

 1

DESIGN OF PARALLEL PROCESSORS FOR FAST EXTRACTION
OF PEAKS FROM MULTI-DIMENSIONAL DATA ARRAY

Ming-Yang Chern

Department of Electrical Engineering,
National Chung-Cheng University, Chiayi, Taiwan, R.O.C.

Email: ieemyc@ccunix.ccu.edu.tw

ABSTRACT

Peak detection is needed in many computer applications.
For the real-time demand and not to become a bottleneck,
this process requires parallel hardware for much faster
operation. In this paper, a series of VLSI array processor
designs are proposed for various needs of peak detection
from multi-dimensional data array. We have designed the
row sequential comparator and 3-row delayed comparator
to compose a basic pipelined 3 x 3 maximum filter. Based
on such module, the 3 x 3 or 5 x 5 pipelined peak detector
can be easily configured. The design can be extended to the
three-dimensional 3 x 3 x 3 and 5 x 5 x 5 peak detection,
detecting local peaks of broader range, or even the cases of
higher dimension. To further raise the peak-detection speed,
we also propose some array processors to extract peaks (of
3 x 3 range) in parallel, column by column. And once again,
our parallel detector design can be extended to the higher
dimension and to detect local peaks of broader range.

1. INTRODUCTION

The peak detection is a process often encountered in
various computer applications such as operation research,
computer vision, and artificial intelligence. Taking Hough
transform [1-3] in computer vision as an example, it
requires peak detection over the accumulator memory as
the last step of its procedure. The Hough transform method
is useful and robust, yet it is time-consuming. In recent
years, a few VLSI array processors have been proposed for
the Hough transform applications such as line detection
and circle detection [3-11]. As the speed of Hough
transform (more specifically, the voting process) is much
improved due to the array parallel processing, the process
of peak extraction from accumulator array will then
become a bottleneck, if no improvement is given to its
hardware. The process of peak detection demands a much
faster provision.

So far, little research has been done in this aspect. The
design of parallel processors for the peak (within 3x3 range)
extraction from two-dimensional data array may look
somewhat simple. But we should consider the design’s
modularity and VLSI feasibility. For the various needs of
different peak extraction cases, we should also consider the
chip interconnection compatibility so that only a few types
of VLSI array processor chips would be adequate to
construct larger processor array.

In this research, we consider the design of parallel
processor for the pipelined detection of peaks from data
array. We first present the design of a pipelined 3x3
maximum filter, while this basic processor module is
composed of two sub-modules: the row sequential
comparator and 3-row delayed comparator. Based on such
module, the pipelined peak detector (of the 3 x 3 or 5 x 5
range) can be easily configured with the adding of a simple
data filter. Under similar scheme, the design can be
extended to the three-dimensional 3 x 3 x 3 and 5 x 5 x 5
peak detection, or even the cases of higher dimension, or
detecting local peaks of broader range.

To further raise the peak-detection speed for one order of
magnitude with respect to the multi-dimensional data array,
we have also investigated the parallel extraction of peaks in
this research. We propose some array processors to extract
peaks (of 3 x 3 range) in parallel, column by column.
Using the same constituent processor arrays, the peak
extractor of 5 x 5 range can be composed as well. In this
paper, the extension of our parallel peak-extractor design to
higher dimension is also depicted.

2. THE BASIC CONSTRUCTION UNITS

For the 3 x 3 local peak detector, there are different ways to
design it, depending on how the data are input. One
popular way to input the two-dimensional array data is by
the raster-scanning scheme. That is, the data are read from
one side of the first row, one bye one, till the other side of
the same row; then read the second row in a similar way,
and then continue such a sequence until the whole data
array is completely read.

With such raster-scanned data input, a simple way to
design the 3 x 3 peak detector is to let it have a single
channel of input and single channel of output, and let the
parallel hardware perform the pipelined processing. To find
the local peak (maximum value) in the 3 x 3 range of input
data, the comparison operations can be partitioned into two
parts. In our design, the first part gathers three consecutive
input data in a row, compares them to obtain the maximum
value out of the 1 x 3 local area. While the second part
takes the output from the first part in sequence, it gathers
and compares the three extracted maxima from the same
column of three consecutive rows to obtain their maximum.
By acquiring the maximum of three consecutive 1 x 3 local
maxima in the same column, we have indeed obtained the
maximum value of the 3 x 3 window from this design.

 2

To simplify the input interface in designing the hardware
for the first part, we should stick with the specification of
using only a single channel (or stream) of data rather than
using three channels to input the three consecutive data (of
the same row) in parallel. The use of three consecutive data
in a row to obtain the 1 x 3 local maximum in each
processing cycle, on the other hand, can be viewed as
having a specific data value used for three consecutive
cycles. Partially taking the idea from the previous work
[12], we have a broadcast provision added to the pipeline
of one register and two processing elements (or PEs in
short) to form the design of the first part hardware. The
circuit of this sub-module, called the Row Sequence
Comparator (RSC), is shown in Figure 1.

Reg PE PE

Data
Input

Output

Figure 1. The block configuration of the Row Sequence

Comparator (RSC)

With the row sequence comparator in operation, the
maximum value of any three consecutive data can be
always extracted in three comparison cycles. In the first
cycle, the first data enters the register. It enters the first PE
at the beginning of the 2nd cycle, when the 2nd data is
broadcast and also enters the first PE via the bus. The two
data are then compared in this first PE to have their
maximum value turned out by the end of the 2nd cycle. In
a similar way, this larger value enters the second PE at the
beginning of the 3rd cycle, when the 3rd data enters the
second PE via the broadcast bus. The 3rd data and the larger
value of the first two data are then compared in the second
PE to have their maximum value turned out by the end of
the 3rd cycle. The value thus present at the output of this
RSC module is indeed the maximum value we are seeking
for the 3-data sequence.

The circuit design of the PE mentioned above is quite
simple. The PE in our design consists of a basic
comparator with two input registers and a multiplexer
controlled by the comparator output to select the larger
value out of the two registers. The circuit diagram is shown
in Figure 2.

Reg.

R2 Comp.
MUX

>=

<

Reg. R1

clock Input A

Input B

Output

Figure 2. The circuit diagram of the PE

To compose the 3 x 3 peak-detector, we need the second
part of the module, which gathers and compares the three
extracted maxima from the same column of three
consecutive rows to obtain their maximum. The circuit
design of this sub-module is quite straightforward that two
delay buffers are used to acquire the two data from the first
two rows to join the one in the third row for comparison to
obtain their maximum. Thus this sub-module is called the
3-Row Delayed Comparator (3-RDC) and its circuit is
shown in Figure 3.

Data
Input PE PE

Delay
(Nx)

Delay
(Nx+1)

Output

Figure 3. The configuration of the 3-Row Delayed

Comparator (3-RDC)

Note that the labels “Nx” and “Nx+1” denote the length of
delay buffers in Figure 3, where Nx is the number of data in
a row of our data array. With two PEs compare the three
gathered data of the same column, the maximum value of
the 3 x 1 column segment is thus obtained.

3. PROCESSOR MODULE FOR 2-D PIPELINED

PEAK DETECTION

>From the description and reasoning of the previous
section, it is easy to see that the concatenation of the two
sub-modules RSC and 3-RDC can form a pipelined
maximum-value extractor (or called max. filter) of the 3x3
window. The complete configuration diagram of this
processor module is shown in Figure 4. As designed in the
previous section, the data input for this pipelined maximum
filter is in raster-scan sequence. That is, the data are input
one by one, from one side (either left or right) of the row
toward the other end; and after finishing one row, take the
next row from its starting side again, and so on.

Reg PE PE

Data
Input

PE PE
Delay
(Nx)

Delay

Output

(Nx+1)

Figure 4. The block configuration of the 3x3 Max filter

In Figure 4, again, Nx stands for the number of data in a
row of our 2-D (two-dimensional) data array. Note that the
last input data of a given row is consecutive to the first data
of the next row according to our raster-scan sequence. To

 3

avoid errors from the 3 x 3 max filter, we may neglect the
maximum values on the margin of the output data array by
replacing them with zero values. (Without losing the
generality of our design, we assume that all the input data
are non-negative integer. Thus 0 is the minimum of our
input data).

With the 3 x 3 max filter in operation, we may get the
maximum value of any 3 x 3 window output in the
sequence as that of the input data. Yet the goal of our
design is to detect the local peaks out of the data array. The
maximum value output corresponding to a specific position
only tells us the maximum for the 3 x 3 window centered at
that specific position. For the local peak we want to extract
here is the data which is also the maximum over the 3 x 3
window centered at its position. Thus a simple scheme to
identify the local peaks is to compare the max filter output
with the corresponding original input data. If they are not
equal, then this original data is not a maximum in the local
window. The original data is a peak only when the two
values are equal.

To distinguish the peaks from others, we choose not to
attach any extra label bit(s) to the original data. We adopt a
simple policy that sets all the non-peak data to zero while
keeps the peak data unchanged. (Zero can not be any peak
value, since zero is the minimum value of the data array.
The peak and non-peak data cannot be mixed.) Thus in
designing our pipelined peak detector, we use a 3 x 3 max
filter (module of Figure 4) and a delay buffer of proper
length, connecting their output to a Data Filter which
compares their values to filter out the non-peak data for the
final output. The configuration diagram of this 3 x 3 peak
detector design is shown in Figure 5.

The array
processor of

Fig 4

Delay
Output

Data
Filter

Data
stream in

raster-scan
sequence

)4(+xN
Figure 5. The configuration of the pipelined 3 x 3 peak

detector

Note that the delay buffer provides a delay of Nx+4 units
(operation cycles) which is to match the timing of the
original input data with the maximum value output of the 3
x 3 window centered at the same position. The design of
the data filter is simple that it is a comparator in essence.
When the comparison result indicates “equal”, one operand
is copied to the output. Otherwise, the output of the data
filter is set to 0. In many practical applications, we may
want to detect only the peaks above certain threshold. For
this requirement, we need only add another comparator to
compare the previous output further with the given
threshold. If it is no less than the threshold value, then keep
the same peak value output; else, set the final output to 0.
And this completes the array processor design for the
pipelined 3 x 3 peak detector.

For some applications, it may be desirable to have peak

detector, which extracts peaks from the 5 x 5 window.
Based on the processor modules we have developed so far,
such a pipelined peak detector of the 5 x 5 window-size
can be easily configured as shown in Figure 6. The 5x5
detector design is based on the mathematical principle that:

Max { Max3x3(x, y) | for x = i –1 to i+1, and y = j –1 to j+1}

= Max { S (x, y) | for x = i –2 to i +2, and y = j –2 to j +2 }

where Max is the maximum function, S(x, y) is the data
value at the position (x, y), and Max3x3(x, y) = Max{ S(x, y)
| for x =i –1 to i +1, and y = j –1 to j +1 }

The array
processor of

Fig 4

Delay Output

Data
stream in

raster-scan
sequence

The array
processor of

Fig 4

Data
Filter

)82(+xN
Figure 6. The configuration of the pipelined 5 x 5 peak

detector

As in the previous design, we use a delay buffer and a data
filter in addition to the max filter module. The
two-dimensional data are input in the raster-scanned
sequence, exactly the same as the previous case. The data
filter is to compare the original input data with the output
of the 5 x 5 max filter to get the final output of either peak
data or non-peak zeros. While the delay buffer is to control
the timing of the original input data to meet with the
corresponding output of the 5 x 5 max filter.

4. PIPELINED PEAK DETECTION FOR

EXTENDED DIMENSION

For some cases of applications, we are dealing with data
arrays of high-dimension (higher than 2). Naturally, the
peak detection will be more complicated. To perform the
peak detection for a three-dimensional data array, for
example, the local peak value must be extracted out of a
3x3x3 volume (or space).

To design an array processor for the pipelined extraction of
the above 3x3x3 case, the processor module of the 3 x 3
max filter (shown in Figure 4) can be used as a basic
construction block again. With the understanding of data
input being in raster-scan sequence, the 3-D array data are
input in the same way as previously mentioned for its first
plane (or 2-D data plane). And after the input of the first
layer, the data of the 2nd plane will be input following the
same scanning sequence. A similar flow follows for the 3rd
plane, and so on.

 4

The output of the 3 x 3 max filter follows the sequence of
its data input as well, except for a few steps of time delay.
That is, the maximum values (over the 3 x 3 window) will
come out one by one, row by row, and then one plane
followed by its next plane. In order to extract the maximum
value of the 3 x 3 x 3 space, our parallel processor must
have some way to gather the three 3 x 3 maximum values
out of the same 2-D position on three consecutive data
planes. Knowing the 3 x 3 max filter output being in
raster-scan sequence, the three data to be gathered are
present at time separation of Nx*Ny units each. Thus, we
may use the delayed comparator similar to the sub-module
3-RDC but with the delay time of Nx*Ny units instead of
Nx units.

In this design, we incorporate the data filter once again to
perform the peak filtering, with the original input data
delayed for Nx*Ny+ Nx+ 6 time units. The configuration of
the array processor design is shown in Figure 7.

Output

The array
processor of

Fig 4

Data
stream in

raster-scan
sequence

PE
Delay

Delay PE

Data
FilterDelay

)6(++× xyx NNN

)(yx NN ×

)1(+× yx NN

Figure 7. The configuration of the pipelined 3x3x3 peak

detector

With the same design methodology, we may extend our
parallel processor design to 5 x 5 x 5 peak detector, or to 3
x 3 x 3 x 3 higher-dimension peak detector. For the former
case, we need only concatenate two copies of the processor
module (excluding the data filter) in Figure 7, to form a 5 x
5 x 5 max filter. After incorporating the data filter and
delay buffer of proper length, the pipelined 5 x 5 x 5 peak
detector is achieved. For the latter case, we may take the
processor module of Figure 7 (excluding the data filter),
and add another delayed comparator similar to the
sub-module 3-RDC but with the delay time of Nx*Ny*Nz
units instead of Nx*Ny units. Again, after incorporating the
data filter and delay buffer of proper length, we have the 3
x 3 x 3 x 3 peak detector for our usage.

5. DESIGN OF ARRAY PROCESSORS FOR

PARALLEL DETECTION

The design of pipelined peak detector uses only a small
number of PEs (unit-comparators), and it is not
complicated. Nevertheless, the pipelined peak detector

takes input from the data array, one data at a time. The
speedup of such pipelined parallel processor is quite
limited, only up to ten- or twenty-fold in most cases,
comparing with the traditional general-purpose processor.
Moreover, with the use of VLSI array processors in some
applications, the speed of processing to generate the array
data (the input source) could be much facilitated. The data
could be produced with an oncoming rate of one row or
one column at a time. Thus in order not to become a
bottleneck, the parallel peak detection for the same order of
magnitude (such as one column at a time) is highly
desirable.

To design the parallel peak detector for two-dimensional
data array, we may make use of the RSC sub-module (see
Figure 1) which obtains the maximum value out of three
consecutive row data. And to acquire the maximum data
out of each row of the data array in parallel, we propose to
use an array of RSCs, with the number of RSCs equal to
the number of rows and each RSC connecting to the output
terminal of each row. Now since we can get each row’s 1x3
maximum at the same time, we may compare the
maximum values of any three consecutive rows directly
without the use of the 3-Row Delayed Comparator. There
are more than one way to design this 3-row comparator to
get their maximum. To reduce the complexity of the circuit,
we choose to adopt the configuration shown in Figure 8 for
our 3-Row Comparator (3-RC) sub-module.

PE

OutputPE
Reg

Input A

Input B

Input C

Figure 8. The configuration of the 3-Row Comparator

(3-RC)

By connecting the RSC output of any three consecutive
rows (any row, its upper one row and lower one row) to the
three input channels of a 3-RC sub-module, a 3x3 max
filter for one row can be formed. Repeating such
construction up to the number of rows, we have the parallel
3 x 3 max filter for the given 2-D data array.

 5

Data array

RSC 3-RC

RSC

RSC

RSC

RSC

RSC

RSC

RSC

3-RC

3-RC

3-RC

Output

3-RC

3-RC

0

0

Figure 9. The configuration of the parallel 3x3 max filter

For the final step of peak detection, we use the data filter
and delay buffer in our design similar to the scheme
described in the previous section. The circuit diagram of
the 3 x 3 peak-detection for one row is shown in Figure 10.
With the delay buffer of 4 time-units, it is adequate to
match the timing for peak filtering.

One-row
data stream

RSC 3-RC
Data
Filter

Delay

RSC of
upper row

RSC of
lower row

(4)

Figure 10. The circuit diagram of the 3 x 3 peak detector
for one row

Redrawing the above addition into the whole array
processor design, we have the array configuration for the
completed parallel 3 x 3 peak detector shown in Figure 11.

Paralel input
from data array

The Array
Processor of

Fig 9

Delay
(4)

Output

DF

DF

DF

DF

DF

DF

Figure 11. The array configuration of the parallel 3 x 3
peak detector (the block DF stands for the data
filter)

6. PARALLEL PEAK DETECTION FOR

MULTI-DIMENSIONAL DATA

For many applications, the data array is of dimension
higher than two. To furnish our design for various cases,
we investigate the parallel detection of peaks for data
arrays of higher-dimension. Working on the
three-dimensional case, first, we should clarify the way of
which the array data are input to our parallel detector. So
far in this paper, we consistently assume that the data in a
row be shifted to the right (or the data be read from the
right end of the row).

For our parallel detection on a two-dimensional data array,
the data are read from the right side of the 2-D memory
plane, column by column. For the three-dimensional case,
similar to the raster-scan sequence we have adopted, right
after the first data plane is completely read out, the 2nd data
plane will be accessed, starting from its rightmost column.
Focusing on a specific row in this data array, such a data
reading sequence is just like the previous pipelined case.
The data in a row are read one by one (from right to the
left); after finishing one row, the next row (the row at the
same position of the next data plane) will be read in the
same sequence. Following this way, the data are read one
row by one row (or one data-plane by one data-plane from
the parallel-operation points of view) until the last data
plane is finished.

From the design of the previous section, the processor
array of the 3x3 max filter has been able to acquire the
maximum values (over the 3x3 window in the same data
plane) in parallel for each row. For the design of a 3x3x3
max filter, what we need to do is to gather the 3x3
maximum values from the same position of three
consecutive rows (i.e. three consecutive data-planes for a
specific row processor module). Knowing the data input
sequence in our case, the three 3x3 maximum data on three
consecutive data-planes to be gathered are present at time
separation of only Nx units each. (Here Nx is the number of
data in a row of our data array.) And our design must
compare these three values to get their maximum for our
3x3x3 max filter output. Just like the case of our pipelined
3 x 3 max filter, the design of the 3-row delayed
comparator (3-RDC of Figure 3) fits the above functions
exactly. Hence by attaching one 3-RDC to the output of
each row (construction module) of the array processor of
Figure 9, we have completed an array processor design of
parallel 3 x 3 x 3 max filter for the three-dimensional data
array.

Similar to the previous design, by incorporating the data
filter and delay buffer to the above 3 x 3 x 3 max filter, we
will have the complete parallel 3 x 3 x 3 peak detector as
shown in Figure 12. The delay of Nx+6 time units is
counted to match the timing.

 6

Paralel input
from data array

The Array
Processor of

Fig 9

Delay
(Nx+6)

Output

DF

DF

DF

DF

DF

DF

3-RDC

3-RDC

3-RDC

3-RDC

3-RDC

3-RDC

Figure 12. The configuration of the parallel 3x3x3 peak

detector

With the array processor modules we have developed so far,
we can easily configure these construction blocks to form
the parallel peak detectors of different specifications.
Taking the parallel 5x5 peak detector as an example, we
may concatenate two array processor modules of Figure 9
to form a parallel 5 x 5 max filter. Incorporating an array of
the data filters and delay buffers of proper length, we have
a parallel 5 x 5 peak detector.

As to the parallel peak detector for higher-dimension, we
may extend our design using the previously proposed
processor modules. For example, we may add in another
array of 3-RDC modules (of proper delay length reflecting
the time separation due to the fourth dimension) before the
Data Filter stage in Figure 11. By setting an appropriate
time delay length to the “Delay” block, the design of a
parallel 3x3x3x3 peak-detector for 4-D data array can be
furnished.

7. VLSI IMPLEMENTATION AND PEAKS
REPORTING

In this research, none of the pipelined peak detectors
proposed requires many circuit components or modules.
There is no difficulty for a VLSI chip to implement the
whole circuit of any such detector. As the data are
pipelined in operation, only an input channel and an output
channel are required. There is no problem with the number
of I/O pins for the chip. And since the filtered peak or
non-peak data comes out one at a time, the host computer
should have adequate time or memory bandwidth to collect
the address and/or value of the peak. No extra provision is
needed to report the peaks.

For the parallel peak detector, the situation is different in
several aspects. First, the circuit complexity of our array
processor is about proportional to NR, the number of rows
of our parallel detection (or processing). On the other hand,
due to the possibly large number of rows processed in
parallel, the number of input/output channels of our array
processor module may require too many I/O pins to be
implemented on one VLSI chip. (For NR = 64 and word

length of 8-bit, the chip would need as many as 1024 I/O
pins for just a middle size NR.)

To reduce the number of I/O pins across the chip boundary
and the cost (or effort) for inter-chip connection, it is
possible to implement the parallel peak detector circuits in
the same chip of the data array. Depending on the
applications and design, the data in the data array may be
generated from certain operations such as the Hough
transform parallel processing, with the original source data
coming from a single or a small number of input channels
(for such example, refer to [6]). In this way, the output pins
of the data array and the input pins of our peak-detector
array processor across the VLSI chip boundary can be
eliminated. And we save a large effort for chip
interconnection.

As to the parallel peak-detector output, it is desirable to
reduce the number of output channels as well. The reasons
for this are three-folded. First, it is better to reduce the I/O
pins across the VLSI chip such that the size of the chip can
be smaller. Second, the host computer (or host processor)
taking this output usually does not have such a broad data
bandwidth. The I/O interface of the host computer would
become a severe bottleneck. The third, which is even more
important, is that the number of peaks extracted from the
data array is usually scarce with respect to the number of
data for most applications. (The circle-detection
Hough-transform is an example of this.) For the above
reasons, a peak-data concentrator that filters the parallel
output data and reports only the information of the few
detected peaks is highly desirable.

Depending on the probable ratio of the peak to the
non-peak data, there are various ways to design such a
peak-reporting stage. Taking our application on image
pattern recognition based on Hough transform as an
example, we have a small number of peaks to be reported.
For a simple design, we may implement a scheme similar
to the daisy chain along the column of register buffers (of
the reporting stage) to identify the first row of output with
peak data. Right after reporting the peak’s position and
value, this peak data will be cleared. Thus the next peak in
the register buffers, if any, can be reported. This process
continues until all the peaks in this reporting stage are
reported. Then we can allow the next column of the peak
detector’s output to come into the register buffers again.
Note that in practice the chance of having more than one
peak in the same column of the output is rare. Detailed
study on various designs is beyond the scope of this paper.

8. CONCLUSION

In this paper, a series of VLSI array processor designs are
proposed for various needs of peak detection on
multi-dimensional data array. We have developed the row
sequential comparator and the 3-row delayed comparator,
and use them to compose a basic pipelined 3 x 3 maximum
filter. Based on such module, the pipelined 3 x 3 and 5 x 5
peak-detectors can be easily configured. The design can be
extended to the three-dimensional 3 x 3 x 3 and 5 x 5 x 5
peak detection, detecting local peaks of broader range, or
even to the cases of higher dimension. We also propose

 7

some array processors to extract peaks in parallel, column
by column. And as the pipelined case, we have also
extended our array processor design for parallel
peak-detection, to detecting local peaks of broader range,
and to the cases of higher dimension. The peak-detection
array processors we have proposed in this paper are simple
in architecture, with regularity, and suitable for VLSI
implementation.

ACKNOWLEDGMENT

This research work was supported by the grant
NSC-89-2215-E-194-010 from the National Science
Council of the Republic of China.

REFERENCES

[1] R.O. Duda and P.E. Hart, “Use of Hough
transformation to detect lines and curves in pictures,”
Comm. ACM, Vol. 15, pp. 11-15, 1975.

[2] D.H. Ballard, “Generalizing the Hough transform to
detect arbitrary shapes,” Pattern Recognition, vol. 13,
no. 2, pp. 111-122, 1981.

[3] J. Illingworth, and J. Kittler, “A survey of the Hough
transform,” Computer vision, Graphics and Image
Processing, Vol. 44, pp. 87-116, 1988.

[4] H.Y.H. Chuang, and C.C. Li, “A systolic array
processor for straight line detection by modified
Hough transform,” in Proc. IEEE Conf. computer
Architecture for pattern Analysis and Image Database
Management, pp. 300-304, 1985.

[5] H.F. Li, D. Pao, and R. Jayakumar, “Improvements
and systolic implementation of the Hough
transformation for straight line detection,” Pattern
Recognition, vol. 22, no. 6, pp. 697-706, 1989.

[6] M.Y. Chern and C.M. Dai, “Design of VLSI Parallel
Processors for Hough Transform-based Line
Detection”, Journal of The Chinese Institute of
Electrical Engineering, Vol.7, no.1, pp.41-52, 2000.

[7] R. Chan and W.C. Siu, “New parallel Hough
transform for circles,” IEE Proceedings-E, Vol. 138,
pp. 335-344, 1991.

[8] R.K.K. Yip, P.K.S. Tam, and D.N.K. Leung,
“Modification of Hough transform for circles and
ellipses detection using a 2-dimensional array,”
Pattern Recognition, Vol. 25, pp. 1007-1022, 1992.

[9] P. Kierkegaard, “A method for detection of circular
arcs based on the Hough transform,” Machine Vision
and Applications, Vol. 5, pp. 249-263, 1992.

[10] S. Kumar, N. Ranganathan, and D. Goldgof,
“Parallel algorithms for circle detection in images,”
Pattern Recognition, Vol. 27, pp. 1019-1028, 1994.

[11] C.M. Dai, “Design of VLSI Parallel Processors for
Line and Circle Detection Hough Transform”, M.S.
thesis, National Chung Cheng University, 1997.

[12] M.Y. Chern and T.K. Tseng, “Real-time image
template matching based on a versatile VLSI array
processor,” Proc. National Computer Symposium,
vol. 2, pp.501-509, 1993.

