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ABSTRACT

Based on the Newton interpolation method and
a prede¯ned one-way function, a cryptographic key as-
signment scheme, called the CHW scheme, in a user hi-
erarchy was presented by Chang et al. in 1992 [4]. The
CHW scheme solved the need of the dramatic storage
in Akl-Taylor scheme [1]. However, two counter exam-
ples presented in [6] prove the incorrectness of CHW
scheme, and further two modi¯ed versions of CHW
scheme [8] are proven to be insecure as well. Owing
to the above-mentioned problems, in this paper a sim-
ple scheme is proposed to solve the incorrectness and
to enhance the security of CHW scheme.

1. INTRODUCTION

In an information protection system, the se-
curity of access control is very important. There are
many schemes [1-5], which have been proposed to dis-
cuss about the access control in a user hierarchy. A
user hierarchy can be represented by a partial ly order
set (poset). In such hierarchy, the users are divided into
di®erent security classes named C1; C2; : : : ; Cn, where
n is the number of nodes in the user hierarchy. Figure
1 shows an example of the poset in a user hierarchy.
According to the partially order 5 , the relationship
among the security classes is presented. For instance,
Cj 5 Ci means that the users in Ci have the author-
ity to access the data in Cj , but the opposite is not
allowed. Under such a relationship, Ci is called a pre-
decessor of Cj, and Cj a successor of Ci. Moreover, if
there does not exist any other security class Ck such
that Cj 5 Ck 5 Ci, then Cj is an immediate successor
of Ci and Ci is an immediate predecessor of Cj. For
simplicity, throughout this paper we use the abbrevia-
tions IS and IP to denote an immediate successor and
an immediate predecessor, respectively.

For a large number of security classes, the key
generation algorithm of Akl-Taylor scheme [1] has been
proved infeasible [5]. In order to improve the disad-
vantage of the Akl-Taylor scheme, a cryptographic key
assignment scheme [4], called the CHW scheme based
on the Newton interpolation method and a prede¯ned
one-way function, was presented. Compared with Akl-
Taylor scheme, the storage required for the public pa-
rameters in CHW scheme is much smaller, and more-
over the process in generating and deriving keys be-
comes simple and e± cient. However, two counter ex-
amples proposed recently in [6] show that the CHW
scheme [4] is incorrect and its two modi¯ed versions [8]
are insecure. In this paper, a scheme is presented not
only to improve the incorrectness of CHW scheme, but
also to enhance the ability of defending against attacks.

2. THE INCORRECTNESS AND
WEAKNESS OF CHW SCHEME

In this section, a brief introduction to CHW
scheme [4] is given, and its incorrectness and weakness
are presented subsequently. For any security class Ci

in a user hierarchy, both of his secret key SKi and his
public-parameter pair (P1i; P 2i) are generated and dis-
tributed by the central authority (CA). A large prime
number P and a prede¯ned one-way function f are pub-
lic to all security classes in the user hierarchy by CA.
Throughout this paper, we suppose that a security class
Ci has ki ISs, denoted by © i = fCi;j ; j = 1; 2; : : : ; kig,
for which SKi;j and (P1i;j ; P2i;j ) denote the secret
key and the pair of public parameters for the jth IS
Ci;j ; j = 1; 2; : : :,ki, respectively. According to the
concept of Newton interpolation method [9], CA can
construct an interpolating polynomial for each security
class Ci in a user hierarchy, denoted as Hi(x) of de-
gree ki, over the Galois ¯eld GF(P ) by interpolating
the following ki+1 points: (0; SKi) and the ki public-
parameter pairs (P1i;j ; P2i;j ), j = 1;2; : : :,ki . Then the
secret key SKi;j for the jth IS Ci;j of Ci is generated
by
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SKi;j = f (aj ) (mod P ); (1)

where aj is the coe± cient of the term xj in Hi(x):

At the beginning of the key generation process,
all security classes in the user hierarchy are unmarked,
and then traversed by the preorder way. The key-
generation procedure of CHW scheme is described in
detail in the following.
Step 1:
Get an unmarked node Ci from the user hierarchy by
preorder traversal.
Step 2:
If Ci is a leaf node, that is, ki = 0, then mark Ci and
return to Step 1.
Step 3:
Let Ci;1; Ci;2; : : : ; Ci;mi

be unmarked ISs of Ci and
Ci;mi+1; Ci;mi+2; : : : ; Ci;ki

be marked ones.
Step 4:
If Ci is the root node, that is, Ci has no predecessor,
then go to Step 5; else go to Step 6.
Step 5:
(5a) Randomly select an integer between 1 and P ¡ 1,
denoted as SKi . Then assign SKi to be the secret key
of Ci and mark Ci .
(5b) Randomly select a polynomial of degree ki over
GF(P ), denoted as

Hi(x) = SKi + a1x + a2x
2 + : : : + akix

ki (mod P );

where a1;a2; : : : ; aki
are ki distinct integers between 1

and P ¡ 1.
(5c) Go to Step 7.
Step 6:
(6a) Randomly select mi integer pairs (P1i;j ;P 2i;j ),
j = 1; 2; : : :,mi, between 1 and P , such that all P 1i;t

for t = 1; 2; : : : ; ki are distinct.
(6b) By the Newton's interpolating method, an inter-
polating polynomial Hi(x) of degree ki on the ki + 1
points: (0; SKi); (P1i;1; P2i;1); (P1i;2; P2i;2); : : : ; and
(P 1i;ki ; P2i;ki) over GF(P ) can be constructed as

Hi(x) = SKi + a1x + a2x
2 + : : : + akix

ki (mod P ):

Step 7: Generate the secret keys SKi;j of Ci 's ISs,
which are still unmarked, according to equation (1),
and then mark Ci;j for j = 1; 2; : : : ; mi:
Step 8: Repeat from Step 1 until all nodes of the user
hierarchy are marked. ¥

In the key derivation procedure, a security class
Ci can reconstruct the interpolating polynomial Hi(x)
by his secret key SKi and the ki pairs of public param-
eters of his ISs, and then use Hi(x) and the prede¯ned
one-way function to derive the secret keys of all his ISs.

For any non-immediate successor, Ci can derive the se-
cret key by performing the key-derivation procedure
iteratively. Since no one can reconstruct Hi(x) only by
the public parameters of Ci 's ISs, the secret key of any
security class cannot be derived by conspiratorial.

In the sequel, we discuss the incorrectness of
CHW scheme. Let the set of security classes Â =
fCi; Ci+1; : : : ; Ci+d¡ 1g have the same security clear-
ance; that is, all the elements of the set are on the
same level of a user hierarchy. Suppose that the ¯rst q
ISs of each security class in Â are the same . Because
the keys are generated by preorder traversal, the ¯rst
security class Ci in Â determines the secret keys and
public-parameter pairs for the ¯rst q ISs, shared by all
security classes in Â . Then these q ISs are marked.
That is, Ci uses the points (0; SKi) and the ki public-
parameter pairs of his ISs, to reconstruct the following
interpolating polynomial, denoted as

Hi(x) = SKi +ai;1x + ai;2x
2 + : : : + ai;kix

ki (mod P );

Then Ci uses the ki coe± cients, ai;1; ai;2; : : : ; ai;ki
, to

compute the secret keys of his ISs according to (1).
When it comes to the other security classes in Â , their
interpolating polynomials are given by

Hj(x) = SKj +aj;1x+aj;2x
2 + : : :+aj;kj

xkj (mod P );

for j = i + 1; i + 2; : : : ; i + d ¡ 1. The q coe± cients
ak;1;ak;2; : : : ; ak;q of Hk(x); for k = i; i+1; : : : ; i+d¡ 1;
are used to generate the secret keys of the q shared ISs.
Accordingly if each security class in Â wants to generate
identical secret keys for their q shared ISs, then for each
r = 1; 2; : : : ; q the following equations

f (ai;r) = f (aj;r) (mod P ) for all i 6= j

must be satis¯ed. However they are not held in gen-
eral due to distinct secret keys of security classes in Â .
This is the incorrectness of CHW scheme and leads the
CHW scheme unusable. Moreover, in CHW scheme,
the secret key of a certain security class is susceptible
to being broken if all his ISs are collaborated. There-
fore any IP may be broken if all his ISs are united to
invade their predecessor. In the next section, a simple
and e®ective scheme will be presented to solve the two
problems.

3. OUR PROPOSED SCHEME TO
IMPROVE CHW SCHEME

Assume that a central authority (CA) is respon-
sible of generating and distributing the secret key SKi



and public-parameter pair (P1i; P 2i) for each security
class Ci in the user hierarchy. Let P be a large prime
number and f be a prede¯ned one-way function. Both
P and f are made public to all security classes in the
user hierarchy by CA. Moreover, to keep from collabo-
rative attacks [8], any secret key SK will be substituted
with its corresponding pretending secret key SK 0, gen-
erated from the prede¯ned function f .

SK 0 = f(SK) (2)

3.1 THE BASIC IDEA OF THE PROPOSED
SCHEME

Firstly, we assume that for a set of security
classes, all the security classes in this set have the same
security clearance. A set of IPs is called a similar IP
set if all security classes of which simultaneously share
a number of ISs. Suppose that there are QL similar
IP sets in the Lth security-clearance level. We use
ª L = fª L;1; ª L;2; : : : ;ª L;QLg to denote the QL simi-
lar IP sets and assume that the j th similar IP set ª L;j

of ª L contains Nª L;j IPs for j = 1; 2; : : : ; QL. Every
similar IP set corresponds to a set of ISs, which is called
a shared IS set. For simplicity, we use 'L;j to denote
the shared IS set corresponding to the similar IP set
ª L;j. In addition, let 'L = f'L;1; 'L;2; : : : ;'L;QLg de-
note the QL shared IS sets corresponding to the similar
IP sets ª L = fª L;1; ª L;2; : : : ; ª L;QLg, and the number
of ISs in 'L;j be N'L;j for j = 1; 2; : : : ; QL. That is,
the N'L;j security classes in 'L;j are shared by each IP
in ª L;j .

Let ¤ j be a set containing N¤ j security classes.
A security class Cj is called the exclusive IP with re-
spect to the set ¤ j , if Cj is the only IP that exclusively
shares the N¤ j security classes in ¤ j. For simplicity,
we call ¤ j the exclusive IS set with respect to the ex-
clusive IP, Cj. Previously, we suppose that a security
class Cj in the user hierarchy has kj ISs, denoted by
© j = fCj;t; t = 1; 2; : : : ;kjg. It is observed that kj

equals N¤ j
, if Cj does not belong to any similar IP

set. For a good comprehension of the above-de¯ned
terminologies, an illustration for the user hierarchy in
Figure 1 is given. In Figure 1, fC1g, fC2; C3; C4g, and
fC5; C6; : : : ; C18g belong to the ¯rst, second, and third
security-clearance level, respectively. The illustration
for the second security-clearance level is shown at Ta-
ble 1. Apparently, a certain security class may belong
to a similar IP set and an exclusive IP at the same
time. For example, C2 belongs to ª 2;1 the ¯rst similar
IP set of the second security-clearance level, and is also
the exclusive IP of the exclusive IS set ¤ 2.

In our proposed scheme, for each security-
clearance level, the security classes of similar IP sets
and exclusive IPs are done separately by di®erent algo-

rithms. Accordingly, while we construct interpolating
polynomials, the ISs of any node Ci in the user hier-
archy are classī ed into two parts, if exists. The ¯rst
part is the shared IS set corresponding to the similar
IP set to which Ci belongs, and the second part is the
exclusive IS set whose exclusive IP is Ci . Consider a
certain similar IP set ª L;j with respect to the shared
IS set 'L;j . The criteria for the key-generation scheme
is that each security class in ª L;j can only use his own
secret key, without any secret key of the other peers
in ª L;j, on deriving secret keys of their shared ISs in
'L;j. And importantly, it must satisfy that any IP
in ª L;j cannot use the secret keys of the shared IS set
'L;j to derive any secret key of the other peers in ª L;j .
In the next section, we propose a simple and e®ective
scheme satisfying the above two points. The proposed
scheme is based on the combination of Lagrange poly-
nomial [11] and Newton interpolation method [9]. In
the sequel, fSKª L;j;k ; k = 1; 2; : : : ;Nª L;j

g are used to
denote the secret keys of the Nª L;j

IPs in ª L;j. About
the basic idea of the Lagrange polynomial, we would
like to consider the product of factors ¯rst given by

£ ª L;j(x) =

Nª L;jY

k=1

(x ¡ SK
0
ª L;j;k); (3)

which is related to the Nª L;j pretending secret keys

fSK
0
ª L;j;k ; k = 1; 2; : : : ;Nª L;j

g. The function

£ ª L;j (x) is a polynomial of Nª L;j orders and becomes

zero at x = SK
0
ª L;j;1; SK

0
ª L;j;2; : : : ;and SK

0
ª L;j;Nª L;j

.

If £ ª L;j (x) is divided by (x ¡ SK
0
ª L;j;i), the resulting

function, de¯ned to be

Vi(x) =
£ ª L;j

(x)

(x ¡ SK
0
ª L;j;i)

; (4)

turns out zero at x = SK
0
ª L;j;t, for t 6= i. Therefore, if

Vi(x) is multiplied by (x ¡ D) for i = 1; 2; : : : ; Nª L;j ,
the resulting function becomes a polynomial of order
Nª L;j again, de¯ned to be

Ui(x) = (x ¡ D)Vi(x); (5)

where D is a dummy secret key in order to make Ui(x)
a polynomial of degree Nª L;j . The dummy secret key
D is di®erent from the Nª L;j pretending secret key of
ª L;j and is only known by CA. Notice that the value

Ui(x) becomes zero at x = SK
0
ª L;j;k for k 6= i by the

property of (4). The basis of our proposed scheme is
to use a universal key, denoted as SKª L;j; instead of
the secret keys fSKª L;j;k ; k = 1; 2; : : : ; Nª L;j g of se-
curity classes in the similar IP set ª L;j while any se-
curity class in ª L;j is constructing the interpolating



polynomial for the shared IS set 'L;j. That is, each
security class in ª L;j will construct the identical in-
terpolating polynomial for the shared IS set on the
N'L;j

+ 1 points: (0; SKª L;j
) and the N'L;j

public-
parameter pairs of 'L;j over GF(P ). Now let's consider
the following Nª L;j linear congruence equations:

SKª L;j = ® iUi(SK
0
ª L;j; i) (mod P ); (6)

for i = 1; 2; : : : ; Nª L;j where ® i's are unknown and
SKª L;j is the universal key selected by CA. Note that
by the theorem 1.4 of [10], the Nª L;j linear congru-
ence equations shown above have exactly Nª L;j solu-
tions. Accordingly, after solving the unknown coe± -
cients ® i's, we can have the generation polynomial for
the universal key SKª L;j; given by

Gª L;j
(x) =

Nª L;jX

i=1

® iUi(x): (7)

From (6) and (7), and the property of (4), we ¯nd that
any security class of the similar IP set ª L;j can get the
universal key SKª L;j

merely by his own corresponding
pretending secret key SK 0, that is

SKª L;j = Gª L;j (SK
0
ª L;j;k ) (mod P ); (8)

for k = 1; 2; : : : ; Nª L;j
:

Therefore each security class in the similar IP
set ª L;j can construct the identical interpolating poly-
nomial for the shared IS set 'L;j by the universal key
SKª L;j

and the N'L;j
public-parameter pairs of 'L;j.

Notice that, any security class in ª L;j can use neither
the derived secret keys of the shared IS set 'L;j nor
the generation polynomial Gª L;j(x) to break the secret
keys of the other peers in ª L;j.

3.2 THE KEY-GENERATION ALGORITHM

The key-generation algorithm is proceeded level
by level. For any security-clearance level, the security
classes on the same level are categorized into similar
IPs and exclusive IPs, and they are done separately by
di®erent algorithms. Accordingly, while we construct
interpolating polynomials, the ISs of a node Ci in the
user hierarchy are classi¯ed into two parts, if exists.
One part is the shared IS set corresponding to the sim-
ilar IP set to which Ci belongs, and the other part is
the exclusive IS set whose exclusive IP is Ci . For any
similar IP set, all IPs in this set use the corresponding
universal key instead of their secret keys, while con-
structing interpolating polynomial for the associated

shared IS set. The universal key is obtained by solv-
ing the generation polynomial in (7), which is produced
via equations (3)-(6). Therefore each IP in the similar
IP set can construct the identical interpolating poly-
nomial of the corresponding shared IS set by the uni-
versal key and the public-parameter pairs of the shared
IS set. As for the exclusive IPs on a security-clearance
level, each of them constructs the interpolating polyno-
mial of the associated exclusive IS set by his own secret
key and the public-parameter pairs of all his exclusive
ISs. Since there are two types of IPs, the proposed
key-generation algorithm includes two sub-algorithms
in contrast: exclusive-IP algorithm and similar-IP algo-
rithm. The former is used for the exclusive IPs and the
latter is applied on the IPs in a similar IP set. In the
key-generation procedure, Step 2 to Step 4 are designed
for the exclusive IPs, and Step 5 and Step 6 are applied
to similar IPs. In the following, the key-generation al-
gorithm is presented and the two sub-algorithms are
shown subsequently.

Key-Generation Algorithm
Step 1:
(1a) Make all nodes in the user hierarchy unmarked.
(1b) Let L be the security-level index and set L = 1
(the highest security clearance).
Step 2:
(2a) Take an unmarked node Ci from the security
classes which belongs to the Lth security clearance.
(2b) Mark Ci.
Step 3:
(3a) Determine the exclusive IS set of Ci and denote
it as ¤ i .
(3b) Go to the exclusive-IP algorithm.
Step 4:
Repeat Step 2 and Step 3 until all nodes in the Lth
security-clearance are marked.
Step 5:
(5a) Determine all the similar IP sets of the
Lth security-clearance level, shown as ª L =
fª L;1; ª L;2; : : : ; ª L;QLg; and the corresponding shared
IS sets, shown as 'L = f'L;1; 'L;2; : : : ; 'L;QLg.
(5b) Let j be the index for the similar IP sets and
default j = 1.
Step 6:
(6a) Run the similar-IP algorithm for ª L;j , the jth
similar set of ª L.
(6b) Set j = j + 1: If j 5 QL, then return to (6a).
Step 7: If all the nodes in the user hierarchy are
marked, then stop; else set L = L + 1 and return to
Step2. ¥

Exclusive-IP Algorithm
Step 1:
(1a) If Ci is the root node, Ci has no IPs. Randomly
select an integer SKi between 1 and P ¡ 1 to be the
secret key of Ci . Otherwise, the secret key SKi of Ci



has already assigned.
(1b) Suppose Ci has N¤ i

exclusive ISs. Ran-
domly select N¤ i

distinct integers P1i;1; P1i;2; : : : ;
P1i;N¤ i

between 1 and P ¡ 1, and any N¤ i
integers

P2i;1; P2i;2; : : : ; P 2i;N¤ i
between 1 and P ¡ 1.

(1c) Assign (P1i;k; P 2i;k ) as the public-parameter pair
of the kth exclusive IS of Ci , where k = 1; 2; : : : ; N¤ i .
Step 2:
Using the Newton's interpolation method, we can con-
struct an interpolating polynomial Hi(x) of degree
N¤ i by interpolating on the points: (0; SK

0
i) and

(P 1i;k ; P2i;k ), k = 1; 2; : : : ; N¤ i , over GF(P ), shown
as

Hi(x) = SK
0
i +a1x+a2x

2+ : : :+aN¤ i
xN¤ i (mod

P ).
Step 3:
Compute all the secret keys for the N¤ i exclusive ISs
of Ci as follows.

SKi;k = f (ak ) (mod P ); for k = 1; 2; : : : ; N¤ i ;

where SKi;k denotes the secret key of the kth exclusive
IS of Ci, and ak is the coe± cient of the term xk in
Hi(x). ¥

Similar-IP Algorithm
As previously, we use fSKª L;j;k; k = 1; 2; : : : ; Nª L;j

g
to denote the Nª L;j

secret keys of the jth similar IP
set ª L;j in the Lth security clearance.
Step 1:
Generate the following polynomial

£ ª L;j
(x) =

Nª L; jY

k=1

(x ¡ SK
0
ª L;j;k);

and let

Vi(x) =
£ ª L;j (x)

(x ¡ SK
0
ª L;j;i

)
; for i = 1; 2; : : : ; Nª L;j :

Step 2:
Make polynomials of degree Nª L; j in terms of Vi(x):

Ui(x) = (x ¡ D)Vi(x), for i = 1; 2; : : : ; Nª L;j :

where D is a dummy secret key only known by CA.
Step 3:
Set

SKª L;j = ® iUi(SK
0
ª L;j;i) (mod P );

for i = 1;2; : : : ; Nª L;j where SKª L;j is the pre-
determined universal key by CA.
Step 4:
(4a) De¯ne a generation polynomial Gª L;j (x) for the

universal key of the set ª L;j as follows:

Gª L;j
(x) =

Nª L;jX

i=1

® i£ ª L;j
(x);

where ® '
is are obtained from Step 3.

(4b) Make Gª L;j
(x) public.

Step 5:
(5a) Randomly select N'L;j

dis-
tinct integers P 1'L;j;1; P1'L;j;2; : : : ; P1'L;j;N'L;j

be-

tween 1 and P ¡ 1, and any N'L;j integers
P2'L;j;1; P2'L;j;2; : : : ; P2'L;j;N'L;j

between 1 and P ¡
1.
(5b) Assign (P1'L;j;k ; P2'L;j;k ) as the public-
parameter pair of the kth shared IS in 'L;j , where k =
1; 2; : : : ; N'L;j

. Note that the N'L;j
shared ISs in 'L;j

is corresponding to the j th similar IP set ª L;j.
Step 6:
Using the Newton's interpolation method, we can con-
struct an interpolating polynomial Hª L;j (x) of de-

gree N'L;j
by interpolating on the points: (0; SK

0
ª L;j

)

and the N'L;j points (P 1'L;j;k; P2'L;j;k), k =
1; 2; : : : ; N'L;j over GF(P ), shown as

Hª L;j (x) = SK
0
ª L;j

+a1x+: : :+aN'L;j
x

N'L;j (mod P );

where SK
0
ª L;j

= f (SKª L;j ).
Step 7:
Compute all the secret keys of the shared IS set 'L;j

by

SK'L;j;k = f (ak ); for k = 1; 2; : : : ; N'L;j
;

where ak is the coe± cient of the term xk in Hª L;j(x).¥

3.3 KEY-DERIVATION ALGORITHM

Assume that a security class Ci with the secret
key SKi wants to derive the secret key SKi;k of his
IS Ci;k. As previously, the IS Ci;k may be a node of
the shared IS set corresponding to the similar IP set
to which Ci belongs, or a node of the exclusive IS set
whose exclusive IP is Ci. The algorithm for the key
derivation is given as follows.

Key-Derivation Algorithm
Step 1:
If the security class Ci is the exclusive predecessor of
Ci;k , then go to Step 2; otherwise, go to Step 3.
Step 2:
(2a) Determine the exclusive IS set ¤ i of Ci and take
all the corresponding public-parameter pairs of ¤ i , de-
noted as (P1i;t ; P2i;t), t = 1;2; : : : ; N¤ i, where N¤ i

means the cardinal number of the set ¤ i .
(2b) Using the Newton's interpolation method, we can



reconstruct the interpolating polynomial

Hi(x) = SK
0
i +a1x+a2x

2 + : : :+aN¤ i
xN¤ i (mod P );

by interpolating on the points: (0; SK
0
i) and the

N¤ i public-parameter pairs, (P1i;t ; P2i;t), t =
1; 2; : : : ; N¤ i , over GF(P ).
(2c) Go to Step 5.
Step 3:
(3a) Determine the corresponding similar IP set ª and
shared IS set ' to which Ci and Ci;k belongs, respec-
tively, and then get the generation polynomial Gª (x)
for the universal key of the similar IP set ª .
(3b) The universal key SKª is obtained by

Gª (SK
0
i);

where SK
0
i is the corresponding pretending secret key

of Ci.
Step 4:
(4a) Take the N' public-parameter pairs of ', denoted
as (P 1i;1; P 2i;1), (P1i;2; P 2i;3); : : : ; (P1i;N'; P 2i;N').
(4b) Using the Newton's interpolation method, we can
reconstruct the interpolating polynomial

Hi(x) = SK
0
i + a1x + a2x

2 + : : : + aN'xN' (mod P );

by interpolating on the points: (0; SK
0
ª ) and the N'

public-parameter pairs, (P 1i;t ; P2i;t), t = 1; 2; : : : ; N' ,
over GF(P ).
Step 5:
Compute the secret key of Ci;k by

SKi;k = f (ak) (mod P );

where ak is the coe± cient of the term xk of Hi(x).¥

Note that the security class Ci can derive all
secret keys of his successors, which could be not an
immediate one, by performing the Key-Derivation Al-
gorithm iteratively. The weakness of the original CHW
scheme [8] is that it can not avoid from collaborative at-
tack from ISs. Therefore, we substitute a corresponding
pretending secret key SK 0 for its original SK for any
predecessor when constructing the interpolating poly-
nomial. Thus, we can intensify the security because
even all the ISs unite together to attack the correspond-
ing IP, and they can get nothing but a fake secret key.

4. EXAMPLES

In this section, the key-generation and key-
derivation examples are given under the user hierarchy
in Figure 2. There are four security-clearance levels
containing twelve security classes in this user hierar-
chy. We suppose that the prime number P = 31 and

the prede¯ned one-way function f (x) = 7x. There is
a CA for generating the secret key and public param-
eters for each security class in the user hierarchy. The
generated parameters for the user hierarchy in Figure
2 are summarized at Table 2.

Key-Generation Example
² For the root node C1

{ Randomly select the secret key SK1 = 7; and (3; 12)
and (10; 9) as the public-parameter pairs for C2 and
C3, respectively.
{ Construct the interpolating polynomial H1(x) over
GF(31) on the points: (0;SK

0
1 = 28), (3; 12) and

(10; 9); given by

H1(x) = 28 + 27x + 3x2 (mod 31).

{ Then the secret keys for C2 and C3 are computed as

SK2 = f (27) (mod 31) = 16 and

SK3 = f (3) (mod 31) = 2:

² For exclusive IP C2

{ The exclusive ISs for C2 are C4 and C5.
{ Randomly select (15; 2) and (11; 9) as the public-
parameter pairs for C4 and C5, respectively.
{ Construct the interpolating polynomial H2(x) over
GF(31) on the points: (0; SK

0
2 = 7), (15; 2) and (11; 9);

given by

H2(x) = 7 + 7x + 25x2 (mod 31).

{ Then the secret keys for C4 and C5 are computed as

SK4 = f(7) (mod 31) = 28 and

SK5 = f(25) (mod 31) = 25:

² For exclusive IP C3

{ The exclusive ISs for C3 are C8 and C9.
{ Randomly select (5; 2) and (13; 3) as the public-
parameter pairs for C8 and C9, respectively.
{ Construct the interpolating polynomial H3(x) over
GF(31) on the points: (0; SK

0
3 = 18), (5; 2) and (13; 3);

given by

H3(x) = 18 + 5x + 12x2 (mod 31).

{ Then the secret keys for C8 and C9 are computed as

SK8 = f (5) (mod 31) = 5 and

SK9 = f (12) (mod 31) = 16:

² For similar IP ª 2;1 = fC2; C3g
{ The shared ISs for ª 2;1 are C6 and C7.



{ The generation polynomial, with the dummy key
D=17, for the universal key of ª 2;1 is shown as

Gª 2;1
(x) = 6x2 + 5x + 10;

for which the universal key SKª 2;1
is computed as

SKª 2;1
= Gª 2;1

(SK
0
2 = 7) = Gª 2;1

(SK
0
3 = 18) = 29:

{ Randomly select (25; 17) and (29; 19) as the public-
parameter pairs for C6 and C7, respectively.
{ Construct the interpolating polynomial Hª 2;1(x) over

GF(31) on the points: (0; SK
0
ª 2;1

= 9), (25; 17) and

(29; 19); given by

Hª 2;1(x) = 9 + 19x + 12x2:

{ Then the secret keys for C6 and C7 are computed by

SK6 = f (19) (mod 31) = 14 and

SK7 = f (12) (mod 31) = 16:

² For exclusive IP C4

{ The exclusive ISs for C4 are C10; C11 and C12.
{ Randomly select (14; 12); (7; 22) and (4; 21) as the
public-parameter pairs for C10; C11 and C12, respec-
tively.
{ Construct the interpolating polynomial H4(x) over
GF(31) on the points: (0; SK

0
4 = 19), (14; 12); (7; 22)

and (4; 21); given by

H4(x) = 19 + 9x + 18x2 + 25x3 (mod 31).

{ Then the secret keys for C10; C11 and C12 are given
as

SK10 = f (9) (mod 31) = 8:

SK11 = f (18) (mod 31) = 2

SK12 = f (25) (mod 31) = 25:

² Do nothing for the leaf nodes: C5; C6; : : : ; and C9.

Key-Derivation Example
Suppose that C1 wants to access the data of C6 and
C10: The security class C6 is the shared IS of ª 2;1 =
fC2; C3g: The security class C10 is an immediate suc-
cessor of C4.
² The derivation of SK6

{ Reconstruct the interpolating polynomial H1(x) over
GF(31) on the points: (0; SK

0
1 = 28), (3;12) and

(10; 9); given by H1(x) = 28 + 27x + 3x2 (mod 31):
{ The secret key of C2 is computed by SK2 = f (27)
(mod 31) = 16.
{ Get the universal key SKª 2;1

for C2 and C3 by

SKª 2;1 = Gª 2;1(SK
0
2 = 7) = 29:

{ Reconstruct the interpolating polynomial Hª 2;1
(x)

over GF(31) on the points: (0; SK
0
ª 2;1

= 9), (25; 17)

and (29; 19); given by Hª 2;1
(x) = 9 + 19x + 12x2:

{ The secret keys for C6 is given by SK6 =
f (19) (mod 31) = 14:

² The derivation of SK10

{ Reconstruct the interpolating polynomial H1(x) over
GF(31) on the points: (0;SK

0
1 = 28), (3; 12) and

(10; 9); given by H1(x) = 28 + 27x + 3x2 (mod 31):
{ The secret key of C2 is computed by SK2 = f (27)
(mod 31) = 16.
{ Reconstruct the interpolating polynomial H2(x)
for the exclusive ISs of C2 over GF(31) on the
points:(0;SK

0
2 = 7), (15; 2) and (11; 9); given by

H2(x) = 7 + 7x + 25x2 (mod 31).
{ The secret key of C4 is computed by SK4 = f (7)
(mod 31) = 28.
{ Reconstruct the interpolating polynomial H4(x)
for the exclusive ISs of C4 over GF(31) on the
points:(0;SK

0
4 = 19), (14; 12); (7; 22) and (4; 21); given

by H4(x) = 19 + 9x + 18x2 + 25x3 (mod 31):
{ Then the secret key of C10 is computed by SK10 =
f (9) (mod 31) = 8:

5. CONCLUSIONS

A simple and e®ective scheme, based on the
combination of Lagrange polynomial and Newton in-
terpolation method, is proposed to solve the incorrect-
ness of CHW scheme and to enhance its security at the
same time. The polynomial for generating the univer-
sal key of a similar IP set is easily obtained by just
solving linear congruence equations. This scheme en-
sures not only each security class in a similar IP set
can derive each secret key of the associated shared ISs
via his own secret key, without the help of his peers,
but also the predecessor's secret key cannot be revealed
by conspiracy of his successors.
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Figure 1: The poset in a user hierarchy.
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Figure 2: Examples

Table 1: The second security-clearance level of
the user hierarchy in Figure 1.

Similar IP sets ª 2 ª 2;1 = fC2;C3; C4g
ª 2;2 = fC3;C4g

Shared IS sets '2 '2;1 = fC7; : : : ;C10g
'2;2 = fC11; : : : ;C17g

Immediate Successors © 2 = fC5; : : : ; C10g
© 3 = fC7; : : : ; C17g
© 4 = fC7; : : : ; C18g

Exclusive IS Sets ¤ 2 = fC5; C6g
¤ 3 = Á for C3.
¤ 4 = fC18g for C4.

Table 2: Parameters for the user hierarchy in Figure 2.

Security class

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12

SKi 7 16 2 28 25 14 16 5 16 8 2 25

SK
0
i 28 7 18 19 25 9 7 5 7 10 18 25

P1i ¢¢¢ 3 10 15 11 25 29 5 13 14 7 4

P2i ¢¢¢ 12 9 2 9 17 19 2 3 12 22 21
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