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Abstract 
 

The paper computes the exact fault diameter of the 
Cayley graphs based on the alternating group.  The fault 
diameter of a graph is the maximum diameter achieved 
when we delete from the original graph any set of nodes 
that is smaller than its node connectivity. Based on the 
algebraic properties of the generators, we show that the 
fault diameter is the original diameter plus one. 
Keywords: Interconnection networks, Cayley graphs, 

alternating group, fault diameter 
 

1. INTRODUCTION 
 

Group graphs provide a rich framework for the design 
of the topology of interconnection networks.  Famous 
network topologies such as hypercube[4], star graphs[1], 
etc. are all able to be modeled as Cayley graphs[2].  
Alternating group graphs[8], introduced by Jwo, 
Lakshmivarahan and Dhall, are Cayley graphs based on 
the alternating groups. They have shown that alternating 
group graphs are edge symmetry, 2-transitive, 
Hamiltonian and strongly hierarchical.  They also describe 
algorithms for embedding of a class of multidimensional 
grids with unit expansion and dilation three and 
embedding of a variety of cycles with unit dilation.  The 
simulations of greedy routing on hypercubes, star graphs 
and alternating group graph have been evaluated. It shows 
that alternating group graphs offer the best performance 
with respect to delay time and maximum queue length. 

The alternating group graphs are defined as follows. 
Let <n>={1, 2, �, n}, p = p1p2�pn, pi∈ <n> and pi≠pj for 
i ≠ j, where pi denotes the element at position i for 1 ≤ i ≤ 
n.  That is, p is a permutation of <n>.  The permutation p 
can also be represented by its cycle structure as 

p = c1c2�cke1e2�el, 

where ci is a cycle of length |ci| ≥ 2 for 1 ≤ i ≤ k and ei is 
an invariant for 1 ≤ i ≤ l.  Thus, n = ∑ k

i 1= |ci| + l. For 
convenience, the set of all invariants may be omitted in 
the cycle representation of p.  For example, the cycle 

structure of permutation 132546 is (23)(45)(1)(6), where 
(1) and (6) are invariants and may be omitted.  Let ζ(p) 
denote the number of inversions in p.  The parity of p is 
defined as η(p) = (-1)ζ(p) . A permutation is called even 
or odd depending on its parity being +1 or �1.  Thus, 
132546 is an even permutation. 

Let Sn be the symmetric group, i.e., Sn contains all the 
permutations of n elements.  The alternating group An 
contains the set of all even permutations of Sn, where |An| 
= n!/2.  Let gi+ = (1 2 i), gi- = (1 i 2) and Ω = {gi+ | 3≤ i ≤ 
n}∪ {gi-|3≤ i ≤n}.  It is well known that Ω is a generator 
set for An. 
 
Definition 1. An alternating group graph of dimension n, 
AGn = (Vn, En), is defined as 

Vn = An, the set of all even permutations of <n> 
and 

En = {(p, q) | p, q ∈  An, q= p⋅ h, for h ∈  Ω}, 
where "⋅" is the usual binary combination operator defined 
as f ⋅ g(x) = f (g(x)). 
 

An important parameter for graphs is their fault 
tolerance and fault diameter. The fault tolerance of a 
graph is defined as the maximum number of nodes that 
can be removed from it provided that the remaining graph 
is still connected.  Hence, the fault tolerance of a graph is 
defined to be one less than its connectivity. By the 
theorems proved in [5], the connectivity of the alternating 
group graphs is optimal, i.e., equal to the degree. 

Fault diameter d f of the graph G with fault tolerance f 
is defined as the maximum diameter of any graph obtained 
from G by deleting at most f nodes.  If an interconnection 
network is to be used as a multicomputer communication 
medium, it is very important that its fault diameter is close 
to its normal diameter.  A family of graphs {Gn} is 
defined to be strongly resilient if the fault diameter dn

 f of 
any member of the family Gn is at most dn + k, where dn is 
the normal diameter of Gn and k is a constant independent 
of n. 

We will show that for the alternating group graphs, 
the fault diameter is the original diameter plus one. 



 

 

 
2. BACKGROUND 

 
The n dimensional alternating group graph AGn is a 

regular graph with degree 2(n-2), |Vn| = n!/2, |En| = (n-2) 
× n!/2, diameter dn =  3 × (n-2)/2 , and the connectivity is 
2(n-2).  Alternating group graphs have a highly recursive 
structure.  AGn is made up of n copies of AGn-1. 

An understanding of the routing algorithm is essential 
for our development.  Let s, d ∈  An.  By definition, (s, d) 
∈  En if and only if d = s⋅ h, h∈ Ω.  By extending the notion 
of an edge in AGn, the path from s to d can be represented 
by a sequence of generators: 

Path(s, d) = h1 ⋅ h2 ⋅⋅⋅ ht, 

that is, d = s ⋅ h1 ⋅ h2 ⋅⋅⋅ ht, where hi ∈  Ω for 1≤ i ≤ t.  By 
group theory, we have 

I = d -1⋅ s ⋅ h1 ⋅ h2 ⋅⋅⋅ ht. 

Let p = d -1⋅ s. Then the properties of path from s to d 
can be analyzed by considering the path from p to I.  So 
we can focus how to route from p to I only, and the 
routing is equivalent to sorting a permutation. 

Consider what is changed by a routing step on gi+ and 
gi-, 3≤ i ≤n.  Clear, they rotate the three symbols at 
position 1, 2 and i with different directions. 
 

p1  p2�pi �pn  →  p2  pi�p1 �pn 
 
 
p1  p2�pi �pn  →  pi  p1�p2 �pn 

 

As shown in the above figure, gi+ moves the symbol at 
position i to position 2, the symbol at position 2 to 
position 1, and the symbol at position 1 to position i; 
while gi- moves the symbol at position i to position 1, the 
symbol at position 1 to position 2, and the symbol at 
position 2 to position i.  Obviously, gi+gi+ = gi-, gi-gi- 
= gi+ and (gi+)-1 = gi-, 3 ≤ i ≤ n. To find the shortest path 
from p to I is to optimally sort the set of symbols in p 
using the basic rotations.  (We say symbol i is sorted if it 
is at position i.)  Notice that there is no need to sort 
symbol 1 and 2, they will be automatically sorted after 
sorting symbol 3, 4, �, n because it should be an even 
permutation. 

The shortest path routing algorithm from p = p1p2�pn 
to I may be described as follows: Let p' be the first node 
on the shortest path from p to I.  Then, 
(1) p' = p⋅ gi+ or p' = p⋅ gi- for some i, where i is a non-

invariant if p1, p2 ∈ {1, 2}; 
(2) p' = p⋅ gi+, where i= p1 if p1 ∉ {1, 2}; 
(3) p' = p⋅ gi-, where i= p2 if p2 ∉ {1, 2}. 
Repeat the above process until the path reaches the node I. 

As an example, let p = 14523 = (2 4)(5 3). A shortest 
path from p to I is as follows: 

14523 g4- 21543 g3+ 15243 g5- 31245 g3+ 12345. 

Let Dp denote the length measured in terms of the 
number of edges in the shortest path from p to I.  We have 
the following lemma [8]. 
 
Lemma 2. If p = c1c2�cke1e2�el ∈  An, then 

Dp  = n+k-l if p1 = 1 and p2 = 2 
 = n+k-l-3 if p1 = 2 and p2 = 1 
 = n+k-l-2 if p1 ≠ 1 and p2 = 2 
 = n+k-l-2 if p1 = 1 and p2 ≠ 2 
 = n+k-l-3 if 1, 2∈ ci for some i and | ci | ≥ 3 
 = n+k-l-4 if 1∈ ci and 2∈ cj, i≠j. 

 
The result of routing is obtained in the form of a 

product of generators. Since the product of two generators 
of alternating group graphs is not commutative, there is no 
trivial rule for finding alternative paths of the same length. 
However, like star graphs [6], rules for finding the 
alternative paths in an alternating group graph can be 
based on the concepts of �ordinary� and �barrel� products 
of generators.  Ordinary and barrel products are basic 
parts of any shortest path that can be manipulated in order 
to obtain alternative paths.  The whole analysis relies on 
the mapping of each generator to the corresponding 
movement of symbols.  Therefore, the complex product 
can be tracked as a set of movements of symbols. 

Let σ(i) denote the sign + if i is even, or the sign - if i 
is odd. 

Definition 3. The initial product is the product of the 
following form: for some integer l, 

h1
σ(l)h2

σ(l+1) ⋅⋅⋅hn
σ(l+n-1). 

Definition 4. The ordinary product is any product that is 
an arbitrary permutation of an arbitrary subset of k 
distinct-index generators with alternating signs from the 
initial product. 

Definition 5. The barrel product of generator is obtained 
when the first generator of an ordinary product is 
appended at the end of that product with alternating signs, 
i.e., the product of the following form: 

h1
σ(i)h2

σ(i+1) ⋅⋅⋅hn
σ(i+n-1) h1

σ(i+n). 

The properties of the barrel product are exposed in the 
following lemma and its corollaries. 

Lemma 6. For AGn, the following holds. (Inverting signs) 
 g3+g4- ⋅⋅⋅ gn-2

σ(n-3)gn-1
σ(n-2)gn

σ(n-1)g3
σ(n)

 

= g3-g4+ ⋅⋅⋅ gn-2
σ(n-2)gn-1

σ(n-1)gn
σ(n)g3

σ(n+1). 

gi- 

gi+ 



 

 

Lemma 7. For AGn, the following holds. (Rotation) 
 g3+g4- ⋅⋅⋅ gn-2

σ(n-3)gn-1
σ(n-2)gn

σ(n-1)g3
σ(n)

 

= g4-g5+ ⋅⋅⋅ gn-1
σ(n-4)gn

σ(n-3)g3
σ(n-2)g4

σ(n-1)
 

… 

=gn-1
σ(n-2)gn

σ(n-1)g3
σ(n)g4

σ(n+1)⋅⋅⋅gn-3
σ(2n-6)gn-2

σ(2n-5)gn-1
σ(2n-4). 

Corollary 8. For AGn, let t1, t2, �, tm be distinct integers 
in <n>-{1, 2}. Then,  
 gt1

+gt2
- ⋅⋅⋅ gtm

σ(m-1)gt1
σ(m) 

= gt1
-gt2

+ ⋅⋅⋅ gtm
σ(m)gt1

σ(m+1) 

= gt2
+ ⋅⋅⋅ gtm

σ(m-2)gt1
σ(m-1)gt2

σ(m)
 

= � 
= gtm

+gt1
- ⋅⋅⋅ gtm-1

σ(m-1)gtm
σ(m). 

That is, Lemmas 6 and 7 hold when an arbitrary ordinary 
product is substituted for the ordinary part of barrel 
product. A barrel product of k distinct-index generators 
can be represented in 2k different ways, all preserving the 
same cyclic ordering of generators. 

Definition 9. Let ∏ = h1
σ(l)h2

σ(l+1) ⋅⋅⋅ hm
σ(l+m-1) be an 

ordinary or barrel product.  The invert-sign product ∏- of 
∏ is h1

σ(l+1)h2
σ(l+2)⋅⋅⋅hm

σ(l+m).  The positive-sign product ∏+ 
of ∏ is ∏ itself. 

The following two lemmas introduce the law of 
commutativity between the ordinary and barrel 
subproducts of generators. 

Lemma 10. For AGn, let t1, t2, �, tm be distinct integers in 
<n>-{1, 2}. Then, 
 gt1

+gt2
-⋅⋅⋅gtj

σ(j-1)gt1
σ(j) gtj+1

σ(j+1)gtj+2
σ(j+2) ⋅⋅⋅ gtm

σ(m)gt j+1
σ(m+1) 

= gtj +1
+gtj+2

- ⋅⋅⋅ gtm
σ(m–j-1)gt j+1

σ(m–j ) gt1
σ(m–j +1)gt2

σ(m–j +2) ⋅⋅⋅ 
gtj
σ(m)gt1

σ(m+1) 

=gt1
+ gt2

-⋅⋅⋅gti
σ(i-1) gtj+1

σ(i) gtj+2
σ(i+1) ⋅⋅⋅ gtm

σ(i+m-j-1) gtj+1
σ(i+m–j) 

gti+1
σ(i+m–j+1) ⋅⋅⋅ gtj

σ(m)gt1
σ(m+1). 

Lemma 11. For AGn, let t1, t2, �, tm be distinct integers 
in <n>-{1, 2}. Then, 

gt1
+gt2

-⋅⋅⋅ gtj
σ(j-1)gtj+1

σ(j+1)gtj+2
σ(j+2) ⋅⋅⋅ gtm

σ(m)gtj+1
σ(m+1) 

= gt1
+ gt2

- ⋅⋅⋅ gti
σ(i-1) gtj+1

σ(i)gtj+2
σ(i+1)⋅⋅⋅gtm

σ(i+m-j-1)gtj+1
σ(i+m–j) 

gti+1
σ(i+m�j+1) ⋅⋅⋅ gtj

σ(m) 
= gtj+1

σ(l)gtj+2
σ(l+1)⋅⋅⋅gtm

σ(l+m-j-1)gtj+1
σ(l+m–j) gt1

σ(m�j+1) gt2
σ(m–j+2) 

⋅⋅⋅ gtj
σ(m). 

When commuting with a barrel product that contains odd 
number of generators, the ordinary product should turn to 

its invert-signed product. The following example will 
illustrate the nesting of subproducts. 

∏o = g3+g4-g3+g5+g6- 

 = g5-g6+g3+g4-g3+ 

 = g5-g6+g3-g4+g3- 

 = g5-g3-g4+g3-g6- 

 = g5-g3+g4-g3+g6-. 

Definition 12. The coupled ordinary product is a 
concatenation of two ordinary products such that all the 
generators are of distinct-index and their boundary is of 
the same sign, not alternating signs. 

For example, g3+g4-g5-g6+ is a coupled ordinary product.  

Lemma 13. Let ∏1 and ∏2 are two ordinary products. 
Suppose that ∏1∏2 is a coupled ordinary product. Then,  

∏1∏2=∏2
σ(l) ∏1

σ(m), 
where l and m are the numbers of generators contained in 
∏1 and ∏2, respectively. 

Definition 14. The generalized ordinary product is either 
an ordinary product or a coupled ordinary product. 

Corollary 15. If some product of generators in AGn, 
consists of k products of distinct sets of generators 

∏o =∏1⋅∏2⋅⋅⋅∏i⋅⋅⋅∏k 
and if at most one of these products is a generalized 
ordinary one while all other products are of barrel type, 
then the ordering of products ∏i in the overall product ∏o 
is arbitrary except that the signs of the generalized 
ordinary one may be obligated to invert. 

Theorem 16. Every product of arbitrary number of 
generators in AGn can be reduced to product of k ≥ 1 
subproducts of distinct sets of generators 

∏m =∏1⋅∏2⋅⋅⋅∏i⋅⋅⋅∏k 
in which at most one subproduct is a generalized ordinary 
one and all others are of barrel type.  Product ∏m cannot 
be further reduced, therefore it has the form of �minimal� 
product of generators. 

Without loss of generality, we let ∏1 be the generalized 
ordinary subproduct if it exists. Product ∏m will be 
referred to as minimal product and it actually represents 
the routing function in AGn. The diameter of AGn 
corresponds to the minimal product with the maximal 
number of generators.  Since barrel product has the 
property of repeating the first generator, the maximal 



 

 

length of the minimal product corresponds to the maximal 
number of barrel products in it. 

Lemma 17. The maximal number k of subproducts in a 
minimal product from Theorem 16 is  (n-2)/2 . 
 

3. FAULT DIAMETER 
 

Let us consider two nodes A and B in AGn and some 
shortest paths ∏AB between A and B.  Suppose ∏AB 
=∏1⋅∏2⋅⋅⋅∏i⋅⋅⋅∏k, which has determined subsets of 
generators and their relative ordering for each ∏i. In case 
no adjacent nodes or channels has failed, the message is 
free to leave the node along the first generator of the 
ordinary subpaths (with a proper sign), or along any of the 
generator that belongs to any barrel subpath from ∏AB, 
without increasing the length of the path. Now, suppose 
that 2(n-2)–1 nodes that are adjacent to A have failed, 
and that the connection with the rest of the network is only 
along the channel corresponding to generator go

σ(l), 3 ≤ o 
≤ n and l∈ N. In other words, the message is forced to 
leave the node A only along the channel go

σ(l). Obviously, 
this tends to increase the path length between A and B. As 
a result or analysis, we shall compute worst cases of path 
lengthening, i.e., the fault diameter of AGn.  We 
distinguish the following cases: 

(1) go
σ(l) or go

σ(l+1) is a generator contained in ∏AB. 
Then we have the following five subcases. 

(1.a) One of the barrel subproducts contains go
σ(l) or 

go
σ(l+1).  According to cummutativity of subproducts in the 

�minimal� product (shortest path), this subproduct can be 
put at the beginning of the path. Then according to the 
known features of barrel products, this subproduct can be 
transformed to its equivalent have go

σ(l) at the beginning 
and at the end (with proper sign). Hence, a message can 
leave the node along go

σ(l) without increasing the length of 
the path.  Let us consider for example, path ∏AB = 
g3+g4-g5+g6-g5+ and go

σ(l) = g6-. This path can be 
transformed in the following way: 

∏AB= g3+g4- g5+g6-g5+ 

 = g5+g6-g5+ g3-g4+ 

 = g6-g5+ g6- g3-g4+. 

(1.b) go
σ(l) is at the beginning of the ordinary subpath. 

In this case, ordinary subpath can be placed at the 
beginning of the path, and message can again leave the 
node without lengthening the path. According to Lemma 
13, we always assume that go

σ(l) or go
σ(l+1) is at the first 

ordinary subproduct of the generalized ordinary one 
without loss of generality. 

(1.c) go
σ(l+1) is at the beginning of the ordinary subpath. 

In this case the original shortest path must be lengthened 
and transformed, keeping that the permutation that maps A 
to B is not changed.  This can be achieved by using the 
inverting property of generators: 
If the ordinary product contains only one generator, 

∏′AB = ∏1⋅∏2⋅⋅⋅∏k 
 = go

σ(l)[coup.][barr.1][barr.2] ⋅⋅⋅[barr.k-1] 
 = go

σ(l+1)go
σ(l+1)[coup.][barr.1][barr.2] ⋅⋅⋅[barr.k-1] 

 =go
σ(l+1)[barr.1]go

σ(l+m+1)[coup.]σ(m)[barr.2]⋅⋅⋅[barr.k-1], 

where m is the number of generators in the barrel product 
[barr.1]. Therefore, the length of ∏´AB is no more than 
that of ∏AB plus one. In that case, the maximal length of 
∏AB is dn, n ≥ 5. Thus, the maximal length of ∏′AB is 
dn+1.  It is trivial if there is no couple or barrel product: 

∏´AB = go
σ(l+1)go

σ(l+1). 

For example, ∏AB = g3+g5+g6-g5+ and go
σ(l) = g3-. Then, 

∏′AB = g3-g3-g5+g6-g5+ 

 = g3-g5+g6-g5+g3+. 

If there is only the couple product,  

∏′AB =go
σ(l+1) go

σ(l+1)[coup.] 
 =go

σ(l+1) go
σ(l+1)  [gu

σ(l) coup.′] 
 =go

σ(l+1) go
σ(l+1) gu

σ(l+1) gu
σ(l+1) [coup.′]  

 =go
σ(l+1) gu

σ(l) go
σ(l) gu

σ(l+1) [coup.′], 

where gu
σ(l) is the first generators in the couple product 

[coup.]. Therefore, the length of ∏´AB is no more than 
that of ∏AB plus two. In that case, the maximal length of 
∏AB is n-2, n ≥ 4. The maximal length of ∏′AB is n. 
For example, ∏AB = g3+g5+g6- and go

σ(l) = g3-. Then, 

∏′AB  = g3-g3-g5+g6- 

 = g3-g3-g5-g5-g6- 
 = g3-g5+g3+g5-g6-. 

Otherwise, 
∏′AB = ∏1⋅∏2⋅⋅⋅∏k 
=[go

σ(l) ord.][coup.][barr1][barr2] ⋅⋅⋅[barr.k-1] 
=[go

σ(l) ord.] go
σ(l+m+1) go

σ(l+m) [coup.] [barr.1] [barr.2] ⋅⋅⋅ 
[barr.k-1] 

=go
σ(l+1)ord.-go

σ(l+m)go
σ(l+m)[coup.][barr1][barr2]⋅⋅⋅[barrk-1] 

= go
σ(l+1) ord.-go

σ(l+m+1)[coup.][barr.1][barr.2] ⋅⋅⋅[barr.k-1], 

where m is the number of generators in the ordinary 
product [ord.]. Therefore, the length of ∏′AB is no more 
than that of ∏AB plus one. The maximal length of ∏′AB 



 

 

is dn, n ≥ 4. The maximal length of ∏′AB is dn + 1. For 
example, ∏AB = g3+g4-g5+g6-g5+ and go

σ(l) = g3-. Then, 

∏´AB  = g3+g4-g3+g3-g5+g6-g5+ 

 = g3-g4+g3-g3-g5+g6-g5+ 
 = g3-g4+g3+g5+g6-g5+. 

(1.d) go
σ(l) is contained in the ordinary subpath but not 

at the first position. The original shortest path must be 
lengthened and transformed. 

∏′AB=[ord.′go
σ(l)ord.″][coup.][barr.1][barr.2]⋅⋅⋅[barr.k-1] 

=go
σ(l+m) go

σ(l+m+1) ord.′  go
σ(l) ord.″ [coup.] [barr.1] 

[barr.2]⋅⋅⋅[barr.k-1], 

where m is the number of generators in the ordinary 
product ord.′. The enclosed subproduct is now of barrel 
type. If m is even, go

σ(l+m) = go
σ(l) and the enclosed 

subproduct can be rotated into form that begins with some 
generator from ord.′.  Therefore, the length of ∏′AB is no 
more than that of ∏AB plus two. In that case, the maximal 
length of ∏AB is 3+ 3(n-5)/2 , n ≥ 5. The maximal 
length of ∏′AB is 5+ 3(n-5)/2  = 2+ 3(n-3)/2 . If m is 
odd, we can invert the sign of the enclosed subproduct as 
follows. 

∏′AB= go
σ(l+m) go

σ(l+m) ord.′- go
σ(l+1) ord.″ [coup.] [barr.1] 

[barr.2] ⋅⋅⋅ [barr.k-1] 
 = go

σ(l) ord.′- go
σ(l+1) ord.″ [coup.] [barr.1] [barr.2] ⋅⋅⋅ 

[barr.k-1]. 

Therefore, the length of ∏′AB is no more than that of 
∏AB plus one. In that case, the maximal length of ∏AB is 
2+ 3(n-4)/2 , n ≥ 4. The maximal length of ∏′AB is 
3+ 3(n-4)/2  =  3(n-2)/2  = dn. 

(1.e) go
σ(l+1) is contained in the ordinary subpath but 

not at the first position. We can treat this case almost the 
same way to (1.d). 

∏′AB=[ord.′go
σ(l+1)ord.″][coup.][barr.1][barr.2]⋅⋅⋅[barr.k-1] 

= go
σ(l+m+1) go

σ(l+m+2)ord.′go
σ(l+1) ord.″ [coup.] [barr.1] 

[barr.2]⋅⋅⋅[barr.k-1], 

where m is the number of generators in the ordinary 
product ord.′. The enclosed subproduct is now of barrel 
type. If m is odd, go

σ(l+m+1)=go
σ(l) and the enclosed 

subproduct can be rotated into form that begins with some 
generator from ord.′. Therefore, the length of ∏′AB is no 
more than that of ∏AB plus two. In that case, the maximal 
length of ∏AB is 2+ 3(n-4)/2 , n ≥ 4. The maximal 

length of ∏′AB is 4+ 3(n-4)/2  =1+ 3(n-2)/2  = dn+1. If 
m is even, we can invert the sign of the enclosed 
subproduct as follows. 

∏′AB = go
σ(l+m+1) go

σ(l+m+1) ord.′- go
σ(l) ord.″ [coup.][barr.1] 

[barr.2] ⋅⋅⋅ [barr.k-1] 
 = go

σ(l) ord.′- go
σ(l) ord.″ [coup.] [barr.1] [barr.2] ⋅⋅⋅ 

[barr.k-1]. 

Therefore, the length of ∏′AB is no more than that of 
∏AB plus one. In that case, the maximal length of ∏AB is 
3+ 3(n-5)/2 , n ≥ 5. The maximal length of ∏′AB is thus 
4+ 3(n-5)/2  = 1+ 3(n-3)/2 . 

(2) Neither go
σ(l) nor go

σ(l+1) is a generator contained in 
∏AB.  Then we have two different cases. 

(2.a) If ∏AB conatins at least one barrel subproduct. (It 
may optionally contain ordinary subproduct but this does 
not affect the analysis). In that case we again use inverting 
property of generators to lengthen the path without 
changing the mapping between A and B. 

∏′AB = go
σ(l) go

σ(l+1) [ord. ][coup.][barr.]. 

Since go
σ(l+1) is not contained in subproducts in ∏AB, one 

barrel product can be nested between go
σ(l) go

σ(l+1) and 
∏′AB is given the following form: 

∏′AB  = go
σ(l) go

σ(l+1)[ord.][barr.][coup.] σ(m) 
 = go

σ(l) go
σ(l+1) [barr.][ord.] σ(m)[coup.] σ(m) 

 = go
σ(l) [barr.] go

σ(m+l+1) [ord.] σ(m) [coup.] σ(m), 

where m is the number of generators in the barrel product 
[barr.].  The maximal length of ∏′AB is dn-1+2.  This 
value is also a candidate for fault diameter since dn-1+2 ≥ 
dn.  For example, ∏AB = g3+g5+g6-g5+ and go

σ(l) = g4-. 
Then, ∏′AB is obtained in the following way: 

∏′AB  = g4-g4+g3+g5+g6-g5+ 

 = g4-g4+ g5+g6-g5+ g3- 

 = g4- g5+g6-g5+ g4-g3-. 

(2.b) If ∏AB contains only a generalized ordinary 
subproduct.  In that case we must append a pair of go

σ(l) 
and go

σ(l+1) at the beginning and at the end of ∏AB in order 
to form a barrel product. If the number of generators in 
the ordinary product is odd, 

∏′AB  = go
σ(l+1) go

σ(l) [ord.] go
σ(l) go

σ(l+1) [coup.] 
 = go

σ(l+1) go
σ(l+1) [ord.]- go

σ(l+1) go
σ(l+1) [coup.] 

 = go
σ(l) [ord.]- go

σ(l) [coup.]. 



 

 

If the number of generators in the ordinary subproduct is 
even, 

∏′AB  = go
σ(l+1) go

σ(l) [ord.] go
σ(l+1) go

σ(l) [coup.] 
 = go

σ(l+1) go
σ(l+1) [ord.]- go

σ(l) go
σ(l) [coup.] 

 = go
σ(l) [ord.]- go

σ(l+1) [coup.]. 

Evidently, this path transformation increases its length by 
2. The maximum length of ∏′AB is n-3+2=n-1. 
 

4. CONCLUDING REMARKS 
 

Since dn is not a linear function of n, it seems 
convenient to determine the fault diameter by representing 
the candidates in tabular form, as shown in Table 1. From 
Table 1, we can conclude that d f

n =dn+1 for AGn, i.e., the 
fault diameter of the alternating graphs is optimal. 
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Table 1. The maximum lengths of ∏∏∏∏′′′′AB and the fault diameters d f.    
AGn (1.a) 

(1.b) 
(1.c) (1.d) 

m even 
(1.d) 

m odd 
(1.e) 

m odd 
(1.e) 

m even 
(2.a) (2b) d f 

n dn dn+1  3(n-3)/2 +2  3(n-2)/2   3(n-2)/2 +1  3(n-3)/2 +1 dn-1+2 n-1 dn +1 
 3  1  2 � � � � � �  2 
 4  3  4  �  3  4  �  3  3  4 
 5  4  5  5  4  5  4  5  4  5 
 6  6  7  6  6  7  5  6  5  7 
 7  7  8  8  7  8  7  8  6  8 
 8  9  10  9  9  10  8  9  7  10 
 9  10  11  11  10  11  10  11  8  11 
 10  12  13  12  12  13  11  12  9  13 
 11  13  14  14  13  14  13  14  10  14 
 12  15  16  15  15  16  14  15  11  16 

 


