
1

AN IMPROVEMENT ON CODE FOR DETECTION OF TAMPERING
IN WRITE-ONCE OPTICAL DISKS

Ching-Nung Yang

Department of Computer Science & Information Engineering,

National Dong Hwa University,
1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, Taiwan, Republic of China

TEL: (03)8662500 Ext-22120 FAX: (03)8662781
E-mail: cnyang@mail.ndhu.edu.tw

ABSTRACT

It is obvious that we can protect the integrity of the data in
write-once optical using cryptographic techniques like
digital signatures. However, a code for detection of
tampering in write-once optical disks without using digital
signature, is proposed in [1]. The technique in [1] is to
choose a t-error correcting/all unidirectional error detecting
(t-EC/AUED) code as a security tail, such that we can
check possible tampering. The tail for a sector of data is a
function of the weight of the sector. Here, We present a
new look-up-table method to construct the security tail by
using constant weight t-EC/AUED codes. It is shown that
our method has the smaller tail than the previously
developed coding approach in [1]. This paper also defines a
new class of code with tampering detecting capability, and
the code of tampering detection in [1] is only a special case
in the new class of code.

1 INTRODUCTION

Digital signatures can be used to guarantee data integrity,
but when using digital signature to protect the data, the two
followings cannot be guaranteed. Here, we quote a
statement from the introduction of [1] below : It can not be
assured that an attacker having a great mount of time(like
several years) cannot break the system. Moreover, the
decryption involves knowledge of a key. It is conceivable
that an attacker may gain physical possession of the key, in
which case the cryptographic techniques are useless. Thus,
we use coding method instead of digital signature to
protect the data in write-once optical disks.

There are two important properties in write-once
optical disks. The first property is that the error pattern of
write-once optical disks is asymmetric, and the second
property is that the particular codes runlength-limited
(RLL) (d, k) codes are used in optical disks.

The error that changes a bit in binary word from 0(1)
to 1(0) is denoted as 0-error(1-error). Both 0-error and
1-error can occur but they do not occur in the same
codeword, called as unidirectional errors. There is only one
type of errors, say 0-error; and the other type of errors, say
1-error, will never occur in any codeword, called

asymmetric errors. Many papers on dealing with the codes
for detecting and correcting asymmetric/unidirectional
errors [6]-[13] have been published. It is observed that the
error pattern of write-once optical disks is asymmetric due
to the irreversible materials usage when recording. So,
there is no way to erase the data from “1” to “0”, but it is
possible to make a new “1” in all-0 areas.

The most frequently modulation code applied in
write-once optical disks is RLL (d, k) sequence [5]. It
means that two logical “ones” are separated, at least, d
consecutive “zeros”, at most k “zeros”. The parameter d is
to avoid the intersymbol interference (ISI), and the
parameter k is to maintain the bit synchronization of system
clock. It is obvious that a (d, k)-constrained code of length
n has the weight span from n/(d+1) to n/(k+1).

How to achieve the purpose of data integrity in
write-once optical disk, the first method proposed in [2] is
to use unordered code. However, it does not consider the
modulated (d, k)-constrained codes. In [1], it combines (d,
k) codes and t-EC/AUED codes, and get a good result.
There are two coding approaches in [1]. One is the
detection of tampering in a noiseless environment and the
other is in a noisy environment, where “noisy” means that
errors caused by natural scratches, corrosion, .., etc., not
tampering by external attacker. We here only give the
improvement for coding in a noisy environment.

The coding approach for detection of tampering in a noisy
environment [1] :

The encoding procedure of this scheme is shown in
Figure 1. The code can be tolerate in the information part at
most t1 normal errors and detect all possible tampering
errors, and correct t2 errors in the tail (abbreviated as (t1,
t2)-code). In general, t1 is larger than t2.

We use the following example to describe the
operation process.

Example 1 : Assume we want to encode a 16 bits

original data m= (0000101011111000) with t1=2, t2=1.
Here, we use two RLL codes (1, 7) code with code rate=2/3
and systematic (1, 5) code with code rate=1/2 which can be
found in [1], [3], [4], [5], and a 1-EC/AUED code in [9].
First use (1, 7) RLL code encodes original data m into
information part s=(101000001001010010001000) of

2

length 24=16×3/2. Since W(s)=7, which W(s) is Hamming
weight of s, and its weight distribution between 3(=24/8)
and 12(=24/2),i.e., ten different weights. So, we can use
4-tuple u (since 24≥10) to represent “7” as “0111”. Using
1-EC/AUED, we encode u to get 11 bits output
v=(01110011010). Due to the criterion of (1, 7) constraint,
we use systematic (1, 5) RLL code to get the 22 bits tail
t=(0001010100000101000100).

In this paper, a look-up-table method is proposed to

reduce the length of tail, and the table size is reasonable.
We use non-systematic constant weight t-EC/AUED code
[6], [12], [13] as the tail part. As we know, the
encoding/decoding algorithm of group theoretical
t-EC/AUED code needs many recursive computations [12],
[13]. However, now it does not need the encoding/decoding
of a non-systematic t-EC/AUED code, but only needs a
table to set the mapping between a weight and a
non-systematic t-EC/AUED codeword.

In this paper, we also discuss a more general
approach for tampering in a noisy environment in [1], a (t1,
t2, t3)-code, where t3 is called as tampering detecting
capability. A (t1, t2, t3)-code will result a smaller tail due to
the compromise of tampering detecting capability. It is
obvious that a (t1, t2, ∞)-code is a (t1, t2)-code.

This paper is organized as follows: In next section,
we describe the proposed code construction. Section 3
describes a new class of (t1, t2, t3)-code with tampering
detecting capability. The tables and comparisons are shown
in Section 4.

2 CODE CONSTRUCTION

The coding approach in this paper needs constant weight
codes in [6], [12], [13], [14], [15]. A constant weight codes
with minimum Hamming distance 4, 6, 8, 10, can be used
as 1,2,3,4-EC/AUED codes, respectively. For example,
every codeword in the following 14×8-matrix [15], is a
4-out-of-8 constant weight code with minimum Hamming
distance 4, and can be used as 1-EC/AUED code. Since the
matrix is used for the tail in this paper, so called as tail
matrix.













































11101000

11010100

00111100

10110010

01011010

01100110

10001110

01110001

10011001

10100101

01001101

11000011

00101011

00010111

Let the length of (d, k)-constrained sector s be n bits.
Then, we describe construction of (t1, t2)-code as the
following:

1) Choose the tail matrix r×l-matrix with rows ri,
0 ≤ i ≤ r-1, of minimum Hamming distance
2(t2+1), and r no less than “n/(k+1)-n/(d+1)+1”,
such that l is as small as possible.

2) Choose row rW(s)-n/(k+1) from r×l-matrix.
3) Use systematic (d, k)-constrained code to encode

rW(s)-n/(k+1), and then append it to s.

The difference of our method and [1] is only to use

different types of t2-EC/AUED codes. So, the proof of that
our code is a (t1, t2)-code will be same as Theorem 3.1 in
[1].

Our method uses a nonsystematic t-EC/AUED code
as a tail part instead of systematic t-EC/AUED code. In
general, the nonsystematic t-EC/AUED code has better
code rate than the systematic t-EC/AUED code for fixed
input length. Moreover, the number of codewords needed in
our method is just w, where w is the weight span of
information part s, but the method in [1] needs to encode
2b(≥w) codewords. Due to these two reasons, the tail in our
method will be reduced.

Next, we explain how to encode and decode the data.
The encoding procedure of our proposed code is shown in
Figure 2. The encoding/decoding procedure is shown as
follows. Let m be an original data, u the output n-tuple of
(d, k)-constrained RLL code, v the output l-tuple of constant
weight t-EC/AUED code, t the output 2×l-tuple of
systematic (d, k)-constrained RLL code, and c the
t-EC/AUED (n+2×l)-tuple codeword.

Encoding procedure :
1) Encode m into s in (d, k)-constrained RLL code.
2) Choose row rW(s)-n/(k+1) as v form the tail matrix with minimum

Hamming distance 2(t2+1).
3) Encode v into t in systematic (d, k)-constrained RLL code.
4) Output codeword c=(s , t).
Decoding procedure :

Let)ˆ ,ˆ (ts be a received codeword.

1) Decode v' from t̂ in systematic (d, k)-constrained RLL
code..

2) If more than t2 errors in v', declare tampering and stop. Else,
decode v' and get the row i where v' located.
(NOTE : To correct t2 errors in the tail part v', non-systematic
t-EC/AUED codes can use group theoretical methods with

these functions f1(.), f2(.), f3(.), t1(.), and t2(.) defined in

[11].)
3) If |W(ŝ)-(i+ n/(k+1))| ≤ t1, then accept the sector. Otherwise,

declare tampering.
4) Decode m from s in (d, k)-constrained RLL code.

Example 2 : Consider Example 1. Since 4-out-of-8

tail matrix has fourteen rows greater than ten different
weights, it can be used as a tail matrix for information part s

3

of length 24. Since W(s)=7, and 7-3=4, so we choose row
r4=(10100101), and then encode it to get the 16 bits tail t
=(0100010000010001). Finally, we get the smaller tail, and
save 6 bits when compared to Example 1.

Example 3 : Consider the decoding in Example 2.

Assume that the received codeword

)ˆ ,ˆ (ts =(111000001001010010001000,010101000001000

1). First decode t̂ =(0101010000010001) into
v'=(11100101). Then, locate the error position and correct it
in v' by using group theoretical method [6], [11], [17]. The
corrector v' is (10100101) and is the row r4 in tail matrix.
Since |W(ŝ)-(i+ n/(k+1))|=|8-(4+3)| =1 ≤ t1, then accept the
sector.

3 A NEW CLASS OF CODE WITH
TAMPERING DETECTING CAPABILITY

In this section, we discuss a more general approach for
tampering in a noisy environment. First, review the
capabilities of a (t1, t2)-code as follows:

1) The code can correct at most t2 errors, and detect
any number of tampering errors in the tail part.

2) If the tampering errors in the tail less or equal
than t2, i.e., we can correct the tampering, then we
can detect all the tampering errors in the
information part.

3) It is interesting that we can divide the tampering
errors in the information part into two classes,
tolerate errors (caused by natural errors) and real
tampering errors. The number of tolerate errors is
t1, and it can be adaptively changed according to
our need.

Consider the tail part of a (t1, t2)-code in [1]. If the
errors including either natural noise or external tampering
do not exceed t2, we can detect all possible tampering errors
in the information part except the t1 tolerate errors.
However, for a certain application, if we just need a code to
detect at most t3 tampering errors instead of all tampering
errors. Here, we introduce another new parameter t3, called
as tampering detecting capability, and the code is
abbreviated as (t1, t2, t3)-code.

So, a (t1, t2, t3)-code is a code that can be tolerate in
the information part at most t1 normal errors and detect at
most t3 tampering errors, and correct t2 errors in the tail.

As we know, the weight distribution of a (d,
k)-constrained code with length n is between n/(d+1) and
n/(k+1). For (t1, t2)-code, we use different tails for different
weights of (d, k)-constrained codewords. Here, we want to
suffer t1 normal noise and t3 tampering errors, and hence we
can use the same tail to append the codewords which
Hamming weight is the congruence modulo (t1+t3+1). Thus,
when no more than t1 normal noise and t3 tampering errors
occurs, we can detect them. Of course, there are
undetectable normal noise and tampering errors, when the
error pattern exceeds the capability of (t1, t2, t3)-code.

A coding approach for (t1, t2, t3)-code is given in the
following, and the notation is used in the previous section.
The encoding/decoding steps are same as the proposed
construction, except the step 2 in encoding procedure, and
the step 3 in the decoding procedure. We described as
follows.

Step2 of Encoding procedure :
We have the following two choices, the proposed
construction or the construction in [1].
1. Use the proposed construction. Choose row r(W(s)-n/(k+1))

mod(t1+t3+1) as v form the tail matrix with minimum
Hamming distance 2(t2+1).

2. Use the construction in [1]. Find the binary
representation u of “(W(s)-n/(k+1)) mod(t1+t3+1)”, and
then use t2-EC/AUED codes to encode.

Step3 of Decoding procedure :
1. Use the proposed construction. If |(W(ŝ)-n/(k+1))

mod(t1+t3+1)–i| ≤ t1, then accept the sector. Otherwise,
declare tampering.

2. Use the construction in [1]. Decode the correct binary
representation u, and find the corresponding value i. If
|(W(ŝ)-n/(k+1)) mod(t1+t3+1)–i| ≤ t1, then accept the
sector. Otherwise, declare tampering.

Example 4 : Consider Example 1. If we want to design a (t1,
t2, t3)-code with t1=2, t2=1, t3=1. Use the proposed
construction. Since t1+t3+1=2+1+1=4, thus we need a tail
matrix with at least four rows. A 3-out-of-6 tail matrix with
minimum Hamming distance 4 shown below has four rows.
Since W(s)=7, and 7-3=0 mod 4, so we choose row
r0=(100101), and then encode it to get the 12 bits tail t
=(010000010001). Finally, we get the smaller tail, and save
10 and 4 bits when compared to Example 1 and Example 2,
respectively.



















011100

100110

010011

101001

Example 5 : Consider Example 4, but the sector size=1024
bytes ,i.e., 12288= 1024×8×3/2 total bits, when use code
rate 2/3 (1, 7)-constrained code. The length of tail needed in
the proposed construction and [1] is 38 and 48,
respectively. Because the tail length is a function of the
number modulo (t1+t3+1), so the tail matrix in Example 4
can be used for (t1=2, t2=1, t3=1)-code with information part
s of any length. Finally, we get the length of tail is still 12
bits. The length of tail is significantly reduced due to the
compromise of tampering detecting capability. In this case,
our code now just can detect one tampering.

4

Example 6 : Consider the decoding in Example 4. Assume

that the received codeword)ˆ ,ˆ (ts =

(111000001001010010001000,010100010001). Decode

t̂ =(010100010001) into v'=(110101). Then, locate the error
position and correct it in v'. The row is r0 in tail matrix.
Since |(W(ŝ)-n/(k+1)) mod(t1+t3+1)–i| ≤ t1,=|(8-3) mod4-0|
=1 ≤ t1, then accept the sector.

The probability that a (t1, t2, t3)-code fails to detect the
presence of errors is described as follows. Since undetected
errors occur when only there are a×(t1+t3+1)+b 0-errors,
where a=1, 2, 3, …, and b=0, 1, …, t1. For example, in
Example 6, if there are 4(or 5) 0-errors in ŝ ,i.e.,

W(ŝ)=11(or 12), and thus |(11(or 12)-3) mod4-0|=0(or
1) ≤ t1 it will cause the undetected errors.

4 TABLES AND COMPARISONS

In this section, our improved proposed code is compared to
previously proposed code in [1]. In these comparisons, we
use the tail matrix with Hamming weight=4, 6, 8, from
TABLE I-A~TABLE-C in [15], and the tail matrix with
Hamming weight=10 is from the Sloane’s lower bounds for
constant weight codes in [14].

The comparisons for (t1, t2)-codes, 1	t2	4, are listed
in Table 1~4. Table 5 shows the length of tail for (t1, t2,
t3)-codes with sector size=1024 bytes. In these tables, #i, i=1,
2, denotes the construction in [1], and the proposed
construction. In Table 1~5, ∆1 and ∆2 are the improvements
of tail length which is defined as the tail length in [1] minus
the tail length of the proposed code for (t1, t2)-codes and (t1,
t2, t3)-codes, respectively. In Table 5, the value of ∆3 is the
difference of the tail length of (t1, t2)-codes (or we say (t1, t2,
∞)-codes) and (t1, t2, t3)-codes using the proposed
construction.

We can see that our proposed (t1, t2)-codes have
smaller tails. In fact, our method results in a saving of 24 bits
for some cases. Sector bytes generally tend to be either 512
bytes (6144=512×8×3/2 bits) or 1024 bytes
(12288=1024×8×3/2 bits) are shown in the last two rows in
Table 4. For example, using our (t1,t2=4)-code to encode one
600M byte optical disk, it will save 600M/1024×24
=14,400K bytes for sector=1024 bytes and 600M/512×24
=28,800K bytes for sector=512 bytes. It means that we can

save the capacity about ten(twenty) 213 -inch floppy disks

for sector size 1024(512) bytes.
Consider the (2, 1, ∞)-code in Table 5. The minimum

weight of the modulated (1, 7) RLL sequence is
12,288/8=1,536, i.e., 12,288-1536=10,752 0’s. It means that
the (2, 1, ∞)-code will have tampering detecting
capability=10,752 better than (2, 1, 3537)-code. However,
(2, 1, 3537)-code saves 2 tail bits for each sector. According
the need of system, we can choose the appropriate (t1, t2,
t3)-codes, but when the requirement of
tampering detecting capability more than 3537, we must

choose (2, 1, ∞)-code.

5 CONCLUSION

Our proposed method although uses non-systematic
constant weight code, it does not need encoding of constant
weight code. However, it needs a table. The table can be
easily implemented by a reasonable sized ROM. For
example, a (t1, t2=4)-code with sector size 1024 bytes in
Table 4 only needs a 13×36 ROM (since 13= log24609).

6 REFERENCES

[1] M. Blaum and J. Bruck, “A coding approach for

detection of tampering in write-once optical disks”,
IEEE trans. computers, vol. C-47, pp.120-125, Jan.
l998.

[2] E.L. Lesis, “Data integrity in digital optical disks”,
IEEE trans. Computers, vol. C-33, pp.818-827, Sep.
l984.

[3] R. Adler, M. Hassner, and J. Moussouris, “Method and
apparatus for generating a noiseless sliding block code
for a (1, 7) channel with rate 2/3,” U.S. Patent
4,413,251, 1982.

[4] P.H. Siegel, “Recording codes for digital magnetic
storage,” IEEE trans. Magnetic, vol. MAG-21,
pp.1344-1349, Sep. l985.

[5] K.A.S. Immink, Coding for digital recorders.
Englewood Cliffs, N.J., Prentice Hall, 1991.

[6] B. Bose and T.R.N. Rao, “Theory of unidirectional
error correcting/detecting codes,” IEEE trans.
Computers, vol. C-3l, pp.52l-530, June l982.

[7] R.J. McEliece and E.R. Rodemich, “The Constantin-
Rao construction for binary asymmetric
error-correcting codes,” Inform. contr., vol. 44,
pp.187-196, l980.

[8] M. Blaum and H. Van Tilborg, “On-t-error
correcting/all unidirectional error detecting codes,”
IEEE Trans. Computers, vol.38, pp. l493-l50l, Nov.
l989.

[9] J. Bruck and M. Blaum, “New techniques for
constructing EC/AUED codes,” IEEE Trans.
Computers, vol. C-41, pp.1318~1324, Oct. 1992.

[10] R. Katti and M Blaum, An improvement on
constructions of t-EC/AUED codes,” IEEE Trans.
Computers, vol. C-45, pp.607-608, May l996.

[11] S. Al-Bassam and B. Bose, “Design of efficient
error-correcting balanced codes,” IEEE Trans.
Computers, vol. C-42, pp.1261-1266, Oct. 1993.

[12] C.S. Laih and C.N. Yang, “On the analysis and design
of group theoretical t-syEC/AUED codes,” IEEE Trans.
Computers, vol. C-45, pp. 103-108, Jan. 1996.

[13] C.N. Yang and C.S. Laih, “Generating functions for
asymmetric/unidirectional error correcting and
detecting codes,” IEICE Trans. on Funda., vol. C-45,
pp. 103-108, Jan. 1997.

5

[14] R.L. Graham and N.J.A. Sloane, “Lower bounds for
constant weight codes,” IEEE Trans. Information
Theory, vol. IT-26, pp.37-42, Jan. 1980.

[15] A.H. Brouwer, J.B. Shearer, N.J.A. Sloane, and W.D.
Smith, “A new table of constant weight codes,” IEEE
Trans. Information Theory, vol. IT-36, pp.1334-1380,
Nov. 1990.

[16] K.A.S. Abdel-Ghaffar and H.C. Ferreira, “Systematic
encoding of thr Varshamov-Tenengol’ts codes and the
Constantin–Rao codes,” IEEE Trans. Information
Theory, vol. C-44, pp. 103-108, Jan. 1998.

[17] S. Kundu, “On symmetric error correcting and all
unidirectional error detecting codes,” IEEE Trans.
computers, vol. C-39, pp.752-76l, June l990.

Figure 1 : The encoding procedure in [1] for detection of tampering in a noisy environment

Figure 2 : The proposed encoding procedure for detection of tampering in a noisy environment

Encode m into (d,
k)-constrained RLL
modulation code

original data
m

Let u be b-tuple binary
representation of w,
where 2b≥w

Encode u into
t2-EC/AUED
code v

modulated
information part s weight span = w

Calculate
weight span
of s

v Systematic
(d, k)-constrained RLL

Code rate=1/2

Codeword c=(s , t)

Append tail

u

t

Use look-up-table to choose
t2-EC/AUED
constant weight codeword for
different weight of s

modulated
information part s

weight span = w

Calculate
weight span
of s

v Systematic
(d, k)-constrained RLL

Code rate=1/2

Codeword c=(s , t)

Append tail

t

Encode m into (d,
k)-constrained RLL
modulation code

original data
m

6

Table 1 Comparison of codes with t2=1
Length of

(1,7) code s
Number of weight

span of u
Bit num.

(b= log2w)
Length of t2-EC
/AUED code v

Length of tail t
(li=2×ri)

improvement
(∆1= l1 – l2)

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1

8 4 2 8 6 16 12 +4
16 7 3 9 7 18 14 +4
24 10 4 12 8 24 16 +8
32 13 4 12 8 24 16 +8

344 130 8 17 12 34 24 +10
12288 4609 13 24 19 48 38 +10

Table 2 Comparison of codes with t2=2
Length of
(1,7) code s

Number of weight
span of u

Bit num.
(b= log2w)

Length of t2-EC
/AUED code v

Length of tail t
(li=2×vi)

improvement
(∆1= l1 – l2)

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1

24 10 4 17 11 34 22 +12
32 13 4 17 12 34 24 +10
64 25 5 18 13 36 26 +10

104 40 6 19 14 38 28 +10
12288 4609 13 31 24 62 48 +14

Table 3 Comparison of codes with t2=3
Length of

(1,7) code s
Number of weight

span of u
Bit num.

(b= log2w)
Length of t2-EC
/AUED code v

Length of tail t
(li=2×ri)

improvement
(∆1= l1 – l2)

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1

32 13 4 19 15 38 30 +8
64 25 5 27 16 54 32 +22

120 46 6 28 18 56 36 +20
464 175 8 31 20 62 40 +22

12288 4609 13 37 28 74 56 +18

Table 4 Comparison of codes with t2=4
Length of

(1,7) code s
Number of weight

span of u
Bit num.

(b= log2w)
Length of t2-EC
/AUED code v

Length of tail t
(li=2×ri)

improvement
(∆1= l1 – l2)

n w b v1

#1 v2

#2 l1

#1 l2

#2 ∆1

2736 1027 11 46 34 92 68 +24
5464 2050 12 47 35 94 70 +24
6144 2305 12 47 35 94 70 +24

12288 4609 13 48 36 96 72 +24

7

Table 5 Length of tail for (t1, t2, t3)-codes with sector size=1024 bytes

Parameters of
(t1, t2, t3)-code

Length of t2-EC
/AUED code v

Length of tail t
(li=2×ri)

improvement
(∆2= l1 – l2)

∆3=l2 of (t1,t2,t3) –l2 of
(t1,t2,∞)

t1 t2 t3 v1

#1 v2

#2 l1

#1 l2

#2 ∆2 ∆3

2 1 1 8 6 16 12 +4 +26
2 1 129 17 12 34 24 +10 +14
2 1 3537 23 18 46 36 +10 +2
2 1 ∞ 24 19 48 38 +10 0
3 2 1 16 10 32 20 +12 +28
3 2 116 23 16 46 32 +14 +16
3 2 3581 29 23 58 46 +12 +2
3 2 ∞ 31 24 62 48 +14 0
4 3 1 18 14 36 28 +8 +28
4 3 171 31 20 62 40 +22 +16
4 3 3918 36 27 72 54 +18 +2
4 3 ∞ 37 28 74 56 +18 0
5 4 1 31 18 62 36 +26 +36
5 4 57 34 23 68 46 +22 +26
5 4 429 38 28 76 56 +20 +16
5 4 ∞ 48 36 96 72 +24 0

