FERR/ T\ FEERERe S

Mining Generalized Knowledge from Transaction Databases

Show-Jane Yen

Department of Computer Science and Information Engineering

Fu Jen Catholic University,

Taipei, Taiwan, R.O.C.

Email: sjyen@csie.fju.edu.tw

Abstract

Mining association rules is an important task for
knowledge discovery. We can analyze past transaction
data to discover customer behaviors such that the quality of
business decision can be improved. Various types of
association rules may exist in a large database of customer
transactions. The strategy of mining association rules
Jocuses on discovering large itemsets which are groups of
items which appear together in a sufficient number of
transactions.

In this paper, >we propose a graph-based approach to
discover generalized association rules from a large
database of customer transactions. This approach is to
construct an association graph to indicate the associations
between items, and then traverse the graph to generate
large itemsets. Empirical evaluations show that our
algorithm outperforms other algorithms which need to
make multiple passes over the database.

Keywords: Data Mining,

Knowledge Discovery,

Association Rule, Association Patiern, Association Graph

1. Iniroduction

An association rule 1, 2, 3, 5] describes the associations
among items in which when some items are purchased in a
transaction, the others are purchased too. In order io find
association rules, we need to discover all large itemsets
from a large database of customer transactions. A large
itemset is 2 set of items which appears often enough within

the same transactions, that is, an itemset that is contained in

a number of transactions above a certain minimum
threshold.

The following definitions are adopted from [1, 2]. A
transaction t supports an item x if x isin t. A transaction t
supports an itemset X if t supports every item in X. The
support for an itemset is defined as the ratio of the total
number of transactions, which support this itemset to the
total number of transactions in the database. To make the
discussion easier, occasionally, we also let the total number
of (ransactions which support the itemset denote the
support for the itemset. Hence, a large itemset is an
itemset whose support is no less than a certain
user-specified minimum support. ~An itemset of length k is
called a k-itemset and a large itemset of lengthr k a large
k-itemser.

After discovering all large itemsets, the association
rules can be generated as follows: If the large itemset

Y=Ll,..I, k 2 2, all rules that reference iterns from the set

{ I, I, ..., It} can be generated. The antecedent of each of

. these rules is a subset X of Y, and the consequent Y-X.

The confidence of X =>Y-X in daiabase D is the probability
that when itemset X occurs in a transaction in D, itemset
Y-X also occurs in the same transaction. That 1s the ratio
of the support for itemset Y to the support for itemset X.
A generated rule is an association mle if its confidence
achieves a certain user-specified minimum confidence.
Assuming {coffee, sugar, milk} is a large itemset, an
example of an association rule is "95% of the transactions

in which coffee and sugar are purchased, milk is purchased

t00." This rule can be specified as "coffee, sugar = milk

A-292

95%." The antecedent of this rule consists of coffee and
sugar, and the consequent consists of milk alone. The
perceniage 95% is the confidence of the rule.

Jodids sad
]
_,‘o"‘\‘

B

161

riding kood

bagh-gnaded rhosy srrukers fuling b oot
(RN £20 3] €53
230 ties
[$8 1]
e T
Ted4q 0 wd RT3 skiar
IR it [i%
e ""
awerscat s ket
18 (2%

Figure 1: An example of concept hierarchies

In this paper, we propose a graph-based approach to
discover generalized association rules. For the items
which appear in the database, we call them the database
item. A concept hierarchy of the items can usually be
derived. An example of the concept hierarchy is shown in
Figure 1, ip which the terminal nodes are database items,
and the nonterminal nodes are generalized items. If there
is a path between nodes y and x, where y is a "higher
concept” of x, then y is called an ancestor of x and x a
descendant of y. In [4], the concept of "suppori" is
extended such that a transaction supports an item x if x is in
t or x is an ancestor of some items in t. Association rules
may exist at higher concepts if the itemsets at the lower
concepts cannot reach the minimum support. Hence,
significant association rules may not be discovered if we
only consider database items. A generalized association
rule is introduced in [4], which describes the association
among items which can be generalized or database items.
A generalized association pattern is a large itemset in

which each item is a generalized item or database item.

In our previous work [5], we proposed a graph-based

approach to analyze a large amount of transaction data and
to generate association rules. In this paper, we extend

the graph-based approach to generate generalized
association rules. We propose five phases to discover the
association rules: 1. Numbering phase: in this phase, all
itmes are assigned an integer number. 2. Large item
generation phase: this phase generates large items and
records related information. 3. Association graph
construction phase: this phase constructs an association
graph to indicate the associations between large items. 4.
Association pattern generation phase: this phase generates
all association paiterns by traversing the constructed
association graph. 5. Association rule generation phase: the
association rules can be generated directly according to the
corresponding association paiterns.

This paper focuses on the association pattern
generation, because after generating the association
patterns, the association rules can be generated from the

corresponding association patterns.

2. Mining Association Rules

An algorithm APG (Association Pattern Generation) is
presented to generate association patterns, which is the
same as the algorithm DLG [5]. In the following, we
describe the four phases discussed in Section 1 for the

algorithm APG.

2.1 Association graph construction

In the numbering phase, algorithm APG arbitrarily assigns
each item a unique integer number. Suppose item i
represents the item whose item number is i. In the Jarge
item generation phase, algorithm APG scans the database
and builds a bit vector for each item. The length of each
bit vector is the number of transactions in the database. If
an item appears in the ith transaction, the ith bit of the bit
vector associated with this item is set to 1. Otherwise, the
ith bit of the bit vector is set to 0. The bit vector

associated with item 1 is denoted as BV;. The number of

I's in BV; is equal to the number of transactions which
support the item i, that is, the support for the item i.

Example 1: consider the database TDB1 in Table 1. Each
record is a <TID, Itemset> pair, where TID is the identifier
of the corresponding uansacﬁon, and Itemnset records the
Assume that the

items purchased in the transaction.

minimum support 3 is 50% (i.e., 2 transactions).

TID Ttemset
100 CAD
200 ECB
300 ABCE
400 EB

Table 1: A database TDBI1 of transactions

After the numbering phase, the numbers of the items
A,B,C,DandE are 1, 2, 3, 4 and 5, respectively. In the
large item generation phase, the large items found in the
database TDBI are items 1, 2, 3 and 5, and BV;, BV,, BV;
and BV are (1010), (0111), (1110) and (0111),
respectively.

Property 2.1: The support for the itemset iy, iy, ..., iy is the
number of 1's in BVy A BV A ... A BV, where the
notation "A" is a logical AND operation.

In the association graph construction phase, APG
constructs an association graph to indicate the associations
between large items. For every two large items i and j (i <
j) , if the number of 1's in BV; A BV; achieves the
user-specified minimum support, a directed edge from item
i to item j is created. Also, itemset (i,j) is a large 2-itemset.
Note that an ordered list notation is used to indicate the

order of the items in an itemset for the following

discussion.

1

/

L

3

5

Figure 2. The association graph for Example 1

The association graph for the Example 1 is shown in

Figure 2, and the large 2-itemsets are (1, 3), (2, 3), (2, %)
and (3, 5).

2.2 Association patiern generation

In the association pattern generation phase, the algorithm

LGDE (Large itemset Generation by Direct Extension) is

proposed to generate large k-itemsets (k>2). For each
large k-itemset (k = 2), the last item of the k-itemset is used
to extend the large itemset into k+1-itemsets.

Lemma 2.1: If an itemset is not a large itemset, then any
riernset which contains this itemset cannot be a large
itemset.

Rationale: Because the itemset is not a large itemset, the
support for the itemset is less than the minimum support,
Hence, the support for an itemset which contains this
itemset must be also less than the minimum support.
Lemma 2.2: For a large itemset (i, iy, ..., k), if there is no
directed edge from item iy to an item v, then itemset (iy, ...,
i, v) cannot be a large itemset.

Rationale: Because there is no directed edge from item iy
to an item v, the itemset (iy, v) is not a large 2-itemset.
Hence, by Lemma 2.1, itemset (i, ..., i, V) is not a large
itemset.

Suppose (i3, iy, ..., 1) is a large k-itemset. If there is
no directed edge from item i to an item v, then the itemset
need not be extended into k+1-itemset, because (i, ..., iy, V)
must not be a large itemset according to Lemma 22, If
there is a directed edge from item iy to an item u, then the
itemset (iy, iy, ..., iy) is extended into k+1-itemset (i, i3, ...,
i, u). The itemset (iy, iy, ..., iy, W) 18 a large k-+1-itemset if
the number of 1's in BV, /\ BVp A .. A BV A BV,
achieves the minimum support. If no large k-itemsets can
be generated, the algorithm LGDE terminates.

For example, consider Example 1. For the large
2-itemset (2, 3), there is a directed edge from the last item 3
of the itemset (2, 3) to item 5 in the association graph

shown in Figure 2. Hence, the 2-itemset (2, 3) is extended

into 3-itemset (2, 3, 5). The number of 1's in BV, A BV,

A-294

A BV (i.e., (0110)) is 2. Hence, the 3-itemset (2, 3, 5) is
a large 3-itemset, since the number of 1's in its bit vector is
no less than the minimum support threshold. The LGDE
algorithm terminates because no large 4-itemsets can be

further generated.

3. Mining Generalized Association Rules

We propose the algorithm GAPG (Generalized Association
Pattern Generation) to discover all generalized association
pattern. In the following, we also describe the four phases

for algorithm GAPG.

3.1 A numbering method

To generate generalized association patterns, one can add
all ancestors of each item in a iransaction to the transaction
and then apply the algorithm APG on the extended
transactions. However, because if an item is a large item,
then the 2-itemset which contains the item and its ancestor
is also a large 2-itemset, the number of the edges in the
association graph can be very large, and LGDE algorithm
needs to take much more time to traverse the association
graph to generate all large itemsets.

Lemma 3.1: [4] The support for an itemset X that contains
both an item x; and its ancesior j; will be the same as the

support for the itemset X~

Rationale: Suppose the itemset X=(X1, w.y Xis Xi» Xisls s Xn)

The support for itemset X is the number of 1'sin BV A ...
A BV A BVy; A BV, A ... A BV, and the support for
itemnset X-y; is the number of 1's in BV A ... A BV A
BV A ... A BV, according to Property 2.1. Because
the set of the transactions which contain an item x; is the
subset of the set of the tramsactions which contain the
ancestor x; of item x;, BV, A BVY; =BV, Hence, the
support for X is the same as the support for the itemset
K%

From Lemma 3.1, when an itemset X contains both an

item x and its ancestor), if the itemset X-¥ is a large

itemset, then itemset X is also a large itemset. Lemma 3.1

can be employed to-reduce the cost for large itemset
generation. Hence, the problem of mining generalized
association patterns becomes to find all generalized
association patierns which do not contain both an ilem and
its ancestor.

In the numbering phase, GAPG algorithin applies
numbering method PON (POstorder Numbering method) to
number ite;ns at the concept hierarchies. For each concept
hierarchy, PON numbers each item at the concept hierarchy
according to the following order: for each item at the
concept hierarchy, after all descendants of the item are
numbered, PON numbers this item immediately, and all
items are numbered increasingly. After all items at a
concept hierarchy aré numbered, PON numbers items at
another concept hierarchy.

Lemma 3.2: If the nurﬂbering method PON is adopted to
number items, and for every'two items i and j (i<j), item &
is an ancestor of item i but not an ancestor of item j, then ¥
<j.

Rationale: According to PON numbering method, after all
dcscendant§ of an item are numbered, this item is numbered
immediately, and these items are numbered increasingly.
Hence, for an item i, if it is numbered, then its ancestor ¢
must be numbered before the other item j which is not a
descendant of item & is numbered. S0, ¥ <j.

Example 2: Consider the database TDB2 in Table 2 and
Assume that the

the concept hierarchies in Figure 1.

minimum support 3 is 40% (i.e., 2 transactions).

TiD Ttemset

100 { high-heeled shoes, riding boots, overcoat, sweater, skirts }

200 {high-heeled shoes, sneakers, skirts}
300 {high-heeled shoes, skirts}
400 7 {hiking boots, jackets, sweater}
500 {overcoat, sweater}

Table2: A database TDB2 of transactions

After applying PON method on the concept

hierarchies in Figure 1, all items at the concept hierarchies

A-295

are numbered, where the number within the parentheses

below each item in Figure 1 is the number of the item.

3.2 Large item generation
In the large item generation phase, GAPG algorithm builds
a bit vector for each database item, and finds all large items
(include database items and generalized items).
Lemma 3.3: Suppose database items i, iy, ..., and i, are all
descendants of the generalized item i,. The bit vector
BV, associated with item i, is BVy; v BV, v ... v BV,
and the number of 1's in BV;; v BVy v ... v BV, is the
support for item i,, where the notation "v" is a logical OR
operation.
Ratiomale: If item x is in a transaction, then its ancestor ¥
is also in the transaction. Because item i, is the common
ancestor of databaseitems iy, iy, ..., and i, which are all
descendants of item i, , the transactions which contain
items iy, iz, ..., OF iy also contain item i,. Hence, the bit
vector BV;, associated with item i, is BV;; v BV, v ... v
BVin

From Lemma 3.3, the bit vector associated with a
generalized item is obtained by performing logical OR
operations on the bit vectors associated with the database
items which are all descendants of the generalized item.
For Example 2, in the large item generation phase, the bit
vectors associated with database items 1, 2, 4, 5, 8, 9, 11
and 12 are built. The items 8, 9, 11 and 12 are all
descendants of the generalized item 13.

Hence,

BV,3=BVg v BV, v BV, v BV, according to Lemma 3.3,

3.3 Generalized association graph construction

In the association graph construction phase, GAPG
constructs a generalized association graph to be traversed.
The method to construct a generalized association graph is
similar to the method to construct an association graph.
For every two large items i and j (i<j), if item j is not an
ancestor of item i and the number of 1's in BV; A BV;

achieves the user-specified minimum support, a direcied

edge from item i to item j is created. Also, itemset (i, j) is
alarge 2-itemset.

Lemma 3.4: If an itemset X is a large itemset, then any
itemset generated by replacing an item in itemset X with its
ancestor is also a large itemset.

Rationale: Because itemset X is a large itemset, the
support for itemset X is no less than the minirnum support.
Suppose X' is an itemset generated by replacing an item in
itemset X with ifs ancestor. Since the set of the
transactions which contain an item is the subset of the set
of the transactions which contain an ancestor of the item,
the support for itemset X' is no less than the support for
itemset X. Hence, the itemset X' is also a large itemset.
Lemma 3.5: If (the number of 1's in BV; A BV) 2
minimum-support, then for each ancestor u of item i and
for each ancestor v of item j, (the number of 1's in BV, A
BV;)) 2 minimum-support and (the number of 1's in BV; A
BVy)z2 minimum-support:

Rationale: Because the number of 1's in BV; A BV; is no
less than the minimum support, the itemset (i, j) is a large
itemset. Because item u is an ancestor of item i and item
v is an ancestor of item j, according to Lemma 3.4, itemsets
(u, j) and (i, v) are also large itemsets.

From Lemma 3.5, if an edge from item i to item j is
created, the edges from item i to the ancestors of item j,
which are not ancestors of item i, are also created.
According to Lemma 3.2, the numbers of the ancestors of
item i, which are not the ancestors of item j, are all less
than j. Hence, if an edge from item i to item j is created,
the edges from the ancestors of item i, which are not
ancestors of item j, to item j are also created.

For example, consider Example 2. In the association
graph construction phase, because the number of 1's in BV,
ABViyis 3 (2 2), the 2-itemset (1, 12) is a large 2-itemset,
and a directed edge from item 1 to item 12 is created.
Ttems 3 and 7 are ancestors of item 1 but not ancestors of
item 12, and item 13 is an ancestor of item 12 but not

ancestor of item 1. Hence, the directed edges from items

3 and 7 to item 12 and from item 1 to item 13 are also
created.

The algorithm GAGC (Generalized Association Graph
Construction) is proposed to construct a generalized

association graph, which is described as follows:

for every two large items i and j (i< j) do
if item j is not an ancestor of item i and
there is no directed edge from item i to item j then
if (the number of 1's in BV; A BV) 2
minimum-support then
begin
create a directed edge from item i to item j
generate a large 2-itemset (i, j)
foreach ancestor ¢ of item j do
if ¢ is not an ancestor of item i then
begin
create a directed edge from item i to item ¢
(Lemma 3.5)
generate a large 2-itemset (i, ¢)
end
foreach ancestor ¥ of item i do
if 9 is not an ancestor of item j then
begin)
create a directed edge from item ¥ to item j
(Lemmas 3.1 and 3.5)
generate a large 2-itemset (9, j)
end
end

1z

12

3

Figure 3. The generalized association graph for Example 2

After applying GAGC algorithm in the association
graph construction phase, the generalized association graph
for Example 2 is constructed in Figure 3 where there are no
edges between an item and its ancestors.

3.4 Generalized association pattern generation

In the association pattern generation phase, GAPG applies
LGDE algorithm to generate all generalized association
paiterns by traversing the generalized association graph. .
Theorem 3.1: If the numbering method PON is adopted to
number items and the algorithm GAGC is applied t©

construct a generalized association graph, then any itemset

generated by traversing the generalized association graph
(i.e., performing LGDE algorithm) will not contain both an
item and its ancestor.

Proof: We use mathematical induction to prove this
theorem. 7

Basis of induction: By GAGC algorithm, because there is
no edge between an item and its ancestor, any large
2-itemset d<')es not contain an item and its ancestor.
Inductive hypothesis; We assume that any large k-itemset
(i, iz, ..., i) does not contain both an item and its ancestor.
Inductive step: Suppose there is a directed edge from item
i, to item w in the generalized association graph
constructed by applying GAGC algorithm. By LGDE
Zlgorithm, the large k-itemset (i1, iz, ..., ix) is extended into
k+1-itemset (i, i2, s iy, W) . Suppose items &1, Uy, ... and
Oy are the ancestors of items iy, iy, ... and iy, respectively,
but none are ancestors of item i, Because items are
numbered by PON method, i, > ¥; (1 £ j < k-1) (Lemma
3.2). Hence, there are no edges from item iy to the ancestors

of items iy, i, ... and iy. So, item w cannot be an ancestor of

item iy, iz, . or ik*

4, Performance Evaluation

In this section, we evaluate the performance of the two
algorithms APG and GAPG which are proposed to diséover
the two types of association patterns: primitive association
pattems, generalized association patterns, respectively. In
{51, we have evaluated the performance of APG (called
DLG in {5]) and demonstrated that APG has a better
performance than other approaches [1, 2, 3]. In the
following we analyze the performance of algorithm GAPG.
We evaluate the performance of GAPG algorithm by
comparing this algorithm with the algorithm Cumulate [4].
We first generate the synthetic data for the e;(perirnent
by applying the method described in [4]. The parameters

for the synthetic data are set as follows: the number of

transactions is 100,000, the number of items is 100,00, the

number of concept hierarchies is 100, the fanout is 5, the

A-297

number of the (potentially large itemsets is 5000, the
average size of the transactions is 10 and the average size
of the potentially large itemsets is 5. Figure 4 shows the
relative execution time for Cumulate algorithm and GAPG
algorithm over various minimum supports, ranging from

0.5% 10 3.5%.

(Cumulate/GAPG)

11
10
9

8

7 =
6

5

4

3

2

Relative Execution Time

0.5 1 1.5 2 2.5 3 3.5

Minimum Support (%)
Figure 4: Relative Execution Time

Suppose in the kth iteration, the set GL; of the large
k-itemsets is generated. 'In the first iteration, Cumulate
algorithm scans the database to add the ancestors of each
item in a transaction to the transaction, and count the
support for each item in the extended database. Suppose
the average number of the ancéstors of each item is m.
The number of the items in an extended transaction will be
(m—l)' times larger than the number of the items in the
original transaction. Hence, the size of the extended
database will also be (m-1) times larger than the size of the
original database. It is very costly to scan so large
database to generate large items.

For GAPG algorithm, it first applies PON method to
number items at the concept hierarchies. Suppose there
are n items in the concept hier;archies. The time
complexity to number all items is O(n). After numbering
all items in the concept hierarchies, GAPG scans the
database to count the support and build a bit vector for each
item in the database. The support for the generalized
items can be obtained by performing logical OR operations
on the bit vectors associated with some specific items.

Hence, in the first iteration, the two algorithms, Cumulate

and GAPG, takes a similar time to generate large items.

In the second iteration, Cumulate algorithm generates
candidate 2-itemsets by combining every two large items
and deletes any candidate 2-itemset that consists of an item
and its ancestor. For these remaining candidate 2-itemsets,
Cumulate adds the ancestors of each item in a transaction,
which are present in any of the candidates, to the
transaction and count the support for each candidate
2-itemset by scanning each extended transaction.
However, the number of the candidate 2-itemsets to be
counted and the size of the extended database both are still
very large. It is very time consumming to search such a
large number of candidates and scan tfxe large extended
database. '

For GAPG algorithm, it applies GAGC algorithm to
construct a generalized association graph. Suppose the
average number of the ancestors of each large item is p.
GAGC algorithm at most needs to perform
IGL,I(IGL,)-1)/2-IGL4| % p logical AND operations on the
bit vectors to construct a generalized association graph and
generate large 2-itemsets.

In the kth (k>2) iteration, Cumulate generates
candidate k-itemsets by applying join-based algorithm [2].
After generating candidate k-itemsets, Cumulate adds the
ancestors of each item in a transaction, which are present in
any of the candidate k-itemsets, to the transaction and count
the support for each candidate k-itemset by scanning each
extended transaction. Hence, the execution time of
Cumulate depends on the number of generated candidate
itemsets and the amount of data that has to be scanned.

For GAPG algorithm, it applies LGDE algorithm to
generate large k-itemsets. LGDE extends each large
k-1-itemset into k-itemsets according to the generalized
association graph and performs logical AND operations.
Suppose the average out-degree of each item in the
generalized association graph is q. LGDE performs (k-1)
x IGL,.4l % g logical AND operations to find all large
k-itemsets.

Hence, as the minimum support decreases, the

number of logical AND operations performed ‘increases

because the two values IGL,_;| and q increase.

Since the number of the candidate itemsets to be counted
and the size of the extended database to be scanned by
Cumulate algorithm are much larger than the logical AND
operations performed by GAPG algorithm, and GAPG
needs only one database scan but Cumulate needs to scan
the extended database in each iteration, GAPG always
outperforms Cumulate for various minimum supports
which is shown in Figure 4. Figure 5 shows the relative
execution time for Cumulate a'nd GAPG for various

database sizes, in which the minimum support is set to 1%.

(Cumulate/GAPG)
DW= © W
1

Relative Execution Time

20 30 40 50 60 70 80 90 100

Number of Transactions (in '000s)
Figure 5. Relative Execution Time

The GAPG algorithm outperforms the Cumulate
algorithm significantly, and the performance gap increases
as the minimum support decreases or the database size
increases because the number of candidate itemsets and the

number of database scans increases for Cumulate.

5, Conclusion and Future Work

We propose a graph-based approach to discover association
rules and generalized association rules. The approach
includes the five phases: numbering phase, large item
generation phase, association graph construction phase,
association pattern generation phase and association rule
generation phase.

We present the two algorithms: APG and GAPG to
generate association patterns and generalized association
patterns, respectively. In [11], the algorithm PAPG has
been demonstrated o have a better performance than other

approaches [2, 3, 5]. In this paper, we compare GAPG

algorithm to the previously known algorithm Cumulate {71,
respectively. The experimental results show that GAPG
outperform Cumulate. ~ When the minirﬂum support
decreases or the size of the database increases, the
performance gap increases because the number of
candidate itemsets generated by GAPG increases and the
number of database scans also increases.

For our approach, the related information may not fit in
the main memory when the size of the database is very
large. In the future, we shall consider this problem by
reducing the memory space requirement. Also, we shall
apply our approach on different applications, such as
document retrieval and resource discovery in the

world-wide web environment.

Acknowledgement
This work was partially supported by the Republic of China
National Science Council under Contract No. NSC

89-2213-E-030-003.

Reference
{11 Agrawal R. and et al, “Mining Association Rules
Between Sets of Items in Large Databases”,

Proceedings of ACM SIGMOD, pp.207—216, 1993.

‘2] Agrawal R. and Srikant R., “Fast Algorithm for

Mining Association Rules”, Proceedings of Very
Large Data Bases, pp.487-499, 1994.

[3]1 Park J.S., Chen M.S. and Yu PS, “An Effective
Hash-Based Algorithxﬁ for Mining Association Rules”,
Proceedings of ACM SIGMOD, Vol.24, No.2,
pp.175--186, 1995.

[4] Srikant R. and Agrawél R., “Mining Generalized
Association Rules”, Proceedings of Very Large Data
Bases, pp.407--419, 1995.

{5] Yen S.J. and Chen .L.P.,, “An Efficient Approach to
Discovery Knowledge from Large Databases”,
Proceedings of Parallel and Distributed Information

Systems, pp.8--18, 1996.

A-299

