 
output data and reports only the information of the few 
detected peaks is highly desirable. 

Depending on the probable ratio of the peak to the 
non-peak data, there are various ways to design such a 
peak-reporting stage. Taking our application on image 
pattern recognition based on Hough transform as an 
example, we have a small number of peaks to be reported. 
For a simple design, we may implement a scheme similar 
to the daisy chain along the column of register buffers (of 
the reporting stage) to identify the first row of output with 
peak data. Right after reporting the peak’s position and 
value, this peak data will be cleared. Thus the next peak in 
the register buffers, if any, can be reported. This process 
continues until all the peaks in this reporting stage are 
reported. Then we can allow the next column of the peak 
detector’s output to come into the register buffers again. 
Note that in practice the chance of having more than one 
peak in the same column of the output is rare. Detailed 
study on various designs is beyond the scope of this paper. 

8. CONCLUSION 

In this paper, a series of VLSI array processor designs are 
proposed for various needs of peak detection on 
multi-dimensional data array. We have developed the row 
sequential comparator and the 3-row delayed comparator, 
and use them to compose a basic pipelined 3 x 3 maximum 
filter. Based on such module, the pipelined 3 x 3 and 5 x 5 
peak-detectors can be easily configured. The design can be 
extended to the three-dimensional 3 x 3 x 3 and 5 x 5 x 5 
peak detection, detecting local peaks of broader range, or 
even to the cases of higher dimension. We also propose 
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some array processors to extract peaks in parallel, column 
by column. And as the pipelined case, we have also 
extended our array processor design for parallel 
peak-detection, to detecting local peaks of broader range, 
and to the cases of higher dimension. The peak-detection 
array processors we have proposed in this paper are simple 
in architecture, with regularity, and suitable for VLSI 
implementation. 
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