PERENTAFEREREESR

EEFRRBEASERZEN IR LRI REFHI AP ERE TR
BE® ~
Time-Optimal Parallel Image Template Matching Algorithms on
the Mesh-Connected Computers with Hyperbus Broadcasting *

% 4=t
Horng-Ren Tsai
F £ #§

Shung-Shing Lee

% g #i
Shi-Jinn Horng

OB WY
Shun-Shan Tsai
& 5 89

Tzong-Wann Kao

IREEARFARETER

Department of Information Management, The Overseas Chinese College of Commerce
' E-mail: hrt@rs2.occc.edu.tw
IBZeEHNRAEEHRA

Department of Electrical Engineering, National Taiwan University of Science and Technology
E-mail: horng@mouse.ee.ntust.edu.tw

SR BEHRIFLETH

Department of Electronic Engineering, Fu Shin Institute of Technology and Commerce
ThaihtXrHEETFH

Department of Electronic Engineering, Kuang Wu Institute of Technology and Commerce

EAXHBROBA LT LB EERL AR
B A Mk 83t ME-&B—-~NxN#EH
Flafo—mx mBEH(RRAEF) » KNH I3
%3 8 AR B M 4 P 47 ’)ﬁiﬁi:-iz‘tﬂ"sﬁ?%ﬁﬁ’éﬁﬂ‘lﬁﬂ
GRS F-EEEAMN A B AL BRESE
&4 0(1) 21kt sy » THAFO(logm) 85 M 5 3 —
BUREAN AEZIHEMAEB040(m) &
R THITO(M?) M © K > BAALER
WRHE - ROV RS AN R 2B B 4E
REZ 64 0(T) wiiter » #470(5F + Flogp)
R - RACFTREER AF1<p<m -
FEN AN RE AR EER TREAP
FAERE W -
MégF-paEhnri . Freix PHEE -
BEEMBEBREREZAREESFH -

Abstract

The computation model on which the algorithms
are developed is the mesh-connected compuiers with
hyperbus broadcasting (abbreviated to MCCHB). For
an N x N digitized image and an m x m template
(or window), we first design two optimal parallel al-
gorithms for the tmage template maiching problem;
one runs in O(logm) time using O(m*N?) proces-
sors with each processor containing O(1) restricted
memory, and the other runs in O(m?) time using N2
processors with each processor containing O(m) re-
stricted memory, respectively. Then, based on these

K
F
&
W

*This work was supported by National Science Council un-
der the contract no. NSC-86-2213-E011-058.

B-145

two proposed algorithms, an 0(";‘;— + %—logp) time

generalized parallel algorithm is derived using p>N?
processors with each processor containing O(-’;i) re-

stricted memory, where 1 < p < m. Clearly, our
algorithm is both optimal and optimal speed-up in
time complezities.

Key Words- image template matching, parallel algo-
rithm, image processing, mesh-connected computers

with hyperbus broadcasting (MCCHB).

1 Introduction

With the great computation power of parallel
processing systems, parallel computations for image
processing and computer vision have received consid-
erable attention during the last few years. Because
of its regularity in architecture and simple intercon-
nection network [4, 8], the mesh-connected computer
(abbreviated to MCC) is one of famous parallel pro-
cessing systems and has been widely applied in im-
age processing and computer vision. Unfortunately,
the large communication diameter is the inherent
drawback of the MCC. In order to overcome such
a drawback, the MCC has recently been enhanced
with various faster communication mechanisms by
many researchers [1, 2, 9, 10, 15]). These include the
mesh-connected computers with multiple broadcast-
ing (abbreviated to MCCMB) [15], the generalized
mesh-connected computers with multiple buses (ab-
breviated to GMCCMB)[3] and the reconfigurable
parallel processing systems [11, 16, 17, 18, 25]. For
the sake of reducing the system diameter, the MC-
CMB was constructed by embedding the global

SRR\ FACREH PR EE

buses to each row and column of the MCC [15].
For increasing the parallelism of the MCCMB, the
GMCCMB was proposed by partitioning the MC-
CMB into several individual modules and all mod-
ules were connected by global buses only [3]. For
improving the fixed architecture and local commu-
nication mechanism of the MCC, the reconfigurable
paralle] processing system was proposed by equip-
ping it with a reconfigurable bus system whose con-
figuration could be dynamically changed by prop-
erly setting local switches within each processor
(16, 17, 18, 25]. Recently, based on the advanced
VLSI technique, Horng [9, 10] extended the mesh-
connected computers with hyperbus broadcasting
(abbreviated to MCCHB). Such an extension led this
machine to be more powerful than other enhanced
MCCs. For example, compared to the MCCMB
and GMCCMB, it not only efficiently promoted the
communication ability but also kept the simplicity
and regularity in its architecture. Besides, Li and
Maresca [16, 17] had shown that the local switches
in each processor of the reconfigurable parallel pro-
cessing system would take about 20% silicon area of
the system. On the contrary, the silicon area needed
for the global buses was far less than that needed for
the local switches. It would be quite efficient -and
save so much silicon area by embedding the global
buses to the parallel processing system instead of
embedding the local switches to it.

The image template matching problem is one of
the fundamental problems and can be used to solve
many practical image processing and computer vi-
sion problems [22]. It can be defined as follows.
Given an N x N digitized image and an m x m
template (or window), the image template match-
ing problem is to compare the template with all
possible windows of the image, and the result of
each window operation is stored in the top left cor-
ner of the window. This problem has been stud-
ied extensively by several researchers using vari-
ous parallel computation models in the literature
(5,6, 7,11, 12, 13, 14, 19, 20, 21, 23].

In this paper we are interested in using the mesh-
connected computers with hyperbus broadcasting to
solve the image template matching problem. We
first design two parallel algorithms: one runs in
O(logm) time using m>N? processors with each pro-
cessor containing O(1) restricted memory; and the
other runs in O(m?) time using N? processors with
each processor containing either O(m) or O(1) re-
stricted memory, respectively. Then, based on these

two algorithms, an O('Z—; + Q;—Iog p) time general-

ized algorithm is developed by using p>/N? proces-
sors with each processor containing O(%) restricted
memory, where 1 < p < m. Clearly, our algorithms

are better than those results proposed in the litera-
ture [5, 6, 7, 14, 19, 20, 21, 23).

2 The Computation Model

A k-dimensional (k-D) MCCHB of size M con-
tains M processors arranged in a k-D grid. That
15, the processors can be thought of as logically ar-

ranged as i a k-D array A(ng_y, nges, ..., ng),
where n;, 0 < j <k, is the size of the j** dimen-
sion and M = np.y Xnp_s X... xng. Usually,
assume nNp_; = Np_2 = ... = ng = N = 27,

B

Fo P P, P P, Py Fe Pr Py Py PioPyy P2 P3Py Pis

) [/
i1 I

o2

B

PO

]
)

m
oo

Figure 1: A 1-D MCCHB of size 16.

Figure 2: A 2-D MCCHB of size 4 x 4.

Then, M = N¥ = 2¥2, Fach processor is identi-
fied by a k-tuple unique index (ig_1, iz_o, ey 19),
0<j<k 0<1; <n;j. The processor with index
(ik_l, =2y ove, io) is denoted by Pg,‘_li ike2y o, do-
Conventionally for the MCC, Pi1, iy e do 18
connected to Py, _,, .. i;x1, .., i, 0 £ § < k, pro-
vided P;,_, .. ij+1, ..., i, exists. That is, each pro-
cessor (except the boundary processors) is connected
to its 2k nearest neighbors by its local buses. The
MCCMB is constructed by embedding the MCC
with global buses [15]. In addition to the global
bus for each row and each column as proposed in
the MCCMB (15], we also extend the bus capacity
for each processor to k x n global buses but without
local buses. That is, instead of using 2k local ports
for the local buses, each processor has k x n global
ports for the global buses.

Conceptually, a group of processors is connected
by a global bus if its size is a power of 2. For a given
size 2° (s is an integer) on a specific dimension of the
k-D MCCHB, group g(s)o is beginning at processor
0, then group g(s); 1s beginning at processor 2°, then
group ¢(s)2 is beginning at processor 2 2°, ... and

* 80 on along that dimension. Thus it follows that the
number of local buses of the MCC is equal to that
of global buses of the MCCHB. That is, the link (lo-
cal bus or global bus) complexity of the MCCHB is
the same as that of the MCC. Also the local buses
of the MCC can be simulated by the global buses of
the MCCHB. That is, we can use the global bus of
group g(s); to simulate the local bus to connecting
two neighboring processors of group g(s — 1)s; and
group g(s — 1)z;43 for any s > 1, 0 < ¢ < N/2°.
Hence, all data routing operations of the MCC can
be simulated by the MCCHB without any extra cost.
Assume N = 16 and k = 1. We show an example for

B-146

hEREN\+AFREHEROS

a 1-D MCCHB of size 16 in Figure 1 by establish-
ing the global connection B?O’ "' ¢ for each processor,
where 0 <1< 4 and 0 S w < 5. Assume N = 16

and k = 2. A 2-D MCCHB of size 4 x 4 is also
shown in Figure 2 by establishing the global connec-

tion B;";'I'iaw for_each processor, where 0 < j < 2,

0<1<20<w< 557, 2and 0 <dg, i < 4
respectively.

An MCCHB is operated in an SIMD (single in-
struction stream, multiple data streams) model. For
a unit of time, assume each processor can either per-
form arithmetic and logic operations or communi-
cate with others by broadcasting data on a bus. It
allows multiple processors to broadcast data on the
different buses simultaneously at a time unit, if there
is no collision.

3 Basic Operations

Several data manipulation operations will be pro-
posed in this section. These data manipulation op-
erations will be used to derive the image template
matching algorithm in the next section. Without
loss of generality, assume N = 2%, m = 2% and
p=2%also N > m > p to be used in the follow-

ing sections for some integers n, k and ¢.

3.1 The Multiple Block Summations
LetA:(aim+ﬁ),0$ﬁ<m,0§i<%,be

a data matrix of size N with f—f,‘— segments, where m

is the length of the segment. The multiple segment

summations are to compute the summation of each
segment. That is,

m-—1
N
$Sim = E Gim+tas (L

a=0

where 0 < ¢ < —ﬁ—

Based on the semigroup operation as proposed by
Horng [10], Eq. (1) can be computed in O(logm)
time using N processors by the binary tree tech-
nique. This leads to the following lemma.

Lemma 1 [23] The multiple segment summations
can be computed in O(logm) time on a 1-D N MC-
CHB. n]

Let A = (Gimta, jme4s), 0L @, B<m,0<4, j <
g—, be an N x N data matrix which is partitioned
into g— X % blocks each of size m x m. The multiple
block summations are to compute the summation for
each of these —]n% x % blocks and store the result in

the top left corner of each block. That is,

m=-1m-1

bsim, jm = Z Z Uimya, jm+0, (2)

a=0 =0

where 0 < ¢, § < —ﬁ-

By Lemma 1, the multiple block summations for
computing Eq. (2) can be easily derived.- This leads
to the following lemma.

Lemma 2 [23] The multiple block summations can
be computed in O(logm) time on a 2-D N x N MC-
CHB. 0

3.2 The Adjacent Segmented Rotation
Let A= (ag, im+5), 0<B<m, 0<i< %’ be a
1 x N data matrix which is partitioned into nNT seg-

ments with each 'segment containing m consecutive
data items. A is initially stored in the first memory

location of the 0** row of an m x N matrix, where
each element of the matrix contains O(-ﬁyn-) memory

location. For each memory location ¢, 0 <t < %,
the'adjacent segmented rotation is to rotate the data
items of all % data segments of the 0'*-row to left
or right by ¢ segments. That is,

a0, im4plt] = vo, (G£tym+p) moa N[O, (3)

where 0 < f<mand 0 <t, z<%

Eq. (3) can be computed in O(£) time on a 2-D
mx N MCCHB. At each rotation, we rotate the data
items of each segment to left or right by one segment
simultaneously, and store it into its corresponding
memory location. After repeating % —1 times, each
memory location has owned the data item of its adja-
cent % — 1 segments. To rotate the data in constant

time at each iteration, the rotation operation can be
done as follows. Let the m x N matrix be viewed as
% blocks each of size m x m. We first copy the data
items within each block to their corresponding diag-
onal processors along ¢;-dimension, then rotate them
to left or right by one segment along ip-dimension,
and then copy them back to their corresponding rows
along #;-dimension. Hence, this leads to the follow-
ing lemma.

Lemma 3 The adjacent segmented rotation can be
computed in O(X) time on a 2-D m x N MCCHB.
(]

3.3 The Consecutive Segmented Rota-
tion 4

Let A= (aq, im+p), 0SB <m 0<i<Z bea

1 x N data matrix which is partitioned into % seg-

ments with each segment containing m consecutive

data items. A is initially stored in the 0% row of
an m X N matrix. For 0 < ¢ < m, the consecutive
segmented rotation is to rotate the data items of all

segments of the 0°* row to left or right by ¢ positions
and put it to the ¢** row. That is,

a;’ im+g = 00, (im+p%t) mod N, (4)

where 0<t, f<mand 0<i< %r

By the doubling recursive technique, the con-
secutive ‘segmented rotation can be computed as
follows. .Initially, set af jmyp = G0, imtp, 0 <
g<m0< 1< —nN; At the first iteration, ro-
tate a4 (imiprz)mod N 10 Cm imyp- Then, at
the second iteration, rotate ag, (im+f%2) mod N and

U2, (im+p22) mod N 10,97 imyp AN ain g
simultaneously. Following this way, the #* row
which comes from the initial matrix can be obtained
after logm iterations. Thus, Eq. (4) can be formu-
lated by the following recursive form.

B-147

PEREAN A E LT AR S

Initially,

. N
ag,im+ﬁ:a0,im+l37 0_<_ﬁ<m,0§2<;—n—‘

For each iteration !, 1 <1 <k,
a;l”:—1~t+zﬂl, im4+p = ’-"%;_Arn (im+p %) mod N> (5)

where 0 <t <2, 0<B<m,0<i< &,

It means that at each iteration / there are 2'~! rows
to rotate their data items to left or right by 5t posi-
tions, simultaneously.

The main idea for computing Eq. (5) can be de-
scribed as follows. At the I** iteration, the m x N
matrix can be viewed as 2'~! horizontal slices each
of size 5%y x N and each slice can be further parti-
tioned into 2'~1. g— sub-blocks each of size 5727 x 52+,
There are three major steps for each iteration. The
data items of each sub-block are first copied to their
diagonal processors along #;-dimension, then all of
them are rotated to left or right by &+ positions along

ip-dimension, finally all of them are copied back to

their corresponding rows along ¢;-dimension. Hence,

this leads to the following lemma.

Lemma 4 The consecutive segmented rotation can
be computed in O(logm) time on a 2-D m x N MC-
CHB. ‘]

3.4 The Window Broadcasting

Let B = by, 5, 0 < o, B < m, be a template
data matrix of size m x m, where the data matrix
B is stored in the top left corner of an image matrix
of size N x N. The window broadcasting operation
is to distribute the template of size m x m over the
N x N image matrix. That is,

bim-l—oz, im4g = boz, B (6)

where 0 < a, f<mand 0 <L, j<%.
By the power of the broadcasting buses, Eq. (6)

can be computed in O(1) timeon a 3-Dm x N x N
MCCHB. Hence, this leads to the following lemma.

Lemma 5 The window broadcasting can be com-
puted in O(1) time on @ 3-D m x N x N MCCHB.
[m]

Since the data items of each template row are
broadcasted independently, Lemma 5 can be easily
modified to run in O(%) time when there are only

pN? processors to be used for 1 < p < m. This leads
to the following corollary.

Corollary 1 The window broadcasting be computed
n O(%) time on ¢ 3-D p x N x N MCCHB, where

1<p<m.]

4 The Image Template Matching
Let A = (aj,, 5,) represent an N x N image and
B ='(by, g) represent an m x m template, where
0<La, f<m,0<14, ig< N and m < N. Assume
both the image and the template are with the same

domain D. The image template matching problem is
to compare the template with all possible windows of
the image, and the result of each window operation is
stored in the top left corner of the window. That is,
let C' = (eiy, i5), 0 < 41, to < N, be the result of each
window operation. Then,¢;,, i,, 0 < #1539 < N, can
be formulated by

3
3

Ciy, i0 = Q(i1+a) mod N, (ig4+8) mod N
0 B=0

R
1}

o

Xbc.' B- (7)

It is clear “that the lower bound of Eq. (7) is
Q(m2N?) time in a unit processor system.

4.1 Algorithm TMA-1

Let the N x N image data items aj,, ;,, 0 <
i1, 49 < N, be partitioned into % X fy—; sub-images
each of size mxm (i.e., Gimiq, jmes, 0 < @, B < m,
0<¢5< %) Then, for the vertical and horizontal

displacements s and ¢ relative to the top left corner
of the image, Eq. (7) can be rewritten as

m—~1lm-1

Cim+s, jm+t = Z Z a(im+s+‘a) mod N,
a=0 p=0

(jm+t4+8) mod N X ba, B (8)

where 0< s, t <m, 0<3, j < &.

For each pair of s and ¢ displacements specified
in Eq. (8), we can assign the (sm +)" layer to
compute the Cimys, jm4: (there are % terms to
be computed). Totally, it requires m? layers to
compute Eq. (8). As for the m? layers to be si-
multaneously computed, we must rotate the image
data items and broadcast the template data items to
their corresponding layers (i-e., @11 im4a, jmep =
A(im+a+s) mod N, (jm+f+t) mod N and b{gm—(—t‘ im+ea,
jm+p = ba, p). Then, Eq. (8) can be reformulated
as

m=-1m-1
Csm4t, im, jm = Z Z a{sm-i-t, im+a, jm+p
a=0 f=0
besm+t, im+a, jm+p (9)
where 0<'s, t<m, 04, j< X
Based on Eq. (9), the image template matching
can be computed in O(logm) time on a 3-D MC-
CHB using m®N? processors. Let a 3-D MCCHB of

size m®> x N x N consist of m? 2-D MCCHB each of
size N x N. Each 2-D MCCHB is a layer of the 3-D
MCCHB and denoted as MCCHB;,, 0 <4y < m?.
Initially, the image and template are stored in the
local variables a(0, im+«, ym+f) and (0, «, B),
0<a, B<m0<4, j< & of 2-D MCCHBy, re-
spectively. Finally, the results are stored in the local
variable ¢(0, im+a, jm+) of the 2-D MCCHB,.
Thus, there are m? layers for all pairs of s and ¢ dis-
placements; each laver has —ﬁ— X % blocks and each

B-148

hERENAEREH SRS

block has m x m product terms for computing each
Csmat, im, jm Oof Eq. (9)." That is, we can assign
the (sm +t)** layer (i.e., MCCHB,;4) to compute
Csm-t, im, jm Of Eq. (9) with a fixed pair of s and ¢
displacements. The image template matching algo-
rithm (TMA-1) consists of the following five steps.
Step 1, broadcast the template data items of the
MCCHByg over all MCCHB,, 0 < o < m?. Step
2, rotate the image data items of the MCCHB, up
to the MCCHB,;,, by s displacements: -Step ‘3,-ro-
tate the image data items of the MCCHB;, left to
the MCCHB; 4 by t displacements. Step 4, com-
pute the product terms and accumulate the sum-of
products. Step 5, copy c(sm + t, im, jm) of the
MCCHB;m+: back to its corresponding position of
MCCHBg.

Theorem 1 Algorithm TMA-1 can be computed in
O(logm) time on a 3-D m*> x N x N MCCHB. O

4.2 Algorithm TMA-2

Based on the communication ability of the broad-
casting buses and the concept as stated by Horng
et al. [12], the image template matching prob-
lem can be solved in O(m?) time on the 2-D MC-
CHB. Assume that each processor contains O(m)
restricted memory. The image template matching
algorithm (TMA-2) for computing Eq. (7) con-
sists of three steps. Step 1, rotate the image data
items left to each processor along each row of the ¢o-
dimension such that each processor stores the right
m — 1 consecutive data items (i.e., rotate o}, ; [5]
= i, (ip+f) moa N for 0 < B < m). Step 2, se-
quentially broadcast the template data to all proces-
sors, then multiply it with the corresponding image
data item, and then accumulate the partial sum of
each row along ip-dimension. That is, for each «,
0 < o < m, compute d;, ;,[a] by

m-—1
diy, iola]l = Y af, i [B) % ba, g, (10)
B=0

where 0 <1y, tg < N.
Finally, Step 3, accumulate the partial sum of each
column along 7;-dimension by

m-1

Ciy,i0 = Z d(i;-i—a) mod N, io[a’]v (11)

a=0
where 0 < 41, {4 < N.

Theorem 2 Algorithm TMA-2 can be computed in
O(m?) time on a 2-D N x N MCCHB with each
processor containing O(m) restricted memory. O

While each processor contains only O(1) re-
stricted memory, algorithm TMA-2 can be easily
modified to run in O(m?) time. The interesting
reader can refer to [24] for details. Hence, the fol-
lowing corollary is hold.

Corollary 2 The image template maiching problem
can be solved in O(m?) time on a 2-D N x N MC-
CHB with each processor containing O(1) restricted
memory. O

4.3 . Algorithm TMA-3.

By combining algorithm TMA-1 and algorithm
TMA-2, a more efficient-image template matching

3 i
algorithm which runs in O(%‘i— + Zlog p) time will
be derived in this subsection, where_each processor
contains O(%) restricted memory for 1 < p < m <
N. Let the N x N image data items a;,, 5, 0 <
i1, %9 < N, and the m x m template by 5, 0 <
a, f < m,-both be paztitioned -into & x —2’- sub-
m

images and 2 x 2 sub-templates each of size p x p

(ie., Bi'p+y, j'p+6 and bupiy, wp+ss 0.5 7, 6 < p,
0, i< %, 0<u v< -’;%) Then, for any
pair of vertical and horizontal displacements s’ anc
i’ relative to the top left corner of the image, Eq. (7)
can be rewritten-by

L i O,
P 17’ 1

p-1p-~1
copra pre= 30 3 3
u=0 v=0 y=04§=0
O(i'p+s'+up+y) mod N, (j'p+t/+vp+s) mod N
!
Kopirprss (12)

where 0 < &', ¥/, v, 6§ < p, 0 < u, v < 2 and
o<, j <

The main idea for computing Eq. (12) is as
follows. Based on the idea of algorithm TMA-
1, we first rotate the image data items located
on -the 0t* layer to all p® layers such that each
processor of the (s'p + ¢')'* layer stores the im-
age data item up by s’ vertical displacement and
left by ¢’ horizontal displacement corresponding to
the original image data located on the 0** layer.
Then based on the idea of algorithm TMA-2, each
layer computes ¢jipts, jip4tr of Eq. (12), simulta-

neously. That is, there are ¥ x % terms to be

: / —
computed in each layer. Let air, 4 jippy jrpgs =

QA(i'p4s'+v) mod N, (j'p+t/+5) mod N and bfglp+tl, up-+,
vpbs = bup-}-y, vp+8s where 0 < &/, t/, v, 6 < p,

0, i< % and 0 < u, v < 1;1. By rearranging
the summation order, Eq. (12) can be rewritten as
Flp-ip-15-1
Cs'pt!, i'p, j'p = Z Z Z
u=0 y=0§=0 v=0

’
Agipper, (¢'p+up+vy) mod N, (j'p+tvp+d) mod N
/
XByipitt, upty, vpksr (13)

where 0< ¢, ! <p,0< 7, 7 < %.
By the data manipulation operations proposed in
the previous section, Eq. (13) can be also computed

in O ’-’%-}-ﬂlogp time on a 3-D p? x N x N MC-
) P

CHB. The interested reader can refer to [24] for de-
tails. Hence, this leads to the following theorem.

Theorem 3 The image template matching can be
computed in O(%‘;—-I- % logp) time on a 3-D p? x N x
N MCCHB with each processor containing O(Z) re-
stricted memory, where 1 <p < m.]

B-149

RERE\ A EEEH AR

5 Concluding Remarks

The architecture of the MCCHB is regular and
the number of links of it is less than that of the mesh
of tree and the hypercube. Hence, it is quite possi-
ble to implement such an architecture constructed
by thousands of processors through currently VLSI
technology and suitable for image processing.

The image template matching is a basic operation
in image processing. Following the algorithms pro-
posed in this paper, we find the results are far better
than those derived before [5, 6, 7, 14, 19, 20, 21, 23].
Furthermore, the result derived in Tsai et al. [23] 1s
a special case of this paper. Our result achieves the
same time complexity with that of Tsai et al. [23] in
that case but reduces the number of processors by a
factor of m. Clearly, our algorithm is both optimal
and optimal speed-up in time complexities.

References

[1] A. Aggarwal, "Optimal Bounds for Finding
Maximum on Array of Processors with & Global
Buses,” [EEE Trans. on Comput. 35 62-64
(1986).

[2] S. H. Bokhari, ”Finding Maximum on an Array
Processor with a Global Bus,” IEEE Trans. on
Compui. 33 133-139 (1984).

[3] K. L. Chung, ”Prefix Computations on a Gen-
eralized Mesh-Connected Computers with Mul-
tiple Buses,” IEEE Trans. on Parallel and Dis-
tributed Systems 6 196-200 (1995).

[4] T. Y. Feng, ”A Survey of Interconnection Net-
works,” Computers 12-27 (1981). '

[6] Z. Fang, X. Li and L. M. Ni, ”Parallel Algo-
rithms for Image Template Matching on Hyper-
cube SIMD Computers,” IEEE Workshop on
Comput. Architeci. for Patt. Anal. and Image
Database Manag. 33-40 (1985).

[6] Z. Fang and L. M. Ni, ”Parallel Algorithms for
2D Convolutions,” Ini. Conf. on Parallel Pro-
cessing 262-269 (1986).

[7] Z. Fang and L. M. Ni, ”On the Communication
Complexity of Generalized 2-D Convolution on
Array Processors,” IEEE Trans. on Comput.
38(2) 184-193 (1989).

[8] K. Hwang and F. A. Briggs, Computer Archi-
tecture and Parallel Processing, Reading, New
York: McGraw-Hill, 1984.

[9] S. 1. Horng, ”Generalized Mesh-Connected
Computers with Hyperbus Broadcasting for a
Computer Network,” IEICE Trans. on Inform.
and Syst. E79-D(8) 1107-1115 (1996).

[10] 5. J. Horng, ”Semigroup Computation and Its
Applications on Mesh-Connected Computers
with Hyperbus Broadcasting,” Int. Conf. on
Parallel and Distributed Systems 34-39 (1995).

11} 8. J. Horng, "Constant Time Algorithm for
Template Matching on a RAP,” The Computer
Journal 36(2) 246-253 (1993).

B-150

[12] S.J. Horng, W. T. Chen and M. Y. Fang, ” Opti-
mal Speed-up Algorithms for Template Match-
ing on SIMD Hypercube Multiprocessors with

Restricted Local Memory,” Information Pro-
cessing Letters 38(1) 29-37 (1991).

(13] J. F. Jenq and S. Sahni, ”Reconfigurable Mesh
Algorithms for Image Shrinkifig, Expanding,
Clustering, and Template Matching,” Int. Par-
allel Processing Symp. 208-215 (1991).

. [14] V. K. P. Kumar and V. Krishnan, ”Efficient

Image Template Matching on Hypercube SIMD
Arrays,” Int. Conf. on Parallel Processing 765-
771 (1987).

[15] V. K. P. Kumar and C. S. Raghavendra, ” Array
Processor with Multiple Broadcasting,” Journal
of Parallel and Distrib. Comput. 251) 173-190
(1987).

[16] H. Li and M. Maresca, ” Polymorphic-Tours Ar-
chitecture for Computer Vision,” IEEE Trans.
on Patt. Analys. and Machine Intell. 11 233-
243 (1989).

[17) M. Maresca and H. Li, ”Connection Autonomy
in SIMD Computers: a VLSI Implementation,”
Journal of Parallel and Distrib. Comput. T 302-
320 (1989).

[18] R. Miller, V. K. P. Kumar, D. Reisis and Q.
F. Stout, ”Parallel Computations on Reconfig-
urable Meshes,” IEEE Trens. on Comput. 42
678-692 (1993).

[19] X. Qu and X. Li, "Parallel Template Matching
Algorithms,” Ini. Conf. on Parallel Processing
223-295 (1938).

[20] S. Ranka and S. Sahni, ”Image Template
Matching on SIMD Hypercube Computers,”
Int. Conf. on Parallel Processing 84-91 (1988).

[21] S. Ranka and S. Sahni, ”Convolution on SIMD
Mesh Connected Multicomputers,” Ini. Conf.
on Parallel Processing 212-217 (1988).

(22] L. J. Seigel, H. J. Seigel and A. E. Feather,
”Parallel Processing Approaches to Image Cor-
relation,” IEEE Trans. on Comput. 31(3) 208-
217 (1982).

(23] S. S. Tsai, S. J. Horng and T. W. Kao, *Op-
timal Template Matching on Mesh-Connected
Computers with Hyperbus Broadcasting,” Int.
(Conf.)on Computaiton and Information 336-348

1995).

[24] H. R. Tsai, S. J. Horng, S. S. Tsai, S. S. Lee
and T. W. Kao, " Time-Optimal Parallel Image
Template Matching Algorithms on.the Mesh-
Connected Computers with Hyperbus Broad-
casting,” Tech. Rept., Dept. of Electrical Eng.,
National Taiwan University of Sci. and Tech.,
1996. '

[25] B. F. Wang, G. H. Chen and F. C. Lin, ”Con-
stant Time Sorting on a Processor Array with a
Reconfigurable Bus System,” Informatzon Pro-
cessing Letters, 34 187-192 (1990).

