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ABSTRACT 
 

It is obvious that we can protect the integrity of the data in 
write-once optical using cryptographic techniques like 
digital signatures. However, a code for detection of 
tampering in write-once optical disks without using digital 
signature, is proposed in [1]. The technique in [1] is to 
choose a t-error correcting/all unidirectional error detecting 
(t-EC/AUED) code as a security tail, such that we can 
check possible tampering. The tail for a sector of data is a 
function of the weight of the sector. Here, We present a 
new look-up-table method to construct the security tail by 
using constant weight t-EC/AUED codes. It is shown that 
our method has the smaller tail than the previously 
developed coding approach in [1]. This paper also defines a 
new class of code with tampering detecting capability, and 
the code of tampering detection in [1] is only a special case 
in the new class of code. 
 

1 INTRODUCTION 
 
Digital signatures can be used to guarantee data integrity, 
but when using digital signature to protect the data, the two 
followings cannot be guaranteed. Here, we quote a 
statement from the introduction of [1] below : It can not be 
assured that an attacker having a great mount of time(like 
several years) cannot break the system. Moreover, the 
decryption involves knowledge of a key. It is conceivable 
that an attacker may gain physical possession of the key, in 
which case the cryptographic techniques are useless. Thus, 
we use coding method instead of digital signature to 
protect the data in write-once optical disks.  

There are two important properties in write-once 
optical disks. The first property is that the error pattern of 
write-once optical disks is asymmetric, and the second 
property is that the particular codes runlength-limited 
(RLL) (d, k) codes are used in optical disks. 

The error that changes a bit in binary word from 0(1) 
to 1(0) is denoted as 0-error(1-error). Both 0-error and 
1-error can occur but they do not occur in the same 
codeword, called as unidirectional errors. There is only one 
type of errors, say 0-error; and the other type of errors, say 
1-error, will never occur in any codeword, called 

asymmetric errors. Many papers on dealing with the codes 
for detecting and correcting asymmetric/unidirectional 
errors [6]-[13] have been published. It is observed that the 
error pattern of write-once optical disks is asymmetric due 
to the irreversible materials usage when recording. So, 
there is no way to erase the data from “1” to “0”, but it is 
possible to make a new “1” in all-0 areas. 

The most frequently modulation code applied in 
write-once optical disks is RLL (d, k) sequence [5]. It 
means that two logical “ones” are separated, at least, d 
consecutive “zeros”, at most k “zeros”. The parameter d is 
to avoid the intersymbol interference (ISI), and the 
parameter k is to maintain the bit synchronization of system 
clock. It is obvious that a (d, k)-constrained code of length 
n has the weight span from n/(d+1) to n/(k+1). 

How to achieve the purpose of data integrity in 
write-once optical disk, the first method proposed in [2] is 
to use unordered code. However, it does not consider the 
modulated (d, k)-constrained codes. In [1], it combines (d, 
k) codes and t-EC/AUED codes, and get a good result. 
There are two coding approaches in [1]. One is the 
detection of tampering in a noiseless environment and the 
other is in a noisy environment, where “noisy” means that 
errors caused by natural scratches, corrosion, .., etc., not 
tampering by external attacker. We here only give the 
improvement for coding in a noisy environment.  

 
The coding approach for detection of tampering in a noisy 
environment [1] : 

The encoding procedure of this scheme is shown in 
Figure 1. The code can be tolerate in the information part at 
most t1 normal errors and detect all possible tampering 
errors, and correct t2 errors in the tail (abbreviated as (t1, 
t2)-code). In general, t1 is larger than t2. 

We use the following example to describe the 
operation process. 

 
Example 1 : Assume we want to encode a 16 bits 

original data m= (0000101011111000) with t1=2, t2=1. 
Here, we use two RLL codes (1, 7) code with code rate=2/3 
and systematic (1, 5) code with code rate=1/2 which can be 
found in [1], [3], [4], [5], and a 1-EC/AUED code in [9]. 
First use (1, 7) RLL code encodes original data m into 
information part s=(101000001001010010001000) of 
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length 24=16×3/2. Since W(s)=7, which W(s) is Hamming 
weight of s, and its weight distribution between 3(=24/8) 
and 12(=24/2),i.e., ten different weights. So, we can use 
4-tuple u (since 24≥10) to represent “7” as “0111”. Using 
1-EC/AUED, we encode u to get 11 bits output 
v=(01110011010). Due to the criterion of (1, 7) constraint, 
we use systematic (1, 5) RLL code to get the 22 bits tail 
t=(0001010100000101000100). 

 
In this paper, a look-up-table method is proposed to 

reduce the length of tail, and the table size is reasonable. 
We use non-systematic constant weight t-EC/AUED code 
[6], [12], [13] as the tail part. As we know, the 
encoding/decoding algorithm of group theoretical 
t-EC/AUED code needs many recursive computations [12], 
[13]. However, now it does not need the encoding/decoding 
of a non-systematic t-EC/AUED code, but only needs a 
table to set the mapping between a weight and a 
non-systematic t-EC/AUED codeword. 

In this paper, we also discuss a more general 
approach for tampering in a noisy environment in [1], a (t1, 
t2, t3)-code, where t3 is called as tampering detecting 
capability. A (t1, t2, t3)-code will result a smaller tail due to 
the compromise of tampering detecting capability. It is 
obvious that a (t1, t2, ∞)-code is a (t1, t2)-code. 

This paper is organized as follows: In next section, 
we describe the proposed code construction. Section 3 
describes a new class of (t1, t2, t3)-code with tampering 
detecting capability. The tables and comparisons are shown 
in Section 4. 

 
2 CODE CONSTRUCTION 

 
The coding approach in this paper needs constant weight 
codes in [6], [12], [13], [14], [15]. A constant weight codes 
with minimum Hamming distance 4, 6, 8, 10, can be used 
as 1,2,3,4-EC/AUED codes, respectively. For example, 
every codeword in the following 14×8-matrix [15], is a 
4-out-of-8 constant weight code with minimum Hamming 
distance 4, and can be used as 1-EC/AUED code. Since the 
matrix is used for the tail in this paper, so called as tail 
matrix. 
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Let the length of (d, k)-constrained sector s be n bits. 
Then, we describe construction of (t1, t2)-code as the 
following: 

1) Choose the tail matrix r×l-matrix with rows ri, 
0 ≤ i ≤ r-1, of minimum Hamming distance 
2(t2+1), and r no less than “n/(k+1)-n/(d+1)+1”, 
such that l is as small as possible. 

2) Choose row rW(s)-n/(k+1) from r×l-matrix. 
3) Use systematic (d, k)-constrained code to encode 

rW(s)-n/(k+1), and then append it to s. 
 
The difference of our method and [1] is only to use 

different types of t2-EC/AUED codes. So, the proof of that 
our code is a (t1, t2)-code will be same as Theorem 3.1 in 
[1]. 

Our method uses a nonsystematic t-EC/AUED code 
as a tail part instead of systematic t-EC/AUED code. In 
general, the nonsystematic t-EC/AUED code has better 
code rate than the systematic t-EC/AUED code for fixed 
input length. Moreover, the number of codewords needed in 
our method is just w, where w is the weight span of 
information part s, but the method in [1] needs to encode 
2b(≥w) codewords. Due to these two reasons, the tail in our 
method will be reduced. 

Next, we explain how to encode and decode the data. 
The encoding procedure of our proposed code is shown in 
Figure 2. The encoding/decoding procedure is shown as 
follows. Let m be an original data, u the output n-tuple of 
(d, k)-constrained RLL code, v the output l-tuple of constant 
weight t-EC/AUED code, t the output 2×l-tuple of 
systematic (d, k)-constrained RLL code, and c the 
t-EC/AUED (n+2×l)-tuple codeword. 
 
Encoding procedure : 
1) Encode m into s in (d, k)-constrained RLL code. 
2) Choose row rW(s)-n/(k+1) as v form the tail matrix with minimum 

Hamming distance 2(t2+1). 
3) Encode v into t in systematic (d, k)-constrained RLL code. 
4) Output codeword c=( s , t ). 
Decoding procedure : 

Let )ˆ ,ˆ ( ts  be a received codeword. 

1) Decode v' from t̂  in systematic (d, k)-constrained RLL 
code.. 

2) If more than t2 errors in v', declare tampering and stop. Else, 
decode v' and get the row i where v' located. 
(NOTE : To correct t2 errors in the tail part v', non-systematic 
t-EC/AUED codes can use group theoretical methods with 

these functions f1(.), f2(.), f3(.), t1(.), and t2(.) defined in 

[11].) 
3) If |W( ŝ )-(i+ n/(k+1))| ≤ t1, then accept the sector. Otherwise, 

declare tampering. 
4) Decode m from s in (d, k)-constrained RLL code. 

 
Example 2 : Consider Example 1. Since 4-out-of-8 

tail matrix has fourteen rows greater than ten different 
weights, it can be used as a tail matrix for information part s 
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of length 24. Since W(s)=7, and 7-3=4, so we choose row 
r4=(10100101), and then encode it to get the 16 bits tail t 
=(0100010000010001). Finally, we get the smaller tail, and 
save 6 bits when compared to Example 1. 

 
Example 3 : Consider the decoding in Example 2. 

Assume that the received codeword 

)ˆ ,ˆ ( ts =(111000001001010010001000,010101000001000

1). First decode t̂ =(0101010000010001) into 
v'=(11100101). Then, locate the error position and correct it 
in v' by using group theoretical method [6], [11], [17]. The 
corrector v' is (10100101) and is the row r4 in tail matrix. 
Since |W( ŝ )-(i+ n/(k+1))|=|8-(4+3)| =1 ≤ t1, then accept the 
sector. 
 

3 A NEW CLASS OF CODE WITH 
TAMPERING DETECTING CAPABILITY 

 
In this section, we discuss a more general approach for 
tampering in a noisy environment. First, review the 
capabilities of a (t1, t2)-code as follows: 

1) The code can correct at most t2 errors, and detect 
any number of tampering errors in the tail part. 

2) If the tampering errors in the tail less or equal 
than t2, i.e., we can correct the tampering, then we 
can detect all the tampering errors in the 
information part. 

3) It is interesting that we can divide the tampering 
errors in the information part into two classes, 
tolerate errors (caused by natural errors) and real 
tampering errors. The number of tolerate errors is 
t1, and it can be adaptively changed according to 
our need. 

Consider the tail part of a (t1, t2)-code in [1]. If the 
errors including either natural noise or external tampering 
do not exceed t2, we can detect all possible tampering errors 
in the information part except the t1 tolerate errors. 
However, for a certain application, if we just need a code to 
detect at most t3 tampering errors instead of all tampering 
errors. Here, we introduce another new parameter t3, called 
as tampering detecting capability, and the code is 
abbreviated as (t1, t2, t3)-code.  

So, a (t1, t2, t3)-code is a code that can be tolerate in 
the information part at most t1 normal errors and detect at 
most t3 tampering errors, and correct t2 errors in the tail. 

As we know, the weight distribution of a (d, 
k)-constrained code with length n is between n/(d+1) and 
n/(k+1). For (t1, t2)-code, we use different tails for different 
weights of (d, k)-constrained codewords. Here, we want to 
suffer t1 normal noise and t3 tampering errors, and hence we 
can use the same tail to append the codewords which 
Hamming weight is the congruence modulo (t1+t3+1). Thus, 
when no more than t1 normal noise and t3 tampering errors 
occurs, we can detect them. Of course, there are 
undetectable normal noise and tampering errors, when the 
error pattern exceeds the capability of (t1, t2, t3)-code. 

A coding approach for (t1, t2, t3)-code is given in the 
following, and the notation is used in the previous section. 
The encoding/decoding steps are same as the proposed 
construction, except the step 2 in encoding procedure, and 
the step 3 in the decoding procedure. We described as 
follows. 
 
Step2 of Encoding procedure : 
We have the following two choices, the proposed 
construction or the construction in [1]. 
1. Use the proposed construction. Choose row r(W(s)-n/(k+1)) 

mod(t1+t3+1) as v form the tail matrix with minimum 
Hamming distance 2(t2+1). 

2. Use the construction in [1]. Find the binary 
representation u of “(W(s)-n/(k+1)) mod(t1+t3+1)”, and 
then use t2-EC/AUED codes to encode. 

 
Step3 of Decoding procedure : 
1. Use the proposed construction. If |(W( ŝ )-n/(k+1)) 

mod(t1+t3+1)–i| ≤ t1, then accept the sector. Otherwise, 
declare tampering. 

2. Use the construction in [1]. Decode the correct binary 
representation u, and find the corresponding value i. If 
|(W( ŝ )-n/(k+1)) mod(t1+t3+1)–i| ≤ t1, then accept the 
sector. Otherwise, declare tampering. 

 
Example 4 : Consider Example 1. If we want to design a (t1, 
t2, t3)-code with t1=2, t2=1, t3=1. Use the proposed 
construction. Since t1+t3+1=2+1+1=4, thus we need a tail 
matrix with at least four rows. A 3-out-of-6 tail matrix with 
minimum Hamming distance 4 shown below has four rows. 
Since W(s)=7, and 7-3=0 mod 4, so we choose row 
r0=(100101), and then encode it to get the 12 bits tail t 
=(010000010001). Finally, we get the smaller tail, and save 
10 and 4 bits when compared to Example 1 and Example 2, 
respectively. 
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Example 5 : Consider Example 4, but the sector size=1024 
bytes ,i.e., 12288= 1024×8×3/2 total bits, when use code 
rate 2/3 (1, 7)-constrained code. The length of tail needed in 
the proposed construction and [1] is 38 and 48, 
respectively.  Because the tail length is a function of the 
number modulo (t1+t3+1), so the tail matrix in Example 4 
can be used for (t1=2, t2=1, t3=1)-code with information part 
s of any length. Finally, we get the length of tail is still 12 
bits. The length of tail is significantly reduced due to the 
compromise of tampering detecting capability. In this case, 
our code now just can detect one tampering. 
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Example 6 : Consider the decoding in Example 4. Assume 

that the received codeword )ˆ ,ˆ ( ts = 

(111000001001010010001000,010100010001). Decode 

t̂ =(010100010001) into v'=(110101). Then, locate the error 
position and correct it in v'. The row is r0 in tail matrix. 
Since |(W( ŝ )-n/(k+1)) mod(t1+t3+1)–i| ≤ t1,=|(8-3) mod4-0| 
=1 ≤ t1, then accept the sector. 
 

The probability that a (t1, t2, t3)-code fails to detect the 
presence of errors is described as follows. Since undetected 
errors occur when only there are a×(t1+t3+1)+b 0-errors, 
where a=1, 2, 3, …, and b=0, 1, …, t1. For example, in 
Example 6, if there are 4(or 5) 0-errors in ŝ ,i.e., 

W( ŝ )=11(or 12), and thus |(11(or 12)-3) mod4-0|=0(or 
1) ≤ t1 it will cause the undetected errors. 
 

4 TABLES AND COMPARISONS 
 
In this section, our improved proposed code is compared to 
previously proposed code in [1]. In these comparisons, we 
use the tail matrix with Hamming weight=4, 6, 8, from 
TABLE I-A~TABLE-C in [15], and the tail matrix with 
Hamming weight=10 is from the Sloane’s lower bounds for 
constant weight codes in [14]. 

The comparisons for (t1, t2)-codes, 1	t2	4, are listed 
in Table 1~4. Table 5 shows the length of tail for (t1, t2, 
t3)-codes with sector size=1024 bytes. In these tables, #i, i=1, 
2, denotes the construction in [1], and the proposed 
construction. In Table 1~5, ∆1 and ∆2 are the improvements 
of tail length which is defined as the tail length in [1] minus 
the tail length of the proposed code for (t1, t2)-codes and (t1, 
t2, t3)-codes, respectively. In Table 5, the value of ∆3 is the 
difference of the tail length of (t1, t2)-codes (or we say (t1, t2, 
∞)-codes) and (t1, t2, t3)-codes using the proposed 
construction. 

We can see that our proposed (t1, t2)-codes have 
smaller tails. In fact, our method results in a saving of 24 bits 
for some cases. Sector bytes generally tend to be either 512 
bytes (6144=512×8×3/2 bits) or 1024 bytes 
(12288=1024×8×3/2 bits) are shown in the last two rows in 
Table 4. For example, using our (t1,t2=4)-code to encode one 
600M byte optical disk, it will save 600M/1024×24 
=14,400K bytes for sector=1024 bytes and 600M/512×24 
=28,800K bytes for sector=512 bytes. It means that we can 

save the capacity about ten(twenty) 213 -inch floppy disks 

for sector size 1024(512) bytes. 
Consider the (2, 1, ∞)-code in Table 5. The minimum 

weight of the modulated (1, 7) RLL sequence is 
12,288/8=1,536, i.e., 12,288-1536=10,752 0’s. It means that 
the (2, 1, ∞)-code will have tampering detecting 
capability=10,752 better than (2, 1, 3537)-code. However, 
(2, 1, 3537)-code saves 2 tail bits for each sector. According 
the need of system, we can choose the appropriate (t1, t2, 
t3)-codes, but when the requirement of  
tampering detecting capability more than 3537, we must 

choose (2, 1, ∞)-code. 
 

5 CONCLUSION 
 
Our proposed method although uses non-systematic 
constant weight code, it does not need encoding of constant 
weight code. However, it needs a table. The table can be 
easily implemented by a reasonable sized ROM. For 
example, a (t1, t2=4)-code with sector size 1024 bytes in 
Table 4 only needs a 13×36 ROM (since 13= log24609 ). 
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Figure 1 : The encoding procedure in [1] for detection of tampering in a noisy environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : The proposed encoding procedure for detection of tampering in a noisy environment 
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Table 1 Comparison of codes with t2=1 
Length of 

(1,7) code s 
Number of weight  

span of u 
Bit num. 

(b= log2w ) 
Length of t2-EC 
/AUED code v 

Length of tail t 
(li=2×ri) 

improvement 
(∆1= l1 – l2) 

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1 

8 4 2 8 6 16 12 +4 
16 7 3 9 7 18 14 +4 
24 10 4 12 8 24 16 +8 
32 13 4 12 8 24 16 +8 

344 130 8 17 12 34 24 +10 
12288 4609 13 24 19 48 38 +10 

 

 

Table 2 Comparison of codes with t2=2 
Length of 
(1,7) code s 

Number of weight  
span of u 

Bit num. 
(b= log2w ) 

Length of t2-EC 
/AUED code v 

Length of tail t 
(li=2×vi) 

improvement 
(∆1= l1 – l2) 

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1 

24 10 4 17 11 34 22 +12 
32 13 4 17 12 34 24 +10 
64 25 5 18 13 36 26 +10 

104 40 6 19 14 38 28 +10 
12288 4609 13 31 24 62 48 +14 

 
 

Table 3 Comparison of codes with t2=3 
Length of 

(1,7) code s 
Number of weight  

span of u 
Bit num. 

(b= log2w ) 
Length of t2-EC 
/AUED code v 

Length of tail t 
(li=2×ri) 

improvement 
(∆1= l1 – l2) 

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1 

32 13 4 19 15 38 30 +8 
64 25 5 27 16 54 32 +22 

120 46 6 28 18 56 36 +20 
464 175 8 31 20 62 40 +22 

12288 4609 13 37 28 74 56 +18 
 
 

Table 4 Comparison of codes with t2=4 
Length of 

(1,7) code s 
Number of weight  

span of u 
Bit num. 

(b= log2w ) 
Length of t2-EC 
/AUED code v 

Length of tail t 
(li=2×ri) 

improvement 
(∆1= l1 – l2) 

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1 

2736 1027 11 46 34 92 68 +24 
5464 2050 12 47 35 94 70 +24 
6144 2305 12 47 35 94 70 +24 

12288 4609 13 48 36 96 72 +24 
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Table 5 Length of tail for (t1, t2, t3)-codes with sector size=1024 bytes 

Parameters of 
(t1, t2, t3)-code 

Length of t2-EC 
/AUED code v 

Length of tail t 
(li=2×ri) 

improvement 
(∆2= l1 – l2) 

∆3=l2 of (t1,t2,t3) –l2 of 
(t1,t2,∞) 

t1 t2 t3 v1

#1 v2

#2 l1

#1 l2

#2 ∆2 ∆3 

2 1 1 8 6 16 12 +4 +26 
2 1 129 17 12 34 24 +10 +14 
2 1 3537 23 18 46 36 +10 +2 
2 1 ∞ 24 19 48 38 +10 0 
3 2 1 16 10 32 20 +12 +28 
3 2 116 23 16 46 32 +14 +16 
3 2 3581 29 23 58 46 +12 +2 
3 2 ∞ 31 24 62 48 +14 0 
4 3 1 18 14 36 28 +8 +28 
4 3 171 31 20 62 40 +22 +16 
4 3 3918 36 27 72 54 +18 +2 
4 3 ∞ 37 28 74 56 +18 0 
5 4 1 31 18 62 36 +26 +36 
5 4 57 34 23 68 46 +22 +26 
5 4 429 38 28 76 56 +20 +16 
5 4 ∞ 48 36 96 72 +24 0 

 
 


