
1

BRANCH DIRECTION PREDICTION WITH VOTE PREDICTOR

Hung-Ching Lin Chang-Jiu Chen

Department of Computer Science and Information Engineering

National Chiao Tung University

Email: hclin@csie.nctu.edu.tw Email:cjchen@csie.nctu.edu.tw

ABSTRACT

As modern microprocessors employ deeper
pipelines and issue multiple instructions per cycle,
they are becoming increasingly dependent on
accurate branch prediction. Up to now, various
branch prediction strategies have been proposed.
However, from the experiment we find that there
is no one branch predictor is good for all
benchmarks.

With the factor above, we propose the vote
predictor, which combine three different branch
predictors to make prediction. From the
simulation results, it shows that the vote
predictor outperforms its component predictors
that make prediction alone. With 4K entries of
pattern history table, the vote predictor increases
the prediction accuracy with one of its most
accurate component predictor from 1% to 2%

1. INTRODUCTION

In the search for higher levels of performance,
recent machine designs have made use of
increasing degrees of instruction level
parallelism (ILP). For example, both superscalar
and superpipelining techniques are becoming
increasingly popular. In modern pipelined
superscalar processor, multiple instructions can
be fetched and processed concurrently. Out-of-
order instruction issue is effective only when
instructions can be supplied at a sufficient rate to
keep the execution unit busy. But when a branch

instruction occurs, it will interrupt the steady
flow of instructions stream.

In order to resolve such problems, many branch
prediction schemes had been proposed in these
years. In traditionally, the branch prediction can
be divided into two parts, one is the branch
direction prediction, and another is the branch
target prediction. This paper will focuses on
direction prediction.

Hardware branch prediction strategies have been
studied extensively. The most well-known
technique, referred to as bimod branch
prediction. More recent works have shown that
significantly utilizing more branch history can
make more accurate predictions, such as local
and global branch predictors. In order to get the
more accurate branch prediction, the combining
branch predictor was proposed [1]. This
approach is shown to provide more accurate
predictions than any one predictor alone.

In this paper, we will present a new branch
predictor called as “vote predictor”. The
experimental results show that the vote predictor
can obtain more accurate direction prediction
than all his component predictors.

The rest of this paper is organized as follows. In
chapter 2, we will describe the related work of
branch prediction conceptually. In chapter 3, we
will describe the structure of the vote predictor
in detail, including its performance and
hardware cost. In chapter 4, we will present the
experimental results and provide some analysis.
In chapter 5, the last chapter, we will make
conclusions and suggest some future work

2

2. RELATED WORK

2.1 Bimod Predictor

The bimod predictor was first proposed by Lee
and Smith [6]. It use 2-bit saturation counters to
record the history outcomes of every branch
instruction. If the counter is bigger than or equal
to 2, the branch is predicted to jump; otherwise
the branch is predicted to fall-through.

2.2 Gshare and Path-based branch predictor

Several variations of the two-level branch
predictor have been proposed. The gshare was
proposed by McFarling [1]. In order to utilize
the PHT more efficiently the n-bit global history
register is combined with m lower-order bits of
the program counter value using exclusive-OR.
The m-bit resultant is then indexed into the
patter history table. The advantages are that it
can accommodate a longer global history for a
given table size, and spread the accesses to the
pattern history table more evenly among the
entries.

Nair [3] proposed using a “path history” instead
of a pattern history to index the PHT. This has
the advantage of being able to represent the path
but has the disadvantage that information from
fewer branches can be captured in the history.

2.3 Skewed Branch Predictor

The skewed branch predictor was used to reduce
interference in 2-level branch predictor [5]. It
splits the original PHT into several PHT banks,
and indexes them by different and independent
hashing functions. A prediction is read from
each of the banks and a majority vote is used to
select a final branch direction.

The ideas of our vote predictor are derived
from the skewed predictor. The skewed predictor
is focused on reducing interference in 2-level

branch predictor. However, our vote predictor is
focused on combining multiple branch
predictors to increase the prediction accuracy
further as the combining branch predictor does.

3. VOTE PREDICTOR

3.1 Concept

Today hardware based branch predictor can
provide prediction accuracy grater than 90%.
But different branch predictors can work well
for different types of branches. For example, the
bimod predictor works well for those branches
that are bias taken or non-taken; but the gshare
works well for those branches that have
correlation with nearby branches. With the
reason above, this leads different branch
predictors to work well for different benchmark
programs. This situation is shown in Figure 1.

Figure 1. Branch direction hit rate of variant
branch predictors with 4K entries of PHT

So if we can combine the advantages of multiple
branch predictors into one predictor, we can get
more accurate branch prediction. Our basic
principle is to combine odd branch predictors
into one predictor. This means that we can
combine three or more predictors into one. But
take cost-effectiveness into account we think
three predictors is the realizable choice. The
following examples will show how our vote
predictor can increase the accuracy of
prediction.

Example 1. This example is illustrated on

70%

75%

80%

85%

90%

95%

compress gcc perl li fpppp go

Benchmarks

B
ra

nc
h

D
ire

ct
io

n
H

it
R

at
io

gshare

bimod

path-base

3

Figure 2 where we present a gshare, a bimod,
and a path-based predictor with 16 entries of
PHT. In this example, we suppose there is a
destructive conflict with gshare. Under this
assumption, obviously this will cause
mispredictions of the first branch and the second
branch in gshare. But since these two branches
do not cause any conflicts in both bimod and
path-based predictors, the direction still can be
predicted correctly by those two predictors. So if
we combine these three predictors into one
predictor, then we still can get the correct
direction prediction. From this example we can
find that one of the advantages is that it can
remove some of the conflicts in one predictor.
This is because that if two branches are aliased
with each other in one predictor, then they are
less likely to be aliased in the others.

Example 2. This example is analogous to
example 1, but there are no any conflicts with
each predictor. Suppose that we are going to
predict the first branch, and the gshare predictor
makes the wrong prediction. There are several
factors which may lead so, such as compulsory
aliasing (occur when a branch substream is
encountered for the first time), congenital limit
(this means that the gshare predictor is no use
predicting those branches). By including the
other two branch predictors (suppose these two
predictors can make the correct prediction), we
still can correctly predict the direction.

Form above two examples, we can find that our
vote predictor can dynamically select the correct
prediction and this is just why our vote predictor
can outperform each predictor that works alone.

Figure 2. Conflicts can be removed by combining
multiple predictions

3.2 Vote Predictor Structure

The hardware configuration of the vote predictor
is shown in Figure 3. As we mention in the
previous section, we combine three different
predictors into our vote predictor (such as
predictor 1, predictor 2 and predictor 3 in Figure
3). These three predictors can be any well-
known predictors, such as gshare, bimod… etc.

Figure 3. Logical organization of the vote
predictor

The arbitrational rules are as follows:
Predict “Taken”: if two or more predictors
predict that the branch instruction will jump to
target address, then the vote circuit will output
“Taken” signal.
Predict “Non-Taken”: if two or more
predictors predict that the branch instruction will
jump to fall-through address, then the vote
circuit will output “ Non-Taken” signal.

3.3 Updating the Vote Predictor

As the previous mention, there are three
predictors in our vote predictor, but it is
impossible that three predictors can make the
correct prediction every time. With the above-
motioned, we consider two policies for updating
the vote predictor across multiple predictors:
Total Update policy: each of the three
predictors is updated as if it were a sole
predictor in a traditional prediction scheme.
Par tial Update policy: when a predictor gives a
wrong prediction, it is not updated when the
overall prediction is correct. This wrong
predictor is considered to be attached to another
branch instruction. When the overall prediction
is incorrect, all predictors are updated as dictated

4

by the outcome of the branch instruction.

 4. SIMULATION RESULTS

4.1 SimpleScalar Tool Set

The SimpleScalar tool set was written by Todd
Austin over about one and a half year, between
1994 and 1996 [4].

4.2 Exper imental Model Configurations

Details of the simulated superscalar pipeline are
shown in Table 1.
Table 1. Modeled superscalar pipeline parameters

In our experiment, we will use four well-known
predictors and combine three of them arbitrarily.
These four predictors are bimod predictor,
gshare predictor, PAg predictor, and the path-
based branch predictor. Since we use four
different predictors, it will produce four different
combinations. We identify the four different
predictors as the following:
Vote1 Predictor : it combines a bimod, a gshare
and a path-based predictor into one predictor.
Vote2 predictor : it combines a bimod, a PAg,
and a path-based predictor into one predictor.
Vote3 predictor : it combines a bimod, a PAg,
and a gshare into one predictor.
Vote4 predictor : it combines a PAg, a gshare,
and a path-based predictor into one predictor.
In order to compare our vote predictors with
each signal predictor fairly, we will configure
each predictor with the same size of PHT. This
means that we don’t configure our vote predictor

with 3 times the PHT size but with the same size
of PHT.

4.3 Simulation Results

4.3.1 Update Policy

In the section 3.4, we proposed the total and the
partial policies. To verify the effect of each
update policy, we simulate each vote predictor
with 4096-enty PHT under total and partial
update policies. The comparisons between total
and partial update policy are shown in Figure 4,
we can find that the partial update is better than
the total update. The reason why “partial
update” is better than “total update” is intuitive.

Figure 4. Branch direction hit rate of various vote
predictors under total and partial update

4.3.2 Vote1 Predictor Simulation

Figure 5 is the simulation results of vote1
predictors versus its component predictors,
including gshare, bimod, and path-based
predictor. The PHT entries are vary from 2048 to
163824 entries.

Figure 5. Branch direction hit rate of vote1
predictor vs. its component predictors

90%

92%

94%

96%

98%

100%

compress gcc ijpeg perl li fpppp hydro2d su2cor

B
ra

nc
h

D
ire

ct
io

n
H

it
R

at
io

TU-vote1 TU-vote2 TU-vote3 TU-vote4 PU-vote1 PU-vote2 PU-vote3 PU-vote4

perl

88%

90%

92%

94%

96%

98%

2k 4k 8k 16k
number of entries

gshare
bimod
path-base
vote1

fpppp

90%

92%

94%

96%

2k 4k 8k 16k
number of entries

gshare
bimod
path-base
vote1

5

Figure 5. Branch direction hit rate of vote1
predictor vs. its component predictors (cont’)

4.3.3 Vote2 Prediction Simulation

Figure 6 is the simulation results of vote2
predictors versus its component predictors,
including bimod, PAg, and the path-based
predictors. The PHT entries are vary from 2048
to 163824 entries.

Figure 6. Branch direction hit rate of vote2
predictor vs. its component predictors

4.3.4 Vote3 Predictor Simulation

Figure 7 is the simulation results of vote3
predictor versus its component predictors,
including bimod, PAg, and gshare predictors, the
pattern history table (PHT) entries are vary from
2048 to 163824 entries.

Figure 7. Branch direction hit rate of vote3
predictor vs. its component predictors

4.3.5 Vote4 Predictor Simulation

Figure 8 is the simulation results of vote4
predictor versus its component predictors,
including gshare, PAg, and the path-based
predictors, the pattern history table (PHT)
entries are vary from 2048 to 163824 entries.

Figure 8. Branch direction hit rate of vote4
predictor vs. its component predictors

gcc

84%

86%

88%

90%

92%

94%

96%

2k 4k 8k 16k
number of entries

gshare

bimod

path-base
vote1

i jpeg

88%

90%

92%

94%

96%

2k 4k 8k 16k

number of entries

2lev
bimod
path-base
vote1

gcc

84%

86%

88%

90%

92%

94%

2k 4k 8k 16k
number of entries

bimod

path-base

PAg
vote2

pe rl

88%

90%

92%

94%

96%

98%

2k 4k 8k 16k
number of entries

bimod
path-base
PAg
vote2

i jpeg

88%

90%

92%

94%

96%

2k 4k 8k 16k

number of entries

bimod
path-base
PAg
vote2

i jpeg

88%

90%

92%

94%

96%

2k 4k 8k 16k

number of entries

gshare
bimod
PAg
vote3

gcc

84%

86%

88%

90%

92%

94%

2k 4k 8k 16k
number of entries

gshare

bimod

PAg
vote3

perl

88%

90%

92%

94%

96%

98%

2k 4k 8k 16k
number of entries

gshare
bimod
PAg
vote3

li

90%

92%

94%

96%

2k 4k 8k 16k
nunber of entries

gshare

bimod

PAg

vote3

perl

88%

90%

92%

94%

96%

98%

2k 4k 8k 16k
number of entries

gshare
path-base
PAg
vote4

gcc

84%

86%

88%

90%

92%

94%

2k 4k 8k 16k
number of entries

gshar

path-base

PAg
vote4

i jpeg

88%

90%

92%

94%

96%

2k 4k 8k 16k

number of entries

gshare
path-base
PAg
vote4

li

90%

92%

94%

96%

2k 4k 8k 16k

number of entries

bimod
path-base
PAg
vote2

fpppp

92%

94%

96%

98%

2k 4k 8k 16k
number of entries

bimod
path-base
PAg
vote2

su2cor

96%

97%

98%

99%

2k 4k 8k 16k

number of entries

bimod
path-base
PAg
vote2

fpppp

90%

92%

94%

96%

98%

2k 4k 8k 16k
number of entries

gshare
bimod
PAg
vote3

li

92%

93%

94%

95%

2k 4k 8k 16k

number of entries

gshare
path-base
PAg
vote4

fpppp

90%

92%

94%

96%

98%

2k 4k 8k 16k

number of entries

gshare
path-base
PAg
vote4

su2cor

96%

97%

98%

99%

100%

2k 4k 8k 16k
number of entries

gshare
path-base
PAg
vote4

su2cor

94%

96%

98%

100%

2k 4k 8k 16k
number of entries

gshare
bimod
path-base
vote1

li

91%

92%

93%

94%

95%

96%

2k 4k 8k 16k
number of entries

gshare
bimod
path-base
vote1

su2cor

94%

96%

98%

100%

2k 4k 8k 16k
number of entries

gshare
bimod
PAg
vote3

6

4.3.6 Compare Various Vote Predictor Models

According to the previous results, each predictor
with 4k-entry PHT has the best cost-
effectiveness. So in the following, we will
compare various vote predictors under 4k-entry
PHT. The results of comparison between our
four vote predictors are shown in Figure 9. Table
2 lists the hardware costs of various vote
predictor models.

From the results, we can find that the vote3
predictor has the best average prediction
accuracy, and the vote1 predictor has the worst
average prediction accuracy. However, if we
take the hardware cost into account, the
hardware cost of vote1 predictor is approximate
to 1/3 those in other predictors. So the vote1
predictor model still has the best
performance/cost ratio.

Figure 9. Comparison of various vote predictors
models with 4K-entry PHT

Table 2. Hardware costs of various vote predictor
models

4.4 Vote Predictor VS. Combining Branch
Predictor

4.4 Vote Predictor VS. Combining Branch
Predictor

The combining branch predictor was proposed
by McFarling. It combines multiple branch

predictors into one, including bimod and gshare
predictors, and then uses a meta-table to choose
which result to be used. In order to compare our
vote1 predictor with combining predictor fairly,
we configure the combining branch predictor
with one bimod, one gshare that has 8-bit global
history register, and one meta-table, and the
same size of PHT as the vote1 predictor except
the size of meta-table. For the meta-table, we
configure it with extra 2048-entry PHT. The
results are shown in Figure 10.

Figure 10: Branch direction hit rate of vote
predictor vs. combining branch predictor

4.5 Performance with Context-Switch

In the real world, the context-switches will occur
frequently. When a context-switch occurs, the
relative machines that use to keep track of
branch history need to be flushed. The effects of
prediction accuracy with context-switch and
without context-switch are shown in Figure 11.
In this experiment, we compare the vote1
predictor with its component predictors with
4096-entry PHT and assume a context-switch
occurs every 100k and 500k instructions. Here
the “gshare-100k” represents the gshare
predictor with context-switch occurring per 100k
instructions and the “gshare-no cs” represents no
context-switch occurring. The value 100k is
derived by assuming that a 100 MHz clock is

90%

92%

94%

96%

98%

100%

compress perl gcc ijpeg li fpppp su2cor hydro2d

vote1
vote2
vote3
vote4

perl

90%
92%
94%
96%
98%

100%

2k 4k 8k 16k

number of entries

vote

comb

gcc

88%
90%
92%
94%
96%
98%

100%

2k 4k 8k 16k

number of entries

vote

comb

ijpeg

90%
92%
94%
96%
98%

100%

2k 4k 8k 16k

number of entries

vote

comb

li

90%
92%
94%
96%
98%

100%

2k 4k 8k 16k

number of entries

vote

comb

fpppp

90%
92%
94%
96%
98%

100%

2k 4k 8k 16k

number of entries

vote

comb

su2cor

90%
92%
94%
96%
98%

100%

2k 4k 8k 16k

number of entries

vote

comb

7

used and a context-switch occurs every 1 ms in a
1 IPC machine. However, the value 500k is
derived by assuming that a 500 MHz clock is
used and a context-switch occurs every 1 ms in a
1 IPC machine.

According to the results, we can find that the
bimod predictor has the lowest average accuracy
degradation, the vote predictor is second, the
path-based predictor is third, and the gshare is
fourth. This is not a bit surprised, since the
bimod predictor only uses the simple 2-bit table
to keep track of branch history; it needs less
warm-up time. However, for our vote predictor,
because of the existence of complementary
relations, it can reduce the warm-up time. The
fact that path-based predictor is better than the
gshare predictor is consistent with that in [3].

Although for accuracy degradation, our vote
predictor is not the lowest, but for the prediction
accuracy, our vote predictor is still better than
other predictors.

Figure 11. Prediction accuracy with context-
switch

 5. CONCLUSIONS

In this paper, we experiment on six benchmark
programs with several well-known branch
predictors to compare their prediction accuracy.
With 4K entries of pattern history table, the vote
predictor increases the prediction accuracy with
one of its most accurate component predictor
from 1% to 2%. In this paper, we only use

four simple predictors to construct the vote
predictor and the average prediction accuracy is
95.5%. In the future maybe we can put other
complex and accurate predictors into the vote
predictor to obtain more prediction accuracy.

 6. REFERENCES

[1] S. McFarling, “Combining Branch
Predictors,” Technical Report TN-36,
Digital Western Research Laboratory, June
1993.

[2] T. -Y. Yeh and Y. N. Patt, ”A Comparison of
Dynamic Branch Predictors that use Two
Levels of Branch History,” Proceedings of
the 20th Annual International Symposium
on Computer Architecture, Pages 257-266,
1993.

[3] R. Nair, “Dynamic Path-Based Branch
Correlation,” Proceedings of the 28th
Annual ACM/IEEE International
Symposium on Microarchitecture, pages 15-
23, 1995.

[4] D. Burger and T. M. Austin, “The
SimpleScalar Tool Set Version 2.0,”
Technical Report 1342, Computer Sciences
Department, University of Wisconsin,
Madison, WI, 1997.

[5] Pierre Michaud, Andre Seznec, Richard
Uhlig, “Trading Conflict and Capacity
Aliasing in Conditional Branch Predictors,”
24th Intl. Symp. On Computer Architecture,
pp. 292-303, June 1997.

[6] J. K. F. Lee and A. Smith, ”Branch
Prediction Strategies and Branch Target
Design,” Computer, vol. 17,no. 1, pp. 6-22,
Jan. 1984.

86%

88%

90%

92%

94%

96%

98%

compress perl gcc jipeg
benchmarks

gshare-100k

gshare-500k

gshare-no cs

bimod-100k

bimod-500k

bimod-no cs

path-base-100k

path-base-500k

path-base-no cs

vote-100k

vote-500k

vote-no cs

	page1
	page2
	page3
	page4
	page5
	page6
	page7

