
 1

COST-EFFECTIVE MICROARCHITECTURE OPTIMIZATION
FOR ARM7TDMI MICROPROCESSOR

Ing-Jer Hunag and Yu -Liang Hung and Chi-Shaw Lai

Department of Computer Science and Engineering,
National Sun Yat-Sen University, 70 Lien-hai Rd. Kaohsiung, Taiwan

Email:ijhuang@cse.nsysu.edu.tw

ABSTRACT

In this paper, we present how to optimize our ARM7TDMI
instruction set compatible microprocessor. The
ARM7TDMI is a 32-bit microprocessor developed by
ARM Ldt. It used in embedded application such as mo-
bile phones, pager and PDAs. The ARM7 family owes its
success to the combination of low power, low cost and high
performance. However, as applications become more
complex and integrate more and more functionality, the
processor is required to provide more and more perform-
ance. We use synthesis tool to synthesize our RTL de-
sign and analyze timing to fund the critical path of our mi-
croprocessor. We will describe how to optimize the crit i-
cal path to increase performance.

1. INTRODUCTION

Since the scientists invented semiconductor, the electronic
technology has advanced at a rapid rate. Today, many
electronic products use microprocessor based application
such as PDAs and mobile phones. However, as applica-
tions become more complex and integrated more and more
functionality, the processor is required to provide more and
more performance.
ARM7TDMI is a 32-bits microprocessor that developed by
Advanced RISC Machines Ltd. ARM7 has been suc-
cessful in many portable applications. In our laboratory,
we also developed an ARM7TDMI instruction set com-
patible microprocessor. We will optimize this microproc-
essor to provide higher performance and discuss the
cost-effect in different optimization methodology.
We know a CPU execute a program time is:

CPU time = Instruction count × CPI × Clock cycle time
There are three factors can effect the CPU time. If we can
improve one of three factors we can improve the processor
performance. Instruction count is effected by compiler
technology or advanced algorithm. It can use fewer in -
structions to complete the same thing. The CPI is Cycle
Per Instruction that is an average number of an instruction
execution cycles. If we use advanced computer architec-
ture like superscalar or cache memory that can reduce
memory accesses cycles, the CPI value can be reduced.
The clock cycle time is the clock period time. In this time,
all hardware must figure out the results and wait to save to
registers.
In this paper, we focus on the cycle time optimization.

We will fund the critical path of this microprocessor and
optimize this path. We will describe how to optimize and
after change the microarchitecture what will be effected.
l ARM9

To gain the extra speed, ARM has finally extended its
characteristically short three-stage pipeline to five stages.
Figure 1 maps the differences the ARM7 and ARM9. In
ARM9, the trivial fetch stage from ARM7 remains, but the
overstuffed execute stage is now spread among no fewer
than four stages, with some work being done in the decode
stage.

ARM7

ARM9

Fetch Decode Execute

Fetch Execute Memory Write
Instr decode

In
st

ru
ct

io
n

Fe
tc

h
T

hu
m

b
/

A
R

M

A
R

M
 d

ec
od

e
R

eg
is

te
r

se
le

ct

R
eg

is
te

r
re

ad

Sh
if

t

A
L

U

R
eg

is
te

r
w

ri
te

Instruction
Fetch

R
eg

is
te

r

de
co

de

R
eg

is
te

r
re

ad Shift/ALU Memory
access

Register
write

Figure 1: The differences between the ARM7 and ARM9
pipelines

The re-pipelining allows the clock rate to be increased. The
ARM9TDMI may be clocked at twice the rate of
ARM7TDMI. With these changes, ARM will reach
120-150 MHz in commodity 0.35-micron processes.
ARM9 has an average clocks-per-instruction ratio of 1.5,
according to ARM, substantially better than ARM7’s 1.9
CPI. The forwarding paths in ARM9 allow instructions
to execute without stall cycles. The increase in comple x-
ity required to achieve the increase in performance requires
around 50% more transistors and the area has increased by
almost 90%. This area increase in accounted for by an
increase in number of routing channels in the datapath.

 ARM7TDMI ARM9TDMI
Area (mm2, 0.35µm) 2.2 4.15
Transistor count 74K 112K
Pipeline stages 3 5
CPI 1.9 1.5
MIPS/MHz 0.9 1.1
Typical Max Clock rate (0.35µm) 60 120
Power (mW/MHz @3.0V) 1.5 1.8

Table 1: ARM7 v.s ARM9 comparison summary

 2

2. MICROARCHITECTURE

According to the ARM7TDMI instruction set, we must
build a lot of functional units, include ALU, Shifter, Multi-
plier, Register File, Status Register and Thumb instruction
Decompressor. The microprocessor we design is
three-pipeline stage architecture and we will decompose
this architecture to three mainly models that are fetch
model, decode model and execute model.

PC Memory

Adder2

4

Thumb

Decomp
ressor

Thumb

A[1
] Register

File
 ALU

Shifte
r

Multiplier

Control
Unit

Memory

Control Signals

FETCH DECODE EXECUTE

Figure 2: ARM7 Block Diagram

2.1 Fetch Stage

In this stage, we read an instruction from memory which
memory address comes from the PC register. The PC ad-
dress is incremented by 4 or 2 and written back into PC
register for the next clock cycle. Figure 3 shows the fetch
stage block diagram. T flag is used to select the distance
for ARM or Thumb instructions (the distance can be 4 or
2). If the next instruction is an ARM instruction, then T
flag will be zero (the distance is 4). If branch instruction
occurs, then the PC value is Branch address. Otherwise, the
PC value will be the adder result. If interrupt occurs, then
the PC register will from interrupt address. If load in -
struction that will modify PC register is executing, then the
PC register will from MemDataOut. The PC value will
be the address of instruction in execute stage plus 8 be-
cause the pipeline. When a multi-cycle instruction is
executing, the fetched instruction will be save in a register
and PC will plus 4 doing prefetch.

M
U
X

M
U
X

T Flag

4

2

PC
register

a
d

d
e

r

M
U
X

Branch Exchange
Address

Branch Select

PC Select
ALU Result

CLK

 PC Stall

MemDataOu
t

Address[1]

I n s t r u c t i o n

M e m o r y

I n s t r u c t i o n
Latch

I n s t
M
U
X

Fetch LatchEnable

Ins t ruct ion s l t

Fetch
I n s t r u c t i o n

PC

 Figure 3: Fetch Stage Block Diagram

2.2 Decode Stage

In this stage, the instruction that came from the preceding
stage has to be decompressed and decoded. If we read a

Thumb instruction, then we will translate Thumb instruc-
tion to ARM instruction by decompressor module. After
translating, we will decode this ‘ARM’ instruction. When
an instruction enter decode stage, the control unit will gen-
erate two control signals, index and nCPI. The signal of
nCPI is used to notify the instruction is a coprocessor in-
struction or not. If nCPI is high, then the incoming in -
struction is not a coprocessor instruction. If nCPI is low,
then the instruction is a coprocessor instruction. Index
signals are used to notify what type for this instruction is.
One instruction may be has more than one action by ac-
cording to its instruction fields and the control unit has to
discern what actions for the instruction really is. For ex-
ample, if the instruction is “LDR” that will load byte or
word from memory, then the index signal is 6. Here, in -
dex signal will be propagated to the executed stage to gen-
erate its internal control signals. Figure 4 shows the de-
code stage block diagram and Table 2 shows the index ta -
ble of instructions. When index is 1, the incoming in -
struction may be BL or B instruction. Then in execute
stage, it will generate the corresponding control signals
with index and some instruction field. Thus, in this stage,
decode unit is used to generate instruction index.

M
U

X

Decompressor

Control

M
U

X

T bit

ARM instruction

ARM instruction [15:0]

ARM instruction [31:15]

Thumb
inst

index

nCPI

ARM Instruction

Thumb
decomp

Address[1]

Bigend

MCLK

Figure 4: Decode model diagram

Index Meaning Corresponding

ARM instruction
0 Nop instruction
1 Branch instruction BL,B
2 Branch instruction BX
3 Data Processing(normal) AND, EOR, SUB,

ADD, ADC, etc.
PSR transfer MRS, MSR

5 Data processing, Shift(Rs) AND, EOR, SUB,
ADD, ADC, etc.

6 Data transfer : load, dest=normal LDRH,LDRSH,
LDRSB,LDR

7 Data transfer :store, dest=normal STRH,STR
8 Multiply MUL,MLA,

MULL,MLAL
9 Block data transfer : load LDM

10 Block data transfer : store STM
11 Data swap : source/dest = normal SWP
12 Software interrupt SWI
13 Coprocessor data operation CDP
14 Coprocessor data transfer :load LDC
15 Coprocessor data transfer :store STC
16 Coprocessor register transfer : load MRC
17 Coprocessor register transfer : load MCR
18 Undefined interrupt Undefined

Table 2: The indexes distribute

 3

2.3 Execute Stage

In this stage, functional units are executed according to the
control signals that have been decoded. Figure 5 shows the
execute stage block diagram. The condition unit will gen-
erate cond_bit signal that decides this instruction will be
executed or not. In ARM instruction set, all instructions are
conditionally executed according to the state of CPSR con-
dition code and the instruction’s condition field. The field
(bit 31:28) determines the circumstances under which an
instruction is to be executed. There are fifteen different
conditions may be used. Table 3 listed the condition code
summary. The sixteenth (1111) is reserved, and must not be
used. In the absence of a suffix, the condition field of most
instructions is set to “Always” (suffix AL). This means the
instruction will always be executed regardless of CPSR
condition codes.

R.F

Control
Unit

Shifte
r

ALU

Conditio
n

CLK

PSR

Multipl
y

Figure 5: Execute stage block diagram

Code Suffix Flags Meaning

0000 EQ Z set Equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set Negative

0101 PL N clear positive or zero

0110 VS V set Overflow

0111 VC V clear not overfolw

1000 HI C set and Z clear unsigned higher

1001 LS C clear and Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) Always

Table 3: Condition code summary

The control unit will generate all control signals according
to index from decode stage and instruction under executed.
Shifter unit can 5 kinds shift operations, include logical
shift left (LSL), logical shift right (LSR), arithmetic shift
left (ASL), arithmetic shift right (LSR) and rotate right

(ROR). ALU unit is used to do 16 different arithmetic
and logic operations. And the multiplier is executed for
multiply instructions.

Register File includes 31 general-purpose 32-bit regis ters –
but these cannot all be seen at once. The processor state
and operating mode dictate which registers are available to
the programmer. The PSR unit is Program Status Regis-
ter that includes condition code flags and control bits.

2.4 Multiplier

ARM instructions include multiply and multiply- Accu-
mulate instructions. This multiplier must perform un-
signed and signed multiplication with optional accumulate.
We use an 8-bit Booth’s algorithm to perform integer mu l-
tiplication. The multiplier and multiplicand are extended
from 32 bits to 33 bit for differentiating signed and un-
signed multiplication. In signed operation, the value will be
done signed extension. But in unsigned, the highest bit will
be filled zero. The multiplier perform 33*8 multiplication
every cycle. But, if bits [32:8] of the multiplier operand are
all zero or all one, we can reduce 3 cycle for multiplication.
If bits [32:16] of the multiplier operand are all zero or all
one, we can reduce 2 cycle for multiplication. If bits
[32:24] of the multiplier operand are all zero or all one, we
can reduce 1 cycle for multiplication. Table 4 shows the
modified radix-4 booth’s algorithm and Figure 6 shows the
block diagram of the multiplier.

Multiplier

B [i +1] B [i] B [i -1]
Operation Remarks

0 0 0 0 String of zeros

0 0 1 +A End of 1’s

0 1 0 +A A single 1

0 1 1 2A End of a 1’s

1 0 0 -2A Start of 1’s

1 0 1 -A End/start of 1’s

1 1 0 -A Start of 1’s

1 1 1 0 String of 1’s

Table 4: Booth’s algorithm

Booth encoders

Multiplier row 1

Multiplier row 2

Multiplier row 3

Multiplier row 4

append _1

Final adder

Multiplexer B

Multiplier
values

Booth_1

 Booth_2

 Booth_3

Booth_4

Accumulate
values

Accumulate
values

Booth_1 partial result

Booth_2 partial result

Booth_3 partial result

Booth_4 partial result

Multiply result

Multiply result

add result

final result

append

mux A

-A & B[0]

Multiplicand
values

Accumulate
values

Control
Select_BCTL

3

Cycle
3

enable_start

enable_last

select_A

partial result

Figure 6: Multiplier block diagram

 4

2.5 Pipeline interaction

Because the cycle counts for ARM instruction is different
ranging from 1 to 17 cycles and it is more difficult for us to
design. Table 5 shows the instruction cycle summary. It
not only tells us the cycles in every instruction, but also
tells us the interaction with other stages. We partition all
instructions into 15 different types. The gray shade is the
execution cycle. Besides, it also controls the interaction
with other stages. The “N” shows the cycle in the next
cycle that is non-sequential cycle. In another way, the PC
value will not be sequential and the fetch and decode
stages have to be flushed. The “S” shows the cycle in the
next cycle that is sequential cycle. In another way, the PC
value will be sequential. The “I” shows the cycle in the
next cycle that is internal cycle. In another way, the PC
value will not be changed until the instruction is completed.
Here, the fetch and decode stages have to be stalled. The
“C” shows the cycle in the next cycle that is coprocessor
register transfer cycle. The PC value will not be changed
until the coprocessor register transfer cycle is completed.
When the processor enter the coprocessor register transfer
cycle, then the processor wishes to use the data bus to
communicate with a coprocessor, but does not require any
action by the memory system.
The circle shows to flush decode and fetch stages when the
PC register is modified in execute stage. The fetch and
decode stages have to be stalled when an instruction exe-
cutes multi-cycles. The “[” shows begin of stall and the
“]” shows end of stall. From Table 5, we know some in -
structions spend one cycle and some instructions may
spend more than one cycle. For multi-cycle instruction,
the control signals of the next cycle are affected by the
status of current cycle. Hence, our control unit is de-
signed based on mealy machine. For example, Branch
instruction takes three cycles that is N, S, S cycle. When
Branch instruction is executed, it will update PC value
from the branch address. The fetch and decode stages
have to be flushed. Here, when the next PC value is not
sequential address, the next cycle type is N cycle. Follow-
ing the N cycle, it is S cycle.

Action Type 1 2 3 4 5 6 7 8 Cycles
1. Branch and Branch with Link N S S 3
2. Branch and Exchange N S S 3
3. Data Operations: normal S 1
 dest=pc N S S 3
 shift(Rs) I S 2
 shift(Rs),dest=pc I N S S 4
4. Multiply and Multiply Accumulate: MUL I I I I S 5
 MLA I I I I I S 6
 MULL I I I I I S 6
 MLAL I I I I I I S 7
5. Load Register: normal N I S 3
 dest=pc N I N S S 5
6. Store Register N N 2
7. Load Multiple Registers: n registers N S S S S … . . S S I S n+2
 n registers,incl pc N S S S S … . . S S I N S S n+4
8. Store Multiple Registers : n registers N S S S S … . . S S N n+1
9. Data Swap N N I S 4
10. Software Interrupt and Exception Entry N S S 3
11. Coprocessor Data Operation : Ready N 1
 not Ready I I I I I … . . I N n
12. Coprocessor Data Transfer : n registers , Ready N I S S S … . . S S N n+1
 m registers, not Ready I I I … . . N S S … . . S S N n+m+1
13.Coprocessor Register Transfer : MRC ,Ready C I S 3
 not Ready I I I … . . I C I S n+2
14.Coprocessor Register Transfer : MCR , Ready I N 2
 not Ready I I I … . . I C N n+1
15.Undefined Instruction I N S S 4

Table 5: Instruction cycles summary

Thus, we will decompose the action of decode into two
steps. First, we will find what kind of instruction that the
current instruction is, then we send a set signals to next
decode components. When the next decode components

get these signals, it will send control signals to control
functional units according to these signals from the prior
decode components. Figure 7 shows the control model de-
sign. Output function is used to generate the data path
controls according to instructions, processor status, condi-
tional flags, and control inputs from the previous stage.
And next -state function is used to generate next_state ac-
cording to status and processor status and control inputs
from the previous stage.

Status register

Next-state
function

Datapath

Status

Control Inputs from
the prior stage

Datapath Control

Datapath Inputs

Datapath Outputs
Control Outputs

Control Unit

Instruction[31:0]

Ins t . RTL
cont ro l le r

P ipe l ine
cont ro l le r

M e m o r y
cont ro l le r

Output Functions

Figure 7: The Control model

3. OPTIMIZATION

3.1 Critical path

After synthesize original version, we found the critical path
is in execution stage. The critical path is the condition
code flags read from PSR to Condition unit and Control
unit to decode control signals, then read register operands
from Register File to perform the first cycle multiplication
in multiplier and save the first cycle results to a register.
This critical path was shown in Figure 8’s path ¬. We
will describe how to optimize the multiplier.

R.F

Control
Unit

Shifte
r

ALU

Condition

CLK

PSR

Multiply

Decompressor

MUX

Thumb/
ARM

Decode Execute

1

2

Figure 8: The critical paths

After multiplier optimization, the critical path appears on
another path. The front of this path is the same as path
¬. But the tail is not through the multiplier, it is through
the Shifter-ALU and write the flags to PSR. We will de-
scribe this path optimization. Table 6 is the critical path’s
delay. The delays both are started from negative edge
triggered register to positive edge triggered register. The
clock cycle is double of the delay time, if the clock duty
cycle is 50%.

 5

Critical Path Delay Clock rate

Path ¬ 41.3 ns 12 MHz

Path 33.5 ns 14 MHz

Table 6: The critical path’s delays

3.2 Multiplier Optimization

l Use single edge triggered

In multiplier design, it must finish 8-bit Booth’s result and
the partial product must be added with next 8-bit Booth’s
calculation. In original design, it adopts two clock edge
triggered registers. The multiply operands read from
Register File perform first 8-bit multiplication and save to
a positive edge triggered register. Then, the result of the
Booth’s multiplication perform signed extension to save in
negative edge triggered register prepare for next Booth’s
calculation. But for using clock’s duty cycle is 50%, the
cycle time must be the longest delay time twice. So, we
change to use negative edge triggered register design

R.F
Multiplier

Control
Unit

Booth's
Calculat

e
CL
K

OP1
OP2

MULTIPLIER

Signed
Extension

Figure 9: The multiplier use dual clock edge triggered reg-
isters

l Use Carry Save Adder

In multiplier, we must add the multiplier rows that are four
40-bit numbers. In original design, it uses carry ripple
adder to perform addition. But, it will generate long carry
chain of adders. We use Carry Save Adder instead of
carry ripple adder. It avoids the long carry chain delay.
The last, using a fast adder like carry look-ahead adder to
add carry and sum that are generated by carry save adder.
We use the dw01_csa that is carry save adder of Synop-
sys® DesignWare Component. Figure 10 is the addition
architecture using carry save adder.

In multiplier, we must add the multiplier rows that are four
40-bit numbers. In original design, it uses carry ripple
adder to perform addition. But, it will generate long carry
chain of adders. We use Carry Save Adder instead of
carry ripple adder. It avoids the long carry chain delay.
The last, using a fast adder like carry look-ahead adder to
add carry and sum that are generated by carry save adder.
We use the dw01_csa that is carry save adder of Synop-
sys® DesignWare Component. Figure 10 is the addition
architecture using carry save adder.

x y z

CSA
c s

x y z

CSA
c s

x y z
CSA
c s

carry sum

ADDER
result

Figure 10: Using Carry save adder

l Put off the final adder

In multiplier, we use the carry save adder to calculate the
partial product. The final, we use a carry look-ahead ad-
der to add sum and carry and save to a register. It must
finish the carry save adder and the final adder addition in a
multiply cycle. We can put off this final adder. The
carry and sum of carry save adder are not necessary added
in every cycle. The final addition can be performed after
multiplier cycle that shows in Figure 11. After we put off
the final adder, it increment use one carry save adder and
twice registers.

CSA

CSA

CSA

Register

CSACSA

CSA

Register
Register

CSA

+

+

Figure 11: Put off the final adder

3.3 Execution Stage Optimize

After we optimize the multiplier, the critical path becomes
path of Figure 8. It includes Condition unit, Control
unit, Register file, and Shifter, ALU and PSR unit. We
will describe the execution stage optimization.

l Use single edge triggered

In execution stage, the instruction is read from negative
edge triggered pipeline register and decoded control signals.
Then read registers from register file and through shifter
and ALU operation. Final, save flags to PSR unit at posi-
tive edge clock. It also uses dual clock edge triggered de-
sign. We adopt PSR and register file in single clock edge
triggered instead of dual edge triggered.

 6

R.F

Control
Unit

Shifte
r

ALU

Conditio
n

CLK

Pipeline R
egister

PSR

Multipl
y

Decompresso
r

MUX

Thum
b/

ARM

Decode Execute

Figure 12: Use single edge triggered in execution stage

l Register file use DesignWare component

The Register File includes 30 32-bit registers, two read
ports and one write port. In original design, it is Verilog
RTL design using latch based. But consider design for
test and synthesis, we adopt DW_ram_2r_w_s_dff of Syn-
opsys® DesignWare Component that is synchronous
write-port and asynchronous dual read-port RAM
(Flip-Flop based).

l Condition decision

Every ARM instructions are conditionally execution ac-
cording the instruction field and the CPSR condition code
flags. The Condition unit is used to decide the condition.
If the flags fulfil the condition of field, the instruction is
executed, otherwise it is ignored. In original design, it
decides the condition first and then generates control sig-
nals, see Figure 13. If instruction is ignored, the index
will be mask and control unit will decode NOP control
signals.

Condition
Unit

Flags

Condition
Code

Index

Control
Unit

Control
Signals

Instruction

Figure 13: original condition design

The condition decision can succeed control unit decode the
control signals. Figure 14 shows the modified block dia -
gram. If condition not satisfied, the multiplexer can be
selected NOP control signals by condition bit. We will
increment use a multiplexer.

Condition
Unit

Flags
Condition

Code

Index Control
Unit Control

SignalsInstruction

Condition
bit

M
U

X

NOP
control
signals

Figure 14: Modified condition design

3.4 Prefetching Register File Operands

Our microprocessor adopts 3 pipeline stages design that are
fetch, decode and execute. After Execution stage optimi-

zation, the critical path stills on path of Figure 8. In de-
code stage, the Thumb instruction translated to ARM in-
struction by Decompressor and generate index number.
The maximum delay of decode stage is only one three of
execution’s delay. If Register File and control unit move
to decode stage, we can minimize the cycle time. After
re-pipelining, the microarchitecture must be modified for
execution accurate. We will discuss them below.

R.F

Control
Unit

Shifter
ALU

Conditio
n

CLK

PSR

Decompresso
r

MUX

Thum
b/

ARM

Decode Execute

Multiply

Figure 15: Register File and control unit move to decode

stage

l Data Hazard
Register File is read in decode stage. If execution stage
write register is the same as decode stage read, it will occur
data hazard. The register is read in decode stage before
the same register is written in the execution stage. The
read register is old value. It shows in Figure 16.

IF ID EX
write R2

IF ID
read R2 EX

IF ID EX

ADD R2, R1, #1

ADD R3, R2, #1

ADD R4, R3, #1

(new)

(old)

Figure 16: Data Hazard in instructions

We resolve this problem using forwarding path allow back
to back data processing instructions to execute in the pipe-
line without stall cycles. The Forwarding unit in Figure
17 determines the read data is from register file or written
data of execution stage.

Register
File

MUX

MUX

Forwarding
unit

R
egister

Write Data

Read register1

Read
register2

Write
register

Figure 17: Using forwarding path to resolve data hazard

l Pipeline interaction
If the instruction is single cycle execution, the pipeline will
operate normally. Because the Register File and control

 7

unit are moved to decode stage, the control signals must be
delayed one cycle to sent execution stage. But multi-cycle
execution, the control unit will decode the same instruction
more than one cycle. The pipeline control has a little dif-
ference. When multi-cycle execution, decode stage will
still operation. So, the pipeline register between decode
stage and execution stage can not be stalled. When
multi-cycle execution, the control unit is decoding the in-
struction that is in the execution stage, not in decode stage.
Until the last cycle, control unit starts to decode the decode
stage’s instruction.

4. RESULTS

We use synthesis tool to synthesize our design and analyze
timing to fund the critical path. We use Synopsys® De-
sign Compiler for our synthesis tool and use Galax! Inc.
CB35OS142 0.35µm cell library.
Table 7 is the optimization results. We calculate speed up
compare with previous version use Amdahl’s Law. The
path ¬ and are in Figure 8.

Version Delay Clock rate Speed up Gate count Critical path

A *41.27 12 MHz - 42616 ¬
B *33.5 14 MHz 1.24 39700
C 58.2 17 MHz 1.15 39152 ¬
D 32.93 30 MHz 1.77 37373 ¬
E 31.68 31 MHz 1.04 38371
F 29.92 33 MHz 1.06 43857
G 24.29 41 MHz 1.23 44121
H 18.56 53 MHz 1.3 44758 decode

*: from negative edge to positive edge delay

Table 7: The optimization results

The version A is the original version. The maximum delay
is 41.27ns from pipeline register to PSR’s register. But, it
is from negative edge to positive edge delay. The clock cy-
cle time is twice of delay about 83ns, the clock rate about
12 MHz.
The version B adopts single edge triggered registers and
reduces a lot of registers and latches in execution stage.
The gate count reduces about 2900 gates but the speedup
rise 1.24. The critical path from path ¬ becomes path .
In version C, the execution stage also adopts single edge
triggered registers. The speedup is not obvious because
the critical become path ¬.
The version D, we use carry save adder instead of carry
ripple adder and also reduce registers and latches to use in
multiplier. The speedup is 1.77 and the gate count re-
duced about 1700 gates.
In version E, we put off the final adder calculation. The
multiplier’s speedup is 1.4 but the overall’s speedup is 1.04.
The reason is the critical path becomes to path . The
multiplier increases the carry save adder and registers to
cause the gate count increase about 1000 gates.
The version F, the Register file is used
dw_ram_2r_w_s_dff of Synopsys® DesignWare Comp o-
nent. This Designware is flip -flop-based design but the
original is latch-based design. It increases about 5400
gates and the speed up is 1.06. The flip-flop based regis-
ter file can easy to design for test.
The version E is condition decision succeed the control
unit. That’s speedup is 1.23 and only about 250 gates in-

crement. It is a good strategy.
The last version G, we prefetch the register operands in
decode stage. The speedup is 1.3 and increases some
registers and forwarding path. It spread the pipeline more
evenly, thereby permitting a higher maximum operating
frequency.

5. CONCLUSION

In this paper, we have presented how to optimize our
ARM7TDMI instruction set compatible microprocessor.
The clock rate is from 12 MHz to 53 MHz. The CPI
value is the same as the original design. The performance
is increased about 4.4 and the gate count only increased
about 2K gates.

In the future, the pipeline stages can be extended from 3 to
5 stages like ARM9TDMI. It spread the pipeline more
evenly. Some of the ARM instructions are multi-cycle
execution in ARM7 that have to stall the pipeline. ARM9
use forwarding paths to avoid stalling the pipeline and re -
duce the CPI value.

6. REFERENCES

[1] http://www.arm.com
[2] Simon Segar, “The ARM9 Family – High Performance

Microprocessors for Embedded Applications” IEEE
International Conference on Computer Design 1999
(ICCD’99).

[3] Steve Furber “ARM System Architecture” Addison Wesley
Longman Inc, 1996.

[4] Michael Keating and Pierre Bricaud “Reuse Methodology
Manual for System-on-a-Chip Designs”, 2nd Edition,
KLUWER ACADEMIC PUBLISHERS.

[5] “DesignWare Components Databook, Vol 1, Foundation
Librarys”, Version 1997.08, Synopsys Inc.

[6] David A. Patterson and John L. Hennessy, “Computer
Organization & Design – The Hardware/Software Interface”,
2nd Edition, Margan Kaufmann Publishers, Inc.

[7] John L. Hennessy and David A. Patterson, “Computer
Architecture A Quantitative Approach” 2nd Edition, Margan
Kaufmann Publishers, Inc.

[8] Behrooz Parhami, “Computer Arithmetic - Algorithms and
Hardware Designs”, Oxford University Press, Inc.

[9] Mike Clark and Lizy Kurian John, “Performance Evaluation
of Configurable Hardware Features on the AMD-K5”, IEEE
International Conference on Computer Design 1999
(ICCD’99).

