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Abstract

For x86 compatible processors, the proportion and
latencies of memory accesses are relatively high thus
impact the performance of these processors severely.
In this paper, we propose a semantic-based load/store
scheduling to alleviate these limitations. In x86
architecture, most of the local wvariables and
parameters of a function are stored in stack memory.
We find that the addresses of stack accessing
operations will be the same if the displacements of
these instructions are the same. Therefore, we may
track the dependencies and forwarding paths between
the stack accessing operations according to the
displacement values of the operations. From our
simulation results, the speedup of semantic-based
load/store scheduling alone can achieve 1.47
compared with the strategy of load bypassing stores
with forwarding. While combing this scheduling with
selective address/dependency prediction, it can
achieve the speedup of 1.70

1. Introduction

An x86 compatible processor, the most widely
used general-purpose architecture, is a
complex-instruction-set- computer (CISC) processor
with complex instruction formats, variable
instruction sizes, and complex memory addressing
modes. Due to the complexity of instruction formats
and variety of instruction execution time, most of the
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modern x86 compatible processors, such as Intel

Pentium and Pentium II/III, AMD K5/K6/K7, and
Cyrix M1/M2, convert an x86 instruction into one or
more primitive operations (POPs) with fixed-length
format and equal execution time in order to fit the
complex superscalar pipelines and out-of-order
mechanisms [1-5].
Load/store  operations especially affect the
performance of an x86 processor most greatly.
Load/store operations appear more frequently in x86
micro-architectures, about 45% to 55% of the total
operations in a program, than those appear in RISC
architectures. Besides, load/store operations have
more execution latencies than other operations
because of the increasing gap between processors and
memories. As a result, load/store operations influence
the performance of an x86 processor much more
severely than other operations.

For the consistency of memory, store operations
are executed in the original program order. However,
load operations can be executed without obeying the
original program order, and thus several scheduling
policies of memory accesses such as load bypassing
and load forwarding have been developed [2]. In load
bypassing, the address of a load is checked with the
addresses of its previous stores. If there is no conflict,
the load can be issued to data cache. Otherwise, the
load must be held until the conflicted stores are
issued. This policy has been used by the current
generation of the x86 microprocessors. As for load
forwarding, the data of the conflicted store can be
forwarded directly to the pending load.

However, in these conservative scheduling
policies, a load cannot be issued or forwarded if any
address of its previous stores is unsolved, i.e. has not



been generated [6]. Such unsolved address problem
may cause the performance degradation of a
superscalar microprocessor. For an x86 superscalar
microprocessor, this problem becomes much severer
because the pipeline is lengthen for address
calculation.

Many prediction techniques, such as address
prediction [7], dependency prediction [8-10], and
value prediction [7, 11], have been developed on
RISC for resolving the unsolved address problem.
These  techniques  predict the  addresses,
dependencies, or even data of load operations at the
fetch stage. However, when applying to x86
processors, which generally have longer pipelines
than RISC microprocessors, all these techniques have
to suffer the lengthen penalty of prediction errors and
thus may not work effectively. Besides, Smith
showed that the predictability of value prediction is
very low [7]. Lai has proposed an
address/dependency prediction in [12] to enhance the
x86 prediction for loads by combining the address
prediction and the dependency prediction, and
improve the dependency prediction by adding the
forwarding prediction ability, i.e., refining the
predictions with a set of 2-bit counters and filtering
out the error-like predictions with another set of 2-bit
counters. For further improving the prediction of
loads, we develop the semantic-based load/store
scheduling in this paper to predict the load data
according to the plentiful semantics of x86 instruction
set.

In x86 architectures, for a memory-type source or
destination operand, it is referenced by means of a
segment selector and an offset as shown in Fig. 1(a).
The address computation is made up of one or more
of components: base, index, scale factor, and
displacement. The offset that results from adding
these components is called an effective address. Fig.
1(b) shows all the possible combination of these
components for creating an effective address in the
selected segment.

Load/store operations can be classified into two
categories: stack and data accessing operations. A
stack accessing operation, such as push, pop, and
BP-based stack operation whose base register is BP,
can only access the data in the stack segment
specified by segment register SS; whereas a data
accessing operation can only access the data in the
data segment specified by segment register DS or ES.
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Fig. 1. Memory addressing in x86 architectures.

Because of the lack of registers in x86
architectures, the local variables and function call
parameters are always placed in the stack memory.
Hence, a large portion of load/store operations is used
to access the stack memory. Besides, these variables
and parameters are usually kept in the same relative
locations in stack memory every time the function is
called. The distance between SP pointer and the
address of each variable or parameter is always the
same and encoded into the displacement of a
load/store operation. This feature helps us to predict
the address of a stack accessing operation.

The semantic-based load/store scheduling tracks
the dependencies and forwarding paths of stack
operations to improve the accuracy rate of prediction
and avoid time-consumed address calculation. We
design a framed-stack buffer (FSB) to track the
update information of all BP-based stack operations
according to their displacement values. In Decode
stage, we allocate a new stack frame whenever a
CALL operation occurred. On the other hand, we free
the current stack frame and turn back to the previous
one when a RETURN operation occurred.

The organization of this paper is as follows. In
Section 2, we propose our design of semantic-based
load/store scheduling. Then we evaluate and analysis
the performance in different scheduling policies in
Section 3. Finally, we make conclusions in Section 4.

2. Models of Semantic-Based Load/Store
Scheduling

In this section, we develop the semantic-based
load/store scheduling, and combine it with
address/dependency scheduling. We construct a



model of x86 superscalar microprocessors. The block
diagram and the pipeline stages of this model are
depicted in Fig.2.. X86 instructions are fetched and
decoded into POPs. Distributed reservation stations
(RSs) are used in our discussion. The POPs with
ready operands and available functional units are
issued out of order from the RSs to the execution
units. The POPs are completed out-of-order while the
in-order state of the program is kept in the reorder
buffer (ROB). The results of POPs are retired orderly
by the ROB. For simplicity, the execution units are
divided into three categories only: ALU, branch unit
(BU) and load/store unit (LSU).

| Imariruriion

Ll
Fipelire Ninge =00 Instrerciang
Fenh Fos o e
[ et 4’
Ther ralee
B crms- o el l
I:'wa'"h Tty oty T i
RE [ I T
b ik . l' * r .
| ] [ ] [ ]
n - - e
Exsruisin = ni | | AL
— ¥ I
Howul Bas
Firiire

*
| Regheiar Flke | | e

Fig. 2. The block diagram and pipeline stages of x86
superscalar microprocessors.

2.1 Semantic-Based Load/Store Scheduling

The block diagram of a superscalar processor with
semantic-based scheduling is shown in Fig.3. When a
micro-operation is decoded, the type of the operation
is checked. If the operation is a BP-based operation, it
will be sent to the Framed-Stack Buffer (FSB) and the
Prediction Valid Buffer (PVB). According to the
displacement of the BP-based operation, the data,
dependency and address of the operation is predicted
and stored into the PVB. If the data of the operation is
predicted, the data will be sent to the result bus. After
the operation is entered the LSU, the predicted
information will be checked. If the prediction is
wrong and the predicted data is sent to the result bus,
the operation must be recovered and the predictor
must be updated. The behavior of the semantic-based
load/store scheduling will be discussed more

detailedly in the following paragraphs.
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Fig. 3. The block diagram of a superscalar processor with
semantic-based load/storescheduling.

While a program is compiled to x86 instructions,
the local variables and parameters of a function are
allocated in stack memory, and the BP pointer register
is pointed to the top of the stack. Hence, the distance
between the address of a local variable or a parameter
and BP is constant. Compiler will encode the distance
into the displacement of an operation. According to
this feature, we design a mechanism, called
framed-stack buffer (FSB), to track the dependencies
and forwarding paths of BP-based operations.

As shown in Fig. 4, the FSB is designed as
multiple frames, called stack frames, and selected by
a frame selector. The frame selector points to the
frame that is currently used. When the program enters
into a subroutine, a new stack frame will be allocated
by incrementing the value of the frame selector. The
frame selector is decremented when the program exits
the subroutine and returns back to the previous stack
frame.

As shown in Fig. 5, an entry of a stack frame
contains five fields: valid (v), tag, depend micro-PC
(dep uPC), address (addr), and data. The v and tag
fields are used for indicating whether the entry is
valid or not and what the displacement stored in the
entry is, respectively. The dep pPC field is used to
indicate which operation that stores data in the entry
is. And the addr field stores the address of the



memory access of the operation that stores data into
the data field. The data field is used for storing data
of the dependent load operation or store operation
when the data is ready. On the other hand, the PVB is
used to store the predicted information and is
implemented as a first-in-first-out queue. Each entry
in PVB contains five fields: valid (v), micro-PC
(uPC), depend micro-PC (dep uPC), address (addr),
and state. The v, dep uPC and addr fields are the same
as the fields in the stack frame. The uPC field is the
micro program counter that indicates which BP-based
operation the entry belongs to.

Frame Selector

Stack Frame 3

Stack Frame 2

Stack Frame 1
BP-based instructions
and their data —> /" .
/ Prediction Prediction
result i
Loaded data or <« > Valid
Dependency information — Buffer
Framed-Stack Buffer (FIFO)

Fig. 4. The mechanism for semantic-based load/store
scheduling.

the BP-based operation (the micro-PC is op 2) is
found in stack frame and is a load operation, the
contents of the stack frame and PVB are shown in
Fig. 6. If the data field of the indexed entry of the
stack frame contains the data of micro operation
op_1, the data will be sent to the result bus. At the
same time, the PVB allocates a new entry for this
operation and stores the prediction information in it.
The entry in PVB indicates that the micro operation
op_2 depends upon micro operation op 1. Besides,
the state field of this entry is set as “predict”. The
contents of the stack frame and PVB are shown in
Fig. 7.

Displacement of
a BP-based operation (UPC = op_1)

a BP-based operation
(UPC = op_1)

Stack Frame i
<v> <tag> <dep pPC> <addr> <data>

Prediction Valid Buffer
<v> <PPC> <dep uPC> <addr> <state>

o

ue ejep

s 2
From the load/store unit

Fig. 6. The actions of the stack frame and the PVB when the
BP-based operation is not found in the stack frame
or is a store operation.
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Fig. 5. The block diagram of a stack frame and the
prediction valid buffer.

When a BP-based operation enters Decode stage,
its displacement is used to index an entry in the
current stack frame. The BP-based operation is
processed in two cases. In the first case, the BP-based
operation (the micro-PC is op_1) is not found in the
stack frame or is a store operation. The operation will
update the tag and dep uPC fields of the indexed
entry in the stack frame as shown in Fig. 6. The entry
indicates that it is depends upon the operation whose
micro-PC is op_1, and the data and address of this
operation will be sent to this entry according to the
dep uPC field. The BP-based operation is also sent to
the PVB and an entry is allocated for this operation.
The uPC and state fields of this PVB entry are set as
“op_1” and “initial”, respectively. In the second case,

v Jtag_1| o

From load/store unit

Fig. 7. The actions of the stack frame and the PVB when the
BP-based load operation is found in the stack frame.

After a BP-based operation enters Execution
stage, it will check the state field of its corresponding
entry in PVB and store the data and address of the
operation into the entry of the stack frame if the state
field of the entry is “initial”. On the other hand, the
calculated address of the BP-based operation and the
addr field of the corresponding entry in PVB will be
sent to the verify logic, if the state field of the entry is
“predict”. If the comparison of these two addresses in
the verify logic is not matched, the predicted load
operation need to be recovered and the entry within
the stack frame will be updated. Otherwise, the load
operation is retired without accessing the data cache.



2.2 Classified Semantic-Based Load/Store
Scheduling

In this subsection, we propose a mechanism that
combines the techniques of semantic-base scheduling
and address/dependency scheduling, called the
classified semantic-based load/store scheduling
(CSB). As shown in Fig. 8, after the load/store
operations have been decoded, they will be sent to the
classifier in the classified semantic-based load/store
predictor. The classifier will identify the operations
and then send the BP-based load/store operations to
the semantic-based predictor and the other load
operations to the address/dependency predictor. As
for those store operations that are not BP-based, the
classifier will ignore them. Therefore, for a predicted
load/store operation, either the semantic-based
predictor or the address/dependency predictor will
make a prediction and save the predicted result into
the shared PVB. If the data of a load operation is
ready, it will be sent to the result bus speculatively.
On the other hand, if the address of a load operation is
ready, the address will be sent to the data cache for
executing the load operation speculatively.

Load/store operations

BP-based the Rest
load/store operations load operations

Address/Dependency
predictor

|

Predicted result

Semantic-based
predictor

k.

Shared PVB

lPredicted result

To the data cache or the result bus
Fig. 8. The mechanism of the classified semantic-based
load/store scheduling.

3. Performance Evaluation and Analysis

In this section, we evaluate the semantic-based
(SB) and classified semantic-based (CSB) load/store
scheduling models developed by us with simulation
results.

3.1 Simulation Environment

In this paper, we use a trace driven simulator to
evaluate the performance of various scheduling
models. The flow chart of the simulation environment
is shown in Fig. 9. The source codes of SPECint95
benchmarks [13] are compiled with GCC compiler.
After that, the executable benchmarks along with the
input files are executed on Linux OS in x86
compatible PCs. Then, the traces of the benchmarks
are retrieved by the system call “ptrace()”. Finally,
the traces retrieved are read into our simulator to
evaluate the performance of the simulation models

SPECint95 ,/ / » Linux
GCC Benchmark ptrace()

Simulator

proposed by us.

Fig. 9. Flow chart of the simulation environment.

files

To focus our discussion on the design issues of the
load/store units and ignore the constraints of other
parts in the microprocessors, we make some
assumptions in our simulation as follows:

1. The issue way of superscalar pipeline is 8.

2. The accuracy of branch prediction is 100%.

3. The number of ALUs and BUs are unlimited and
their latencies are 1 cycle.

4. The reservation station of each functional unit is

64-entry.
5. A single 16-issue load/store unit is provided.
6. The level one cache is 16-KB 4-way

set-associative with 16 access ports. The latency
is 1 cycle, if the access is hit. Otherwise, the
latency is 10 cycles.

3.2 Evaluation of Semantic-Based Load/Store
Scheduling

As shown in Fig. 10. The proportion of BP-based
operations in load/store micro-operations., the proportion
of BP-based operations is greater than 60% in all
load/store operations. According to the features of
x86 instruction sets, these BP-based operations
appear because of the use of the local variables and
function call parameters. The dependencies between
these operations exist most of the time, and become



the bottleneck of address prediction. Besides, because
of the dependency, even the address is predicted
correctly, the preloaded data of this address may also
be unusable. In our proposed mechanism, we use the
framed-stack buffer to track the dependencies
between these load/store operations and keep the
sequence order of these operations in prediction valid
buffer (PVB) to avoid the anti-dependencies and
output dependencies. As a result, this mechanism can
only be implemented in Decode stage because that it
should keep the order of load/store operations and
check whether a CALL or RET operation is occurred
in order to switch the frame currently used.

the selective address/dependency prediction (SADP)
proposed by Lai, which has the best performance gain
in traditional predictions and achieves the speedup of
1.33, SB and CSB have higher performance.
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Fig. 10. The proportion of BP-based operations in
load/store micro-operations.

3.2.1 Semantic-Based Scheduling

In this subsection, we discuss the semantic-based
scheduling in two models. The first one is the
semantic-based (SB) scheduling model, which uses
the semantic-base predictor to predict the address and
the value of a data. As we mentioned in Section 2, the
SB predictor can only work for the BP-based
operations. In other words, about 40% of the
load/store operations cannot be handled in this model.
Hence, we combine the semantic-based predictor and
the selective address/dependency predictor to be the
second model, called the classified semantic-based
(CSB) scheduling. In this model, the semantic-based
predictor is in charge of BP-based operations and the
selective address/dependency predictor is in charge
of the other load operations.

The performance of SB and CSB scheduling
models with unlimited semantic-based predictor is
shown in Fig. 11. we see that the performance of SB
and CSB can achieve the speedup of 1.52 and 1.77,
respectively, with respect to the strategy of load
bypassing stores with forwarding. Comparing with

Fig. 11. The performance of semantic-based scheduling
models.

3.2.2 Semantic-Based Scheduling with Limited
Frame-Stack Buffer

In this subsection, we discuss the impact of
performance caused by the size of the stack frames in
the frames-stack buffer. We simulate the relationship
between the frame size and the performance of a
processor. In the simulation models, there are eight
frames in the framed-stack buffers and the size of a
frame is from 16 to 512. As shown in Fig. 12, the
performances of SB and CSB with frame size that is
bigger than 128 entries are saturated. Therefore, we
suggest that 128 entries for each frame are enough.
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Fig. 12. The speedup of SB and CSB in different frame size.
Assume that there are 8 stack frames in each model.

4. Conclusions

In this paper, we propose a semantic-based
load/store scheduling to reduce the latencies of load
operations. This scheduling scheme is focus on how
to track the dependencies and forwarding paths
between load/store instructions. Unlike other



strategies, the semantic-based load/store scheduling
not only forwards data from store operations to load
operations but also reuses the data between load
operations.

According to our simulation result, we suggest
that two 128-entry stack frames is a good choice for
the tradeoff between hardware cost and performance
of a processor in either semantic-based (SB)
scheduling or classified semantic-based (CSB)
scheduling. The speedup of these SB and CSB can
achieve 1.47 and 1.70, respectively, compared with
the strategy of load bypassing stores with forwarding
scheduling. Using a single stack frame only in the
semantic-based predictor is also an option for
reducing cost and complexity in hardware and
control.

The prediction of semantic-based scheduling
focuses on how the reusing or forwarding does within
a function call. According to the feature of x86
instruction set, the parameters of a function are
pushed into the stack memory before the function is
called. But the tracking of parameters between the
caller and the callee is limited in the value of stack
pointer (SP) register. Therefore, in the future, we will
focus our attention on resolving the value of the stack
pointer to explore the potential performance caused
by passing parameters.
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