

逢甲大學學生報告 ePaper

報告題名:揚聲器模擬與分析

作者:張鈞、簡智祥

系級:電聲碩士學位學程碩一

學號: M9901107、M9938239

開課老師:黃錦煌 教授

課程名稱:電聲換能器設計

開課系所:電聲碩士學位學程

開課學年: 九十九 學年度 第一學期

揚聲器模擬與分析

中文摘要

揚聲器包含電子端、機械端、聲學端,不只有揚聲器單一個體就可

發聲,須結合音箱、擴大器、音源。目前換能器課程中,在於分析單體

揚聲器、音箱,等效電路建立到幾何參數,對其聲學阻抗頻譜有決定性

的影響。未來發展再可進一步與擴大器結合,模擬出曲線。

因此,在本文中我們利用適當的換能器理論條件之下,並參考學聲

基礎課程基礎理論,建立單體與音箱等效電路,配合儀器量測真實結果

比較等效電路模擬曲線。藉由理論的建構與實測的分析。

關鍵詞:揚聲器模擬、音箱等效電路模擬

目 次

第一章	(緒論	.5
1-1	l 目的	.5
1-2	2 過程及方法	.5
第二章	: 擴大器	.6
2-1	l 功率運算放大器(擴大器)電路圖	.6
2-2	2 運算放大器簡介	.6
2-3	3 運算放大器器模擬	.8
2-4	1 放大器等效圖1	1
第三章	: 揚聲器1	2
3-1	l 揚聲器之等效電路模擬1	2
3-2	2 揚聲器單體之等效電路模擬1	3
3-2	2.1 揚聲器單體等效電路模擬1	3
3-2	2.2 封閉式音箱等效電路模擬1	6
3-2	2.3 洩漏式音箱等效電路模擬1	9
3-2	2.4 導音管式音箱等效電路模擬2	22
3-2	2.5 封閉式-增加前空腔音箱等效電路模擬2	29
3-2	2.6 等效電路參數	30

第四章	失真等效模型系統的建立	34
4-1	揚聲器等效模型的建立	34
4-2	求解程序	37
第五章	結論	42
5-1	放大器結論	42
5-2	揚聲器模擬結論	42
笙上音	父 老立獻	43

第一章 緒論

1-1 目的

聲學並不只有揚聲器單一個體,結合音箱修飾揚聲器不足之處,在 目前換能器課程,等效電路建立到幾何參數,藉由改變箱體的幾何而調 整輸出聲場的自然頻率,對其聲學阻抗頻譜有決定性的影響。

因此,在本文中我們利用適當的換能器理論條件,並參考學聲基礎課程基礎理論,建立整體等效電路,配合儀器量測結果比較,進行修改等效電路,才有可能調整到等效電路模擬曲線相似。藉由理論的建構與實測的分析,可以經由此方式模擬來縮短實驗時程。

1-2 過程及方法

本研究主要是研究整個揚聲器系統包括放大器的等效模型模擬 分析,第一部分,放大器等效模擬的架構,再與量測值做比對;第二 部分,我們將揚聲器系統用等效模型表示接著透過改變開孔、導音 管、號角…等,再用模擬值與量測值比對做驗證。

目的在於設計音箱可先行模擬,是否符合設計須求,進而簡化時間、製造、成本等優點。

第二章 擴大器

2-1 功率運算放大器(擴大器)電路圖

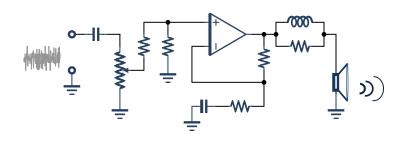


圖 2-1.1 擴大器電路圖

2-2 運算放大器簡介

運算放大器是一種高電壓增益,高輸入阻抗以及低輸出阻抗的線性 放大器。經由適當的外接電阻、電容等元件,可執行各種線性函數運算, 例如加、減、乘、除、微分與積分等,故稱為運算放大器。

現行運用為非反相放大器(non-inverting amplifier),故在此說明原理:

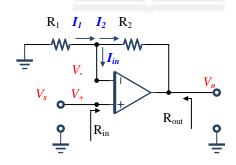


圖2-2.1 非反相放大器

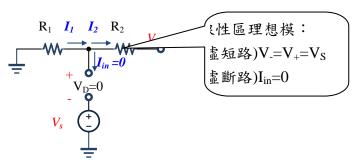


圖2-2.1 理想OPAmp 的等效電路

非反相放大器如圖2-2.1所示,OPAmp套用在線性工作區的理想模型,建立等效電路,如圖2-2.1所示。由等效電路分析反相放大器的電壓增益:

1.因為虛斷路 $I_{in} = 0$,所以 $I_2 = I_1 - I_{in} = I_1$

- 2.因為虛短路 $V_{-}=V_{+}=V_{s}$,所以流過 R_{1} 的電流 $I_{1}=\frac{0-V_{-}}{R_{1}}=\frac{-V_{s}}{R_{1}}$
 - 3. 輸出電壓 $V_{out} = V_1 I_1 R_2 = V_S I_1 R_2 = V_S (\frac{-V_S}{R_1}) R_2 = (1 + \frac{R_2}{R_1}) V_S$
- 4. 閉迴路電壓增益 $A_v = \frac{V_{out}}{V_s} = 1 + \frac{R_2}{R_1}$

2-3 運算放大器器模擬

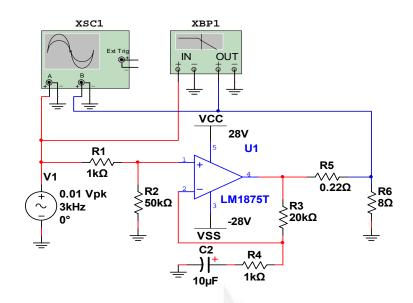


圖 2-3.1 模擬電路

使用:MultiSim V-11模擬軟體

分析:小訊號分析此電路,C2視為短路,運算放大V₊、V₋ 視為虚 短路,再加以分析。

輸入電壓(運算輸入):

$$V_{OP1} = V_{OP2} = V_1 * \frac{R_1}{R_2 + R_1} = V_1 * \frac{50K}{51K} = V_1 * \frac{50}{51}$$

電壓輸出(運算輸出):

$$\begin{aligned} V_{\text{out}} &= V_{\text{OP2}} - I_1 * R_2 = V_{\text{OP2}} - I_1 * R_2 = V_{\text{OP2}} - (\frac{-V_{\text{OP2}}}{R_2}) * R_3 \\ &= (1 + \frac{R_3}{R_2}) * V_{\text{OP2}} = (1 + \frac{20K}{1K}) * V_{\text{OP2}} = 21 * V_{\text{OP2}} \end{aligned}$$

總增益:

$$V_{out} = 21*V_1*\frac{50}{51}$$

$$A_V = \frac{V_{out}}{V_1} = 21*\frac{50}{51} = 20.58$$

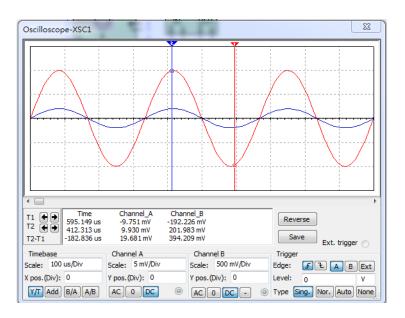


圖2-3.2 模擬波形

藍色輸入: 394.209mV

紅色輸入: 19.681mV

總增益:
$$A_V = \frac{V_{out}}{V_{in}} = \frac{394.209m}{19.681m} = 20.02$$

小訊號與模擬差 0.56 倍,因模擬考慮參數較多,而小訊號只考慮在 理想之下,並無考慮到頻率響應。

Bode Plotter

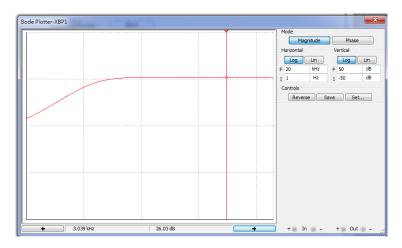


圖 2-3.3 3KHz: 26.03db

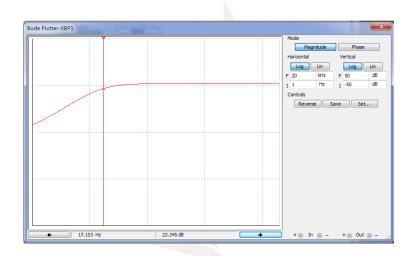


圖 2-3.4 17.1Hz: 23.345db

2-4 放大器等效圖

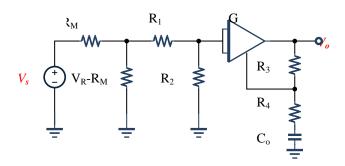


圖 2-4.1 非反相運算放大器等效電路圖

VR:可調式電阻(指數型)

R_M:可調式電阻調整量大小

$$\begin{split} V_{o} &= V_{S} \, \frac{R_{R-M} \, /\! /(R_{1} + R_{2})}{R_{M} + R_{R-M} \, /\! /(R_{1} + R_{2})} * \frac{R_{2}}{R_{1} + R_{2}} * (1 + \frac{R_{3}}{R_{4} + (\frac{1}{j*\omega*C_{o}})}) \\ A_{v} &= \frac{V_{o}}{V_{S}} = \frac{R_{R-M} \, /\! /(R_{1} + R_{2})}{R_{M} + R_{R-M} \, /\! /(R_{1} + R_{2})} * \frac{R_{2}}{R_{1} + R_{2}} * (1 + \frac{R_{3}}{R_{4} + (\frac{1}{j*\omega*C_{o}})}) \end{split}$$

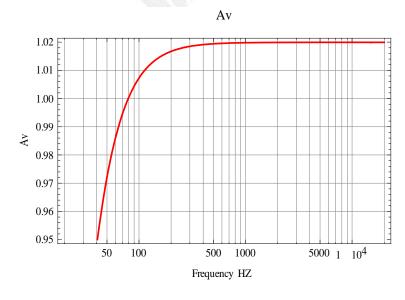


圖 2-4.2 增益頻率響應曲線

第三章 揚聲器

3-1 揚聲器之等效電路模擬

等效電路是揚聲器低頻分析的重要工具,透過它可以分析揚聲器的 頻響特性表現,這裡介紹等效電路的概念:

- (1) 揚聲器之等效電路根據物理量分為三個部分:電學端、機械端以及聲學端三個部分。
- (2) 將機械端與聲學端等效到電學端的部分,通常用於揚聲器阻抗的分析,推導出揚聲器阻抗函數。而由音圈阻抗函數可推導出 Q_m (機械品質因子)、 Q_e (系統總品質因子)、 Q_e (系統電學品質因子)。從電學端等效電路較易理解因揚聲器作動而產生阻抗之觀念。
- (3) 等效到聲學端,用於揚聲器輸出的分析,推導出體積速度 U_d , 再將其結果帶入遠場聲壓公式,藉此得到聲壓頻響曲線。

透過上述概述,不難了解等效電路中電學端、機械端以及聲學端的部分各有其用途及含意,當等效到不同部分,其背後所代表的意義也有所不同。藉由 KLIPPLE 量測系統可得出機械端中的 C_m 、 R_m 、 M_m 等參數,最後等效到聲學端,進而推導出體積速度及頻響曲線。下面接著介紹三種不同狀況下,其等效電路的不同。

3-2 揚聲器單體之等效電路模擬

3-2.1 揚聲器單體等效電路模擬

揚聲器在封裝之前為一單體,在此模擬單體在無線大障板下,測試 麥克風為(B&K4191)在揚聲器的軸向距離 1m,輸出功率 1W 的狀況下, 等效電路的模擬:

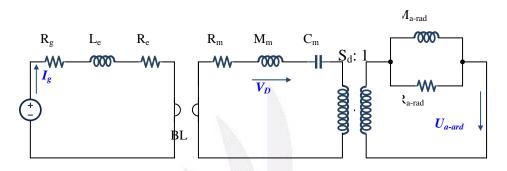


圖 3-2.1.1 模擬揚聲器(單體)之等效電路圖

迴路分析

電學端(Electrical domain):

$$Z_g = R_g$$

$$Z_{eb} = R_e + j\omega L_e$$

等效到機械端

$$Z_{elc} = \frac{(Bl^2)}{Z_g + Z_{eb}}$$

機械端(Mechanical domain):

$$Z_{m} = j\omega m_{m} + R_{m} + \frac{1}{j\omega C_{m}}$$

聲學端(Acoustic domain):

揚聲器模擬與分析

$$Z_{a-rad} = S_d^2 \left(\frac{R_{a-rad} * j\omega m_{a-rad}}{R_{a-rad} + j\omega m_{a-rad}} \right)$$

等效電路的總阻抗為:

$$Z_{total} = Z_{elc} + Z_m + Z_{a-rad}$$

迴路中振膜速度:

$$v_d = \frac{e_g * Bl}{Z_g + Z_{eb}} * \frac{1}{Z_{total}}$$

透過上式乘上振膜有效面積可以得到體積速度:

$$U_d = v_d \square S_d$$

則揚聲器裝設在無線障板時,其軸向遠場聲壓可以近似為

$$P = \frac{j\omega\rho v_d S_d e^{ikR}}{2\pi R} = \frac{j\omega\rho U_d e^{ikR}}{2\pi R}$$

其中,R為軸向距離, S_d 振膜有效面積

揚聲器之聲壓頻響分佈曲線:

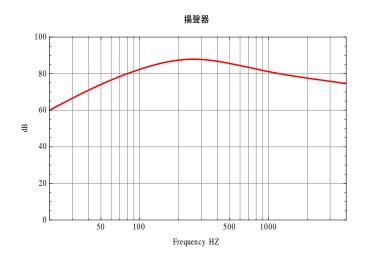


圖 3-2.1.2 模擬揚聲器聲壓頻響

等效電路模擬、實際量測值分佈曲線比較:

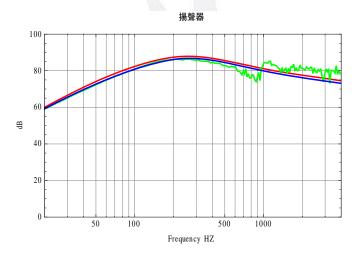


圖 3-2.1.3 模擬、量測揚聲器聲壓頻響(Klippel)

紅色:等效電路模擬、藍色: Klippel 模擬、綠色:實際量測值

3-2.2 封閉式音箱等效電路模擬

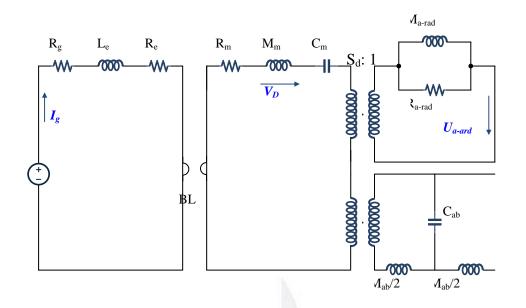


圖 3-2.2.1 封閉式音箱等效電路

由上述可得知揚聲器單體的頻響分布曲線分布,但是現實生活中揚聲器會封裝在各項產品上,而主要是封裝在音箱上,音箱的主要用途是為了讓揚聲器達到無限大障板的效應,接下來利用等效電路模擬揚聲器在封閉音箱的頻率響應曲線。

等效迴路分析

電學端(Electrical domain):

$$Z_g = R_g$$

$$Z_{eh} = R_e + j\omega L_e$$

等效到機械端

$$Z_{elc} = \frac{(Bl^2)}{Z_g + Z_{eb}}$$

機械端(Mechanical domain):

揚聲器模擬與分析

$$Z_{m} = j\omega m_{m} + R_{m} + \frac{1}{j\omega C_{m}}$$

聲學端(Acoustic domain):

$$Z_{a-rad} = S_d^2 \left(\frac{R_{a-rad} * j\omega m_{a-rad}}{R_{a-rad} + j\omega m_{a-rad}} \right)$$

$$Z_{aB1} = S_d^2 \left(\frac{1}{j\omega C_{aB}} \right)$$

$$Z_{aB2} = S_d^2 \left(\frac{1}{2} j \omega M_{aB} \right)$$

等效電路的總阻抗為:

$$Z_{total} = Z_{elc} + Z_m + Z_{a-rad} + Z_{aB-1} + Z_{aB-2}$$

迴路中振膜速度:

$$v_d = \frac{e_g * Bl}{Z_g + Z_{eb}} * \frac{1}{Z_{total}}$$

透過上式乘上振膜有效面積可以得到體積速度:

$$U_d = v_d \square S_d$$

則揚聲器裝設在無線障板時,其軸向遠場聲壓可以近似為

$$P = \frac{j\omega\rho v_d S_d e^{ikR}}{2\pi R} = \frac{j\omega\rho U_d e^{ikR}}{2\pi R}$$

其中,R為軸向距離, S_d 振膜有效面積

揚聲器的遠場聲壓分佈曲線:

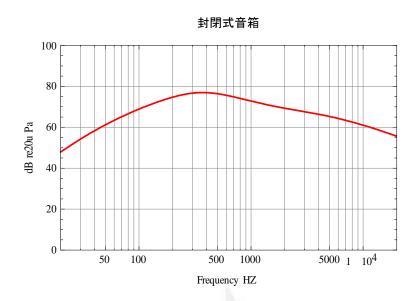


圖 3-2.2.2 模擬封閉式音箱揚聲器遠場聲壓(SoundCheck)

等效電路模擬、實際量測值分佈曲線比較:

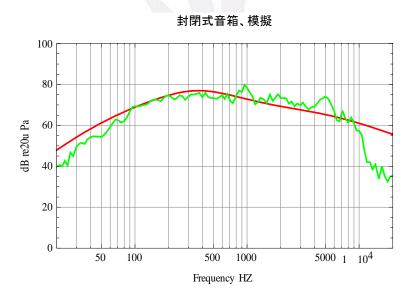


圖 3-2.2.3 模擬、量測封閉式音箱揚聲器遠場聲壓(SoundCheck)

3-2.3 洩漏式音箱等效電路模擬

由上節可得知裝上音箱後會使第一共振頻率有升高的現象,這對揚 聲器的低頻來說是不被期許的,因此建立在相同環境下,再音箱多開一 個洩音孔,期許低頻響應分布更佳。

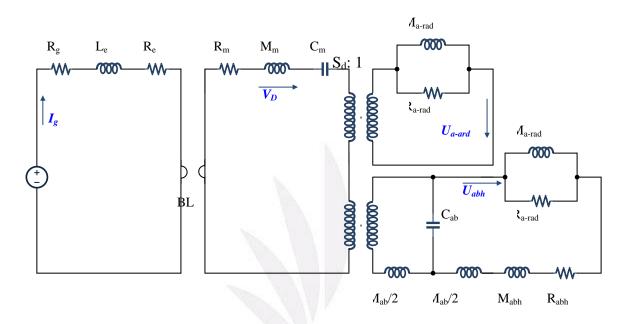


圖 3-2.3.1 洩漏式音箱等效電路

等效迴路分析

電學端(Electrical domain):

$$Z_g = R_g$$

$$Z_{eb} = R_e + j\omega L_e$$

等效到機械端

$$Z_{elc} = \frac{(Bl^2)}{Z_g + Z_{eb}}$$

機械端(Mechanical domain):

$$Z_{m} = j\omega m_{m} + R_{m} + \frac{1}{j\omega C_{m}}$$

聲學端(Acoustic domain):

$$Z_{a-rad} = S_d^2 \left(\frac{R_{a-rad} * j\omega m_{a-rad}}{R_{a-rad} + j\omega m_{a-rad}} \right)$$

$$Z_{aB1} = S_d^2 \left(\frac{1}{j\omega C_{P}} \right)$$

$$Z_{aB2} = S_d^2 \left(\frac{1}{2} j \omega M_{aB} \right)$$

$$Z_{aBh} = S_h^2 \left(j\omega M_{aBh} + R_{aBh} \right)$$

$$Z_{a-radbh} = S_h^2 \left(\frac{R_{a-radbh} * j\omega m_{a-radbh}}{R_{a-radbh} + j\omega m_{a-radbh}} \right)$$

等效電路的總阻抗為:

$$\begin{split} \frac{e_{g}Bl}{Z_{g} + Z_{eb}} &= (Z_{elc} + Z_{m} + Z_{a-rad} + Z_{aB-1} + Z_{aB-2})v_{d} - Z_{aB-1}v_{abh} \\ 0 &= -(Z_{ab-1})v_{d} + (Z_{a-radbh} + Z_{abh} + Z_{aB-1} + Z_{aB-2})v_{abh} \\ \left[\frac{e_{g}Bl}{Z_{g} + Z_{eb}} \right] &= \begin{bmatrix} Z_{elc} + Z_{m} + Z_{a-rad} + Z_{aB-1} + Z_{aB-2} & -Z_{aB-1} \\ -Z_{aB-1} & Z_{a-radbh} + Z_{abh} + Z_{ab-1} + Z_{aB-2} \end{bmatrix} \end{split}$$

迴路中振膜速度:

$$v_{d} = \begin{bmatrix} 1 & 0 \end{bmatrix} Z_{all}^{-1} \begin{bmatrix} \frac{e_{g}Bl}{Z_{g} + Z_{eb}} \\ 0 \end{bmatrix}$$

透過上式乘上振膜有效面積可以得到體積速度:

$$U_d = v_d \square S_d$$

則揚聲器裝設在無線障板時,其軸向遠場聲壓可以近似為

$$P = \frac{j\omega\rho v_d S_d e^{ikR}}{2\pi R} = \frac{j\omega\rho U_d e^{ikR}}{2\pi R}$$

其中,R為軸向距離, S_d 振膜有效面積

揚聲器遠場聲壓分布曲線:

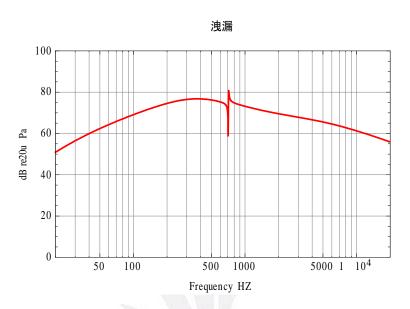


圖 3-2.3.2 模擬洩漏式音箱遠場聲壓

等效電路模擬、實際量測值分佈曲線比較:

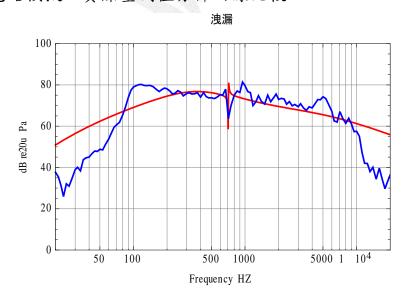


圖 3-2.3.2 模擬、量測洩漏式音箱遠場聲壓(SoundCheck)

3-2.4 導音管式音箱等效電路模擬

由上節結果得知提升低頻部分的表現,除了在音箱開個洩音孔之 外,還可以加入導音管的設計,模擬裝入導音管之後頻率響應曲線變化。

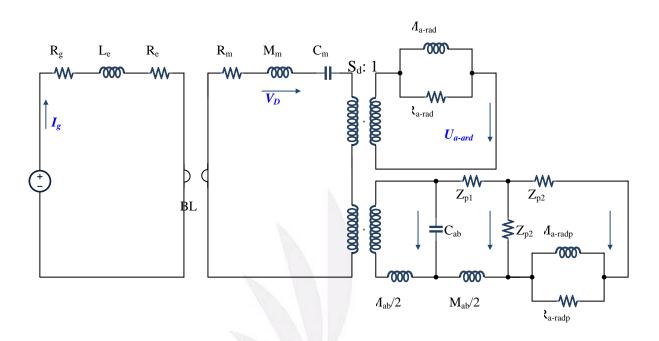


圖 3-2.4.1 導音管式音箱等效電路

等效迴路分析

電學端(Electrical domain):

$$Z_g=R_g$$

$$Z_{eb} = R_e + j\omega L_e$$

等效到機械端

$$Z_{elc} = \frac{(Bl^2)}{Z_g + Z_{eb}}$$

機械端(Mechanical domain):

揚聲器模擬與分析

$$Z_{m} = j\omega m_{m} + R_{m} + \frac{1}{j\omega C_{m}}$$

聲學端(Acoustic domain):

$$\begin{split} Z_{a-rad} &= S_d^2 \left(\frac{R_{a-rad} * j\omega m_{a-rad}}{R_{a-rad} + j\omega m_{a-rad}} \right) \\ Z_{aB1} &= S_d^2 \left(\frac{1}{j\omega C_{aB}} \right) \\ Z_{aB2} &= S_d^2 \left(\frac{1}{2} j\omega M_{aB} \right) \\ Z_{aBh} &= S_p^2 \left(j\omega M_{aBh} + R_{aBh} \right) \\ Z_{a-radp} &= S_p^2 \left(\frac{R_{a-radp} * j\omega m_{a-radp}}{R_{a-radp} + j\omega m_{a-radp}} \right) \end{split}$$

將導音管以兩種方式等效做比較

(1)聲容、聲質量等效解

$$Z_{p1} = S_p^2 \left(\frac{1}{2} j\omega M_{ap} \right)$$

$$Z_{p2} = S_p^2 \left(\frac{1}{j\omega C_{ap}} \right)$$

(2)導音管解析解

$$Z_{p1} = S_p^2 \left(\frac{j\rho c}{S_p tan(\frac{kl}{2})} \right)$$

$$Z_{p2} = S_p^2 \left(\frac{\frac{\rho c}{S_p}}{j\sin(kl)} \right)$$

等效電路的總阻抗為:

揚聲器模擬與分析

$$\begin{split} \frac{e_gBl}{Z_g + Z_{eb}} &= (Z_{elc} + Z_m + Z_{a-rad} + Z_{aB-1} + Z_{aB-2})v_d - Z_{aB-1}v_{abh} \\ 0 &= -(Z_{ab-1})v_d + (Z_{p-1} + Z_{p-2} + Z_{aB-1} + Z_{aB-2})v_{abh} - Z_{p-2}v_{abh} \\ 0 &= -Z_{p-2}v_{abh} + (Z_{p-1} + Z_{p-2} + Z_{p-rad})v_{abh} \\ \begin{bmatrix} \frac{e_gBl}{Z_g + Z_{eb}} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} Z_{elc} + Z_m + Z_{a-rad} + Z_{aB-1} + Z_{aB-2} & -Z_{aB-1} & 0 \\ -Z_{aB-1} & Z_{p-1} + Z_{p-2} + Z_{aB-1} + Z_{aB-2} & -Z_{p-2} \\ 0 & -Z_{p-2} & Z_{p-1} + Z_{p-2} + Z_{p-rad} \end{bmatrix} \end{split}$$

迴路中振膜速度:

$$v_d = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} Z_{all}^{-1} \begin{bmatrix} \frac{e_g B l}{Z_g + Z_{eb}} \\ 0 \\ 0 \end{bmatrix}$$

透過上式乘上振膜有效面積可以得到體積速度:

$$U_d = v_d \square S_d$$

則揚聲器裝設在無線障板時,其軸向遠場聲壓可以近似為

$$P = \frac{j\omega\rho v_d S_d e^{ikR}}{2\pi R} = \frac{j\omega\rho U_d e^{ikR}}{2\pi R}$$

其中,R為軸向距離, S_d 振膜有效面積

(1) 聲容、聲質量等效解

揚聲器遠場聲壓分布曲線:

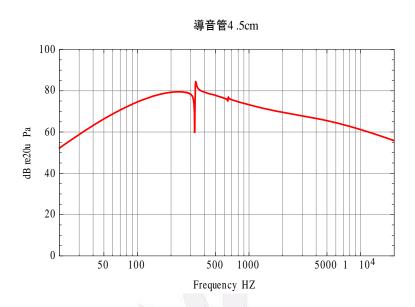


圖 3-2.4.2 模擬導音管 4.5cm 揚聲器遠場聲壓

等效電路模擬、實際量測值分佈曲線比較:

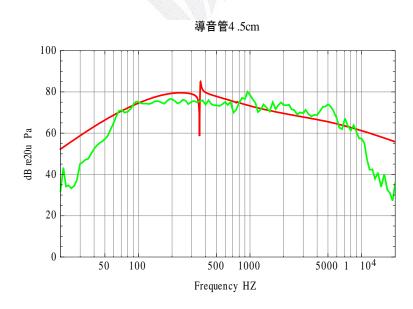


圖 3-2.4.3 量測、模擬導音管 4.5cm 揚聲器遠場聲壓(SoundCheck)

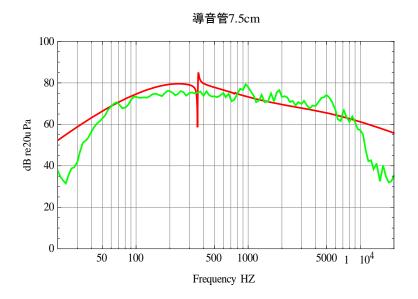


圖 3-2.4.4 量測、模擬導音管 7.5cm 揚聲器遠場聲壓(SoundCheck)

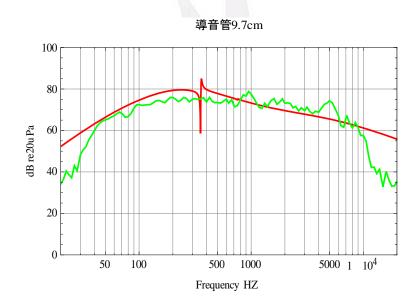


圖 3-2.4.5 量測、模擬導音管 9.7cm 揚聲器遠場聲壓(SoundCheck)

(2)導音管解析解

揚聲器遠場聲壓分布曲線:

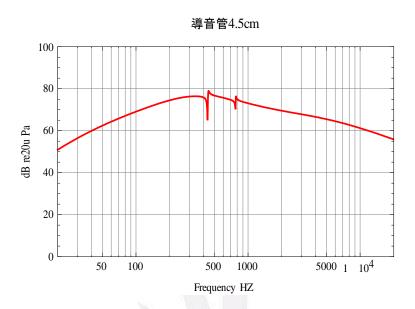


圖 3-2.4.6 模擬導音管 4.5cm 揚聲器遠場聲壓

等效電路模擬、實際量測值分佈曲線比較:

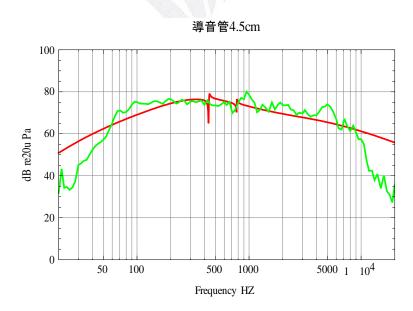


圖 3-2.4.7 量測、模擬導音管 4.5cm 揚聲器遠場聲壓(SoundCheck)

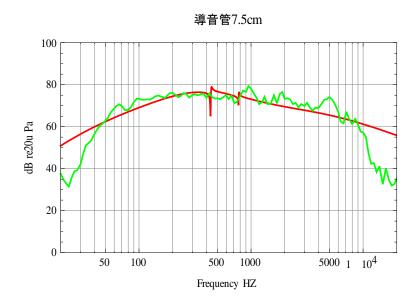


圖 3-2.4.8 量測、模擬導音管 7.5cm 揚聲器遠場聲壓(SoundCheck)

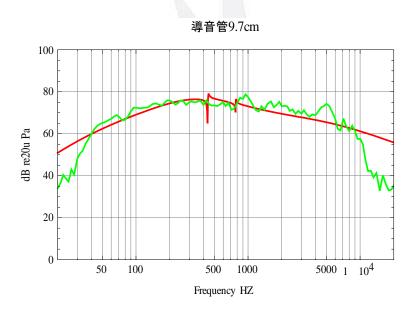


圖 3-2.4.9 量測、模擬導音管 9.7cm 揚聲器遠場聲壓(SoundCheck)

3-2.5 封閉式-增加前空腔音箱等效電路模擬

揚聲器遠場聲壓分布曲線:

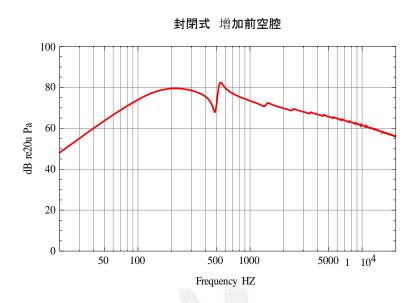


圖 3-2.5.1 模擬封閉式-增加前空腔音箱揚聲器遠場聲壓 等效電路模擬、實際量測值分佈曲線比較:

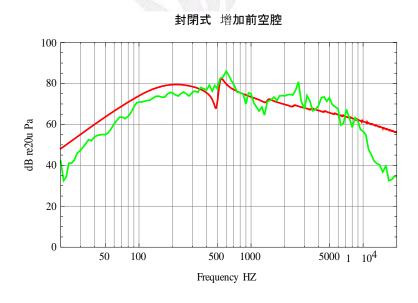


圖 3-2.5.2 模擬、量測封閉式-增加前空腔音箱揚聲器遠場聲壓 (SoundCheck)

3-2.6 等效電路參數

Impedance	符號	說明	表示式	參數說明
聲輻射	m_{a-rad}	聲輻射質量	$B_irac{ ho a_{af}}{A_{af}}$	$ ho$:空氣密度 a_{af} :入聲孔半徑 A_{af} :入聲孔面積 B_i : $\dfrac{8}{3\pi}$ (baffled)
	R_{a-rad}	聲輻射阻	$rac{B_i^2}{B_r}rac{ ho c}{A_{af}}$	B_r : 0.5 (baffled) c : 聲速
洩音孔	$n_{a-rad-h}$	洩音孔輻射 質量	$B_irac{ ho a_{ah}}{A_{ah}}$	a_{ah} : 洩音孔半徑 A_{ah} : 洩音孔面積
聲輻射	$R_{a-rad-h}$	洩音孔輻射 聲阻	$rac{B_i^2}{B_r}rac{ ho c}{A_{ah}}$	
	m_{ah}	洩音孔空氣 質量	$rac{ ho V_{ah}}{{A_{ah}}^2}$	V_{ah} :洩音孔體積 A_{ah} :洩音孔面積
洩音孔	R_{ah}	洩音孔 聲阻	$\frac{8\pi\mu t_{bh}}{A_{bh}^2}$	<i>t_{bh}</i> :洩音孔深度

	m_{aB}	音箱空氣質量	$rac{ ho V_{_B}}{A_{_B}^2}$	A _B :音箱截面積
音箱	C_{aB}	音箱	$rac{V_{_B}}{\gamma p_0}$	V_B:音箱體積γ:空氣比熱比P₀:参考聲壓
導音管	m _{ap}	導音管空氣 質量	$rac{ ho V_{ap}}{{A_{ap}}^2}$	V _{ap} : 導音管體積 A _{ap} : 導音管面積
守百官	C_{ap}	導音管電容	$\frac{V_{tube}}{\rho c^2}$	
	M_m	lechanical mass	量測值	
Z_m	C_m	Mechanical compliance	量測值	
	$R_{\scriptscriptstyle m}$	Mechanical resistance	量測值	
Z_f	C_{eo}	Electric capacitance	$rac{arepsilon A}{l_{ah}}$	ε:介電常數A:機電轉換係數
Z_{g}	$-C_{eo}$	Electric capacitance	$-rac{arepsilon A}{l_{ah}}$	

圖 3-2.6 等效電路參數

Electrical Parameters				
Re	6.44	Ohm	electrical voice coil resistance at DC	
Le	0.836	mH	frequency independent part of voice coil inductance	
L2	1.300	mH	para-inductance of voice coil	
R2	13.33	Ohm	electrical resistance due to eddy current losses	
Cmes	146.02		electrical capacitance representing moving mass	
Lces	17.65	mH	electrical inductance representing driver compliance	
Res	37.55	Ohm	resistance due to mechanical losses	
fs	99.1	Hz	driver resonance frequency	
			A.	
Mechanical Parameters				
(using laser)				
Mms	14.041	g	mechanical mass of driver diaphragm assembly including air load and voice coil	
Mmd (Sd)	13.585	og)	mechanical mass of voice coil and diaphragm without air load	
Rms	2.561	kg/s	mechanical resistance of total-driver losses	
Cms	0.184	mm/N	mechanical compliance of driver suspension	
Kms	5.45	N/mm	mechanical stiffness of driver suspension	
B1	9.806	N/A	force factor (Bl product)	
Lambda s	0.151		suspension creep factor	

Loss factors				
Qtp	0.503	total Q-factor considering all losses		
Qms	3.415	mechanical Q-factor of driver in free air		

	1 1			
			considering Rms only	
Oas	0.585		electrical Q-factor of driver in free air	
Qes	0.363		considering Re only	
04	0.500		total Q-factor considering Re and Rms	
Qts	0.500		only	
Vas	1.9479	1	equivalent air volume of suspension	
n0	0.312	%	reference efficiency (2 pi-radiation using	
110	0.312	70	Re)	
Lm	87.14	dB	characteristic sound pressure level (SPL	
LIII	87.14	aв	at 1m for 1W @ Re)	
Lnom	86.83	dB	nominal sensitivity (SPL at 1m for 1W	
Liloiii 80.83 dB		uБ	@ Zn)	
, massa 7	5.48	%	root-mean-square fitting error of driver	
rmse Z	3.48	%0	impedance Z(f)	
man a a TT-v	2.50	0/	root-mean-square fitting error of transfer	
rmse Hx	3.59	%	function Hx (f)	
Series	0.00	01	vasistan oo of oodiga naaista s	
resistor	0.00	Ohm	resistance of series resistor	
Sd	86.59	cm	diaphragm area	

圖 3-2.7 Klippel TS 參數

第四章 失真等效模型系統的建立

本章將建立揚聲器等效失真的模型,並使用數值軟體計算揚聲器之 等效迴路,求得頻率響應及失真。

4-1 揚聲器等效模型的建立

一般常見之揚聲器皆為動圈式揚聲器,可表示成下圖的等效迴路模型,其中 BI(x)為磁力轉換因子, e_g 為輸入的電壓訊號,其餘參數定義列於下表。

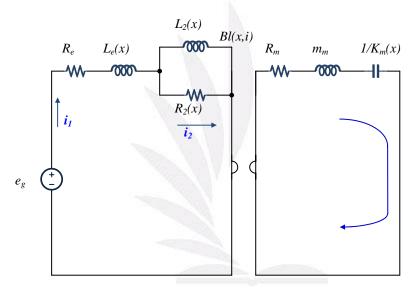


圖 4-1.1 失真等效電路

From the above circuit we have

$$\begin{cases} e(t) - iR_e + \frac{d(L_e(x)i)}{dt} + \frac{d(L_2(x)i)}{dt} + Bl(x)v \\ Bl(x)i + \frac{i^2}{2} \frac{dL_e(x)}{dx} + \frac{i^2}{2} \frac{dL_2(x)}{dx} = m_m \frac{d^2x}{dt^2} + R_m \frac{dx}{dt} + m_m \frac{d^2x}{dt^2} + k_m x \\ L_2(x) \frac{di_2}{dt} = (i_1 - i_2)R_2(x) \end{cases}$$
(1)

揚聲器模擬與分析

$$i = \frac{1}{R_{e}} \left[e(t) - \frac{d(L_{e}(x)i)}{dt} - \frac{d(L_{2}(x)i_{2})}{dt} - Bl(x)v \right]$$

$$= \frac{1}{R_{e}} \left[e(t) - \frac{dL_{e}(x)}{dx} \frac{dx}{dt} i - L_{e}(x) \frac{di}{dt} - \frac{dL_{2}(x)}{dx} \frac{dx}{dt} i_{2} - L_{2}(x) \frac{di_{2}}{dt} - Bl(x)v \right]$$
(2)

其中

$$\frac{d(L_e(x)i)}{dt} = \frac{dL_e(x)}{dx} \frac{dx}{dt} i + L_e(x) \frac{di}{dt}$$
$$\frac{d(L_2(x)i_2)}{dt} = \frac{dL_2(x)}{dx} \frac{dx}{dt} i_2 + L_2(x) \frac{di_2}{dt}$$

造成揚聲器失真的主要非線性參數為 Bl(x)、Cm(x)及 Km(x),而這些參數皆是利用量測儀器 KLIPPEL 中的量測模組 LSI 非線性參數量測到的結果,失真參數 Bl(x)與 Km(x),將失真參數曲線以六次多項式表示,寫成:

$$Bl(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5 + b_6 x^6$$

$$Cm(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + c_6 x^6$$

$$Km(x) = k_0 + k_1 x + k_2 x^2 + k_3 x^3 + k_4 x^4 + k_5 x^5 + k_6 x^6$$

其中 b_n 、 c_n 及 k_n (n=0,1,2,…)為各次項之係數。

參數

Domain	符號	名稱	表示式
Electrical	R_e	音圈電阻	7. 55438
domain	L_{e}	音圈電感	多項式

R_2	音圈並聯電阻	13. 33
L_{2}	音圈並聯電感	1.30e-3

圖 4-1.2 Electrical domain

Domain	符號	名稱	表示式
W1 1	$R_{_m}$	懸吊系統阻尼	0. 0155267
Mechanical domain	$m_{\scriptscriptstyle m}$	懸吊系統質量). 258479e-3
domain	K_{m}	懸吊系統剛性	多項式

圖 4-1.2 Mechanical domain

參數	數值
空氣密度()	$1.29 (kg/m^3)$
空氣聲速(c)	$343 \ (\text{m/s})$
參考聲壓(p₀)	2×10^{-5} (<i>Pa</i>)

圖 4-1.1 參數

4-2 求解程序

首先將(1)式改寫成如下所示的通式

$$C_{tt}^{n} \left(\frac{d^{2}x}{dt^{2}}\right)^{n} + C_{t}^{n} \left(\frac{dx}{dt}\right)^{n} + C^{n} \left(x\right)^{n} = D^{n}$$

$$(3.1)$$

其中

$$C_{tt}^n = m_m, \quad C_t^n = R_m \tag{3.2}$$

$$C^{n} = k_{m}(x^{n}), \quad D^{n} = Bl(x^{n})i^{n} + \frac{i^{n}}{2} \frac{dL_{e}(x^{n})}{dx} + \frac{i_{2}^{n}}{2} \frac{dL_{2}(x^{n})}{dx}$$
(3.3)

其中上標n=0,1,2,...為時間軸上的格點編號。參閱Wang and Lee的參數樣線理論運算法則,由於該方法成功的找出了簡易的離散表示式,因此對於非線性問題將可得到更為精確之結果。基於上述的原因,本文採用該理論來求解方程式(1)和(2)。首先令函數在時間格點上的離散關係式為

$$x^{n} = \alpha f^{n-1} + 2\beta f^{n} + \alpha f^{n+1}$$
(4.1)

$$\left(\frac{dx}{dt}\right)^{n} = \frac{1}{2\Delta t} (f^{n+1} - f^{n-1}) \tag{4.2}$$

$$\left(\frac{d^2x}{dt^2}\right)^n = \frac{1}{\Delta t^2} (f^{n+1} - 2f^n + f^{n-1})$$
(4.3)

其中, f 及{α,β}分別為參數樣線基底函數和組合參數。在(4)式中,除 了函數之大小由鄰近的參數樣線函數組成外,函數的一次及兩次微分離 散方式則類似於傳統的有限差分。因此,利用(4)式可將微分方程式(1) 離散,並整理成

$$C_{tt}^{n} \frac{1}{\Delta t^{2}} (f^{n+1} - 2f^{n} + f^{n-1}) + C_{t}^{n} \frac{1}{2\Delta t} (f^{n+1} - f^{n-1}) + C^{n} (\alpha f^{n-1} + 2\beta f^{n} + \alpha f^{n+1}) = D^{n}$$

$$f^{n+1}(C_{tt}^{n}\frac{1}{\Delta t^{2}}+C_{t}^{n}\frac{1}{2\Delta t}+\alpha C^{n})=D^{n}+f^{n-1}(C_{t}^{n}\frac{1}{2\Delta t}-C_{tt}^{n}\frac{1}{\Delta t^{2}}-\alpha C^{n})+f^{n}(2C_{tt}^{n}\frac{1}{\Delta t^{2}}+C_{t}^{n}\frac{1}{2\Delta t}-2\beta C^{n})$$
(5)

同乘以 $2\Delta t^2$

$$f^{n+1}(2C_{tt}^{n}+C_{t}^{n}\Delta t+2\alpha C^{n}\Delta t^{2})=2\Delta t^{2}D^{n}+f^{n-1}(2\Delta t^{2}C_{t}^{n}-2C_{tt}^{n}-2\alpha \Delta t^{2}C^{n})+f^{n}(4C_{tt}^{n}+C_{t}^{n}\Delta t-4\beta \Delta t^{2}C^{n})$$

$$f^{n+1} = \frac{2\Delta t^2 D^n + f^{n-1} (2\Delta t^2 C_t^n - 2C_{tt}^n - 2\alpha \Delta t^2 C^n) + f^n (4C_{tt}^n + C_t^n \Delta t - 4\beta \Delta t^2 C^n)}{(2C_{tt}^n + C_t^n \Delta t + 2\alpha C^n \Delta t^2)}$$

配合(2)式之離散式

$$i^{n} = \frac{i^{n-1} + i^{n+1}}{2}$$

$$\frac{di^n}{dt} = \frac{i^{n+1} - i^{n-1}}{2\Box t}$$

$$i^{n} = \frac{1}{R_{a}} \left(e - \frac{d(L_{e}(x)i)}{dt} - \frac{d(L_{2}(x)i)}{dt} - Bl^{n}v^{n} \right)$$

$$\frac{i^{n-1} + i^{n+1}}{2} = \frac{1}{R_e} \left(e^n - \frac{dL_e(x^n)}{dx} \frac{dx^n}{dt} i^n - L_e(x^n) \frac{di^n}{dt} - \frac{dL_2(x^n)}{dx} \frac{dx^n}{dt} i_2^n - L_2(x^n) \frac{di_2^n}{dt} - Bl^n v^n \right)$$

$$\frac{i^{n-1}+i^{n+1}}{2} = \frac{1}{R_e} \left(e^n - \frac{dL_e(x^n)}{dx} v^n \frac{i^{n-1}+i^{n+1}}{2} - L_e(x^n) \frac{i^{n+1}-i^{n-1}}{2\Box t} - \frac{dL_2(x^n)}{dx} v^n i_2^{n} - L_2(x^n) \frac{di_2^{n}}{dt} - Bl^n v^n \right)$$

$$\frac{1}{2} \left(\frac{L_{e}^{n}}{\Delta t} + v^{n} \left(\frac{dL_{e}}{dx} \right)^{n} + R_{e} \right) i^{n+1} = e^{n} + \frac{1}{2} \left(\frac{L_{e}^{n}}{\Delta t} - v^{n} \left(\frac{dL_{e}}{dx} \right)^{n} - R_{e} \right) i^{n-1} - \frac{dL_{2}(x^{n})}{dx} v^{n} i_{2}^{n} - L_{2}(x^{n}) \frac{di_{2}^{n}}{dt} - Bl^{n} v^{n} \right) (6)$$

$$i^{n+1} = \frac{e^{n} + \frac{1}{2} \left(\frac{L_{e}^{n}}{\Delta t} - v^{n} \left(\frac{dL_{e}}{dx}\right)^{n} - R_{e}\right) i^{n-1} - \frac{dL_{2}(x^{n})}{dx} v^{n} i_{2}^{n} - L_{2}(x^{n}) \frac{di_{2}^{n}}{dt} - Bl^{n} v^{n}}{\frac{1}{2} \left(\frac{L_{e}^{n}}{\Delta t} + v^{n} \left(\frac{dL_{e}}{dx}\right)^{n} + R_{e}\right)}$$

即可在時間格點為 n 時,先透過(6)式解出 i^{n+1} ,接著帶入(1.2)可疊代求解 f^{n+1} 的值。再透過(4)式,可求得到振膜的位移 x(t),速度 v(t)及電流 i(t)及 $i_2(t)$ 的暫態反應。並利用快速傅利葉轉換至頻率域得到位移 X(j)

)、速度 V(j),並代入以下公式得到遠場聲壓:

$$P_{far}(j\omega) = \frac{j\omega AV(j\omega)}{2\pi r}e^{jkr}$$
 (3-1-7)

其中A為揚聲器有效面積,r為量測距離。經由以上方法可畫出聲壓頻譜,如圖3-1.2所示,其中 P_I 為主頻(Fundamental frequency)的聲壓,其餘則為諧波失真(Harmonic distortion)。根據IEC Standard 60268-5中,定義以百分比表示各次諧波失真(HD_n),其公式為

$$HD_{n} = \frac{P_{n}}{\sum_{i=1}^{\infty} P_{i}} \times 100\%$$
 (3-1-8)

而總諧波失真(Total Harmonic Distortion)表示成下式

$$THD = \frac{\sum_{i=2}^{\infty} P_i}{\sum_{i=1}^{\infty} P_i} \times 100\%$$
 (3-1-9)

根據以上的方法,模擬不同頻率的聲壓及總諧波失真,可求解得到頻率響應圖及失真圖。

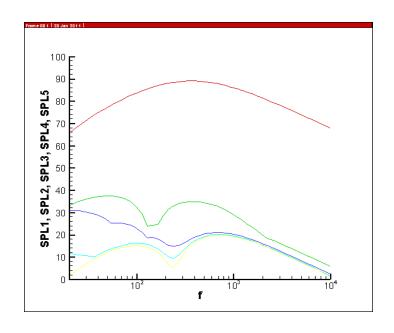


圖 4-2.1 頻響與諧波失真(C#)

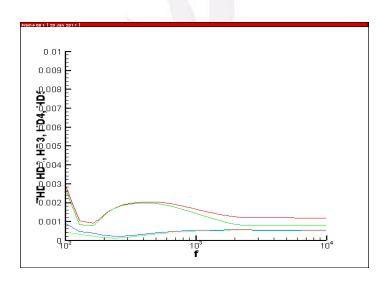


圖 4-2.2 THD (C#)

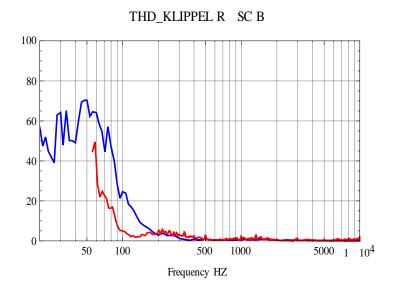


圖 4-2.3 Klippel、SoundCheck THD

第五章 結論

5-1 放大器結論

放大器電路與電路板接線雖然是一樣,但是干擾因走線方式、長短不 一樣而造成不同頻率或振盪等,影響頻率響應。

在此報告中用的電路為簡單功率運算放大器,運算放大器本身也有頻率響應,使用封裝電路可以增電路架構,也減少體積、路徑等良好特性。如使用不同的電晶體架構組成頻率響應更是複雜,並非上述等效電路可以模擬。使用運算放大器設為理想化,可以簡化許多設計上問題,也可運到用等化器、分頻器,修正揚聲器不足之處。放大器本身也有音色、特色,配合揚聲器更是變化無窮。

5-2 揚聲器模擬結論

單體等效電路模擬可分析出揚聲器頻響特性表現,再加箱體等聲學 元件的變化,再與量測驗證比對。

- (1)封閉式音箱,箱體的等效方式為加上聲容積,其作動方式類比於機 械端的勁度,在加上箱體的洩漏係數,得知等效與實際量測趨勢相 似。
- (2) 洩漏式音箱,其等效方式為在洩漏孔的地方加上一個聲質量與聲阻 尼,根據馬大猷細管修正係數等效模擬,模擬結果得知 PEAK 值與 實際量測趨勢一樣。

(3) 導音管音箱,分別利用了兩種不同方式等效,解析解與等效解,並 且加及聲輻射相干性的影響,其模擬結果可得知在中頻會有 PEAK 值產生,但箱體結合導音管量測結果是在低頻多一個共振頻率,導 音管越長低頻越提升,因此本研究等效模型還需要再修正。

參考文獻

- (1)聲學基礎課本
- (2)電聲換能器課本
- (3)感謝美隆公司提供資料、揚聲器、箱體
- (4) MultiSim_V-11 模擬軟體
- (5) Klippel 設備、軟體
- (6) SoundCheck 8.11 設備、軟體
- (7) C# \ Mathematica7