e EE/\+/EREREREE

A Function Oriented Software Cohesion Metrics

Timothy K. Shih

Ming-Chi Lee

Teh-Sheng Huang
Yeong-Huei Chen

Dept. of Computer Science Dept. of Business Management Dept. of Computer Science

and National Pingtung and
Information Engineering Institute of Commerce Information Engineering
Tamkang University Tamkang University
Taiwan R.0.C Tai anR.O.C Taiwan R.O.C

e-mail:tshih@cs.tku.edu.tw email:lmc@sunl.npic.edu.iw

email:tehsheng @ms6.hinet.net

Abstract

Cohesion is one of the most important factors for software quolity as well as maintainability, reliability and reus ability.

Cohesion is defined as a quality attribute that seeks to measure the singleness of the purpose of a module. A coincidental

cohesion is the lowest degree of cohesion in a module. A functional cohesion is the highest degree of cohesion in a module.

For software managers and engineers, it will be inevitable to introduce a well-defined and well-examined cohesion metrics to

produce desirable cohesion software. In this paper, we propose a function -oriented cohesion metrics based on the analysis of

live variables and live span. They will be developed in a mathematical model, and be experimented using typical cohesion

examples. As of the results of experiments, the proposed cohesion metrics not only matches the Fenton’s whesion strength

spectrum but also meets nonlinear scale that is asserted by Pressman and Somerville in their literatures.

Keywords: Live Variables, Live Span, Software Metrics, Cohesion

L.Introduction

Without software metrics, software would be error prone,
expensive and with a poor qua lity. Therefore, suitable
sofiware measurements are essential for software
development. Module cohesion is defined as a quality
attribute that seeks to measure the singleness of purpose of
a module. Cohesiveness is a measure of an individual
module’s internal strength, which is the strength of the
interrelationship of its internal elements{1]. Cohesion refers
to how closely the operations are related in a procedure.
Ideally, a procedure should offer a single service to other
procedures. Cohesion measurement can support software
engineer design module with a higher cohesion. Module
cohesion indicates how closely a module’s intefnal
components are related to others.

Due to the previous mentions, a software module with
low cohesion will be error prone. A high cohesion module
will lead to a good quality. The result implies that the

quality of software can be improving by maximizing the

degree of module cohesion. The software cohesion had

been categorized into functional, sequential,

communicational, procedure, temporal, logical and
coincidental [9](2].

Live variables describes the extent of variable tobe
refereed within a module, while variable span captures the
range of variable to be used in a module {4]. Generally
.instance variable usage is usedto deriv e higher-level
inference on cohesion [5]. In this paper, the proposed
function-oriented cohesion metrics is based on an analysis
model of live variable semantics of a module. We will
examine the function -oriented cohesion metrics (FOCM)
for eachoutputfun ction, the most tightest of
function-oriented cohesion metrics (MTFOCM), the least
tightest of function-oriented cohesion meirics (LTFOCM),
and the average tight of function-oriented cohesion metrics
(ATFOCM) of the specific procedure.

In general, we always sirive for high cohesion. Although
the mid-range of the cohesion spectrum is often acceptable
[10] and a module may exhibit more than one type of

cohesion. However, we will show that the proposed metrics

A-171

not only closely matches strength spectrum of Fenton’s
cohesion [3] but also meets nonlinear cohesion scale of
cohesion [10].[12] Those proposed function -oriented
software metrics should improve the software quality, and
help to refine the procedure to approximate the desirable
cohesion strength. The key contributions of this paper are
that we propose the scientific basis, formal definition, and
well designed empirical experiments to improve software
quality and maintainability.

The rest of the paper is organized as follows. We define
some essential concepts and our cohesion analysis model in
section 2. Weaddress the proposed software
function-oriented cohesion meirics in section 3. Section 4
to experiment the cohesion metrics using typical cohesion

implementations and. In section 5, we give our conclusions

and future works.

2. Preliminaries

A module is a contiguous sequence of program
statements that are bounded by boundary elements, and has
an aggregate identifier [9]. However, many researchers
define a module to be either a compilation unit of code or a
procedure. By functionality, the variable referenceina
procedure could be categorized inio the following four
categories

@ Input variable (IV): a set composed of the
variables that are the input arguments to the
procedure.,

® Internal variable (INV): a set of local variables of
the procedure.

® Global variable (GV): a set is global variables.

® Output variable (OV): a set of variables that are
the output functions of the procedure.

In general, a module will contain some specific function
semantics. In practice, it will be the key issue to develop a
suitable model to construct the overall reference scenarios
of the function in the procedure scope. Live variables of a

statement in module are the elements that are referenced in

the statement. To address the concept of live variables,

Figure 1 is used.

1 Procedure SumAndProd(N:integer; Var sum;
prod:Integer)
2 Var Linteger
3 Begin
4 sum=0;
5 prod:=1;
6 For I=1 to N do begin
7 sum=sum-+I;
8 prod:=prod*I;
9 end
10 end
Figure 1. A procedure example

As SumAndProd listed in Figure 1, sum in line 4 is a live
variable. Both I and N are live variables in line 6. On the
other hand, sum is only referred at two statements in the
procedure. Should software engineers concern sum at other
statements other than line 4 and 7? The answer is "yes".
However, software engineers constantly have to keepin
mind what sum may be referred between statements 4 and 7
Software engineers always realize that in each iteration sum
has adiffere nt status in the "for” loop, sum will be
incremented, although the statements do not refer to sum in
line 5 and 6. Finally, the summation operation will exit.
Similarly, prod has the same scenario. And,
Comprehending software artifacts is an important soft ware
engineering aciivities. A significant amount of time of a
software engineer is spent in looking at the sdurce codet
discover information during testing, review and code
inspection. Thus, the more data items what a programmer
must keep track of when constructing a procedure, the more
difficult it is to construct. Based on above mentions, live
variables of a statement are not limited to the number of
variable reference in that statement. In this paper, we adopt)
the scope of live variable is from the fi rst reference to the
last reference within a procedure. More precisely, we use
the mathematics method to define the live variables and use
live span to visualize a live variables scope. Therefore, we
denoted the lifespan of a variable to be the reference

domain that begins at the first referenced and extends

through the last referenced.

A-172

Definitionl: The lifespan of a variable in a procedure is a
set, denoted by LS(var_nam). The
elements of the set are the name of the
variable from the first (i-th line) to the
last (-th line) referenced,
LS(var_nam)={var_nam;,var_nam;,;...
....ovar_nam;}. And, the size of lifespan,
| LS(var_nam) | = j-i+1.

As an example in Figure 1, we investigate the live span of

variable sum. The set LS(sum)={sumysums,sums,sumy}

with the size of 4.

Definition2: The live variables (LV) of a specific
procedure (sp) is the set of union of the
lifespan of each variable which belongs
to IV, INV, GV or OV. We denote
LV(sp)= w LS(var_nam;) where
var_nam; eIV U INV LU GV U OV and
ieN.

In Figure 1, we could construct LV(SumAndProd). First, we

know the processing elements are IV={ [},

OV={sum,prod},GV=0, and INV={N} respectively. Next,

LS(iv)={ls.]7.1s}

LS(ov)={sumy,sums,sums,sumz,prods,prods,pordz,prods}

where | ive IV,
where ove OV, LS(gv)= @ where gveGV, LS(inv)={Ns}
where inveINV. Finally, LV(SumAndProcd)=LS(iv) U
LS(ov) v LS(gv) u LS(inv). For simplicity, we can

describe the live variables of a procedure using a table in

Figure 2.
Line |LV(SumAndProd) |Count [Live Span
4 sumy 1 s,
5 sums,prods 2 surm, ~prod,
6 sumg,prode,Ie,Ng 4 . -
7 |sumy,prods.]; 3 e | Fode e He
8 |prodgJs 2 sum, | prody | L.
prods LI
12

Figure 2. The LV and LS of SumAndProd
The live span and live variables of Figure 1 are illustrated
In Figure 2. For instance, sum is firstly referenced in line 4,
the last reference is in line 7. According to Definition 1, the

software engineer have to keep the reference of sum from

line 4 and line 7, although sum is not real appear in
statement 5 and statement 6, Therefore, from line 4 to line
7 are the live span of variable sum and we nse a symbolic
“[“ to describe the live span of a variable. Together, a live
span could clearly be viewed as visualization of the scope

of live variables in a specific procedure.

3. Cohesion metrics

In this section, we propose function-oriented cohesion
measurements that are based on the analysis of live variable
abstraction of a procedure. In Figure 2, we know that not

all variables involve the computing of output functions in a
specific procedure. For instance, the LS(prod) consists of
prods, prods, prods;, and prods, in which no element
influences the result of output sum. Butboth prods and
prods may involve the value of the output function prod
through the assignment operation. As of the result, prods
and prodg are the function-oriented live variables of output
prod. Similarly, variables I¢, I, Ne are the function-oriented
live variables of prod. Both Ig and Ng may change the value
of the output function and compute the multiplication via s
indirectly. Therefore, function-oriented live variables of the
prod is a set, denoted { prods, Is, N5, prods, Ig}. However,

we really need a precise definition on the function-oriented

‘live variable for output functions.

Defimition 3. Direct variable of an output function is an

element of LV(sp), which may
influence the result of the output
function in same statement.

For instance, variable I, contributes the value of the sum;
directly. Thus, I is the direct variable of the output function
sumy. According to Definition 3, output variable surely is
the direct variable by it‘sclf‘

Definition 4. Indirect variable of an output function is an
element of LV(sp), which may decide
the execution of the output function or

perform the result of the output

function via direct variables.

A-173

For instance, variable Ig, Ny of iteration statement in line
contributes 6 the value of the sum; indirectly. So 4, Ng is
the indirect variable of the output function sum.
Defimition 5. The function-oriented live variables of the
function in the

output specific

procedure -is a set, denotes
FOLV(ov)={lv € LV(sp) | Iv are
direct or indirect variables of ovy;
ovieOV(sp)}

Definition 6. The function-oriented live span of the output
function in the specific procedure is a
set, denotes FOLS(ov,)={lv € LS(sp) |
lv are direct or indirect variables of
ovy; ovieOV(sp)}

The function-oriented live variables and function -oriented

live span of procedure SumAndProd in Figure 1 are

depicted in Figure 3,which is reduced from Figure 2.
Line |FOLV(SumAndProd) |Count |FOLS

4 sumy 1 -

5 prods 1 a

6 16,Ng 2 .
7 sumy,l; 2 umn, |::‘ ¢
8 pr Ods,Is 2 prod, L1,

8
Figure 3, The FOLV and FOLS of SumAndProd

For instance, in Figure 3, the FOLV of the output function
sum is the set {sumy, I;, N5, sum; L}, the size of the
FOLV(sum) is 5. On the other hand, the FOLV of the output
function prod is t‘he set of { prods, Is, Ns, prody, Ig}, the size
of the FOLV(sum) is 5. A function oriented live span in
Figure 3 is reduced from live span in Figure 1. More
important, the live span could help software engineer to
friendly visualize the scope of function oriented live
variables in the specific procedure SumandProd.

In general, the size of the FOLV(ov) is the number of
elements which belongs to LV(sp), and influence the value
of ov directly or indirecly. Then, we believe that the size of
FOLV(ov), that implies how many live variables element in
the specific procedure, shall contribute to the result of the

output function. More precisely speaking, the proportion of

IFOLV(ov)l in ILV(sp)l can be viewed as thé strength of
function-oriented cohesion which just restrict on one output
function in a module. We have known that seven levels of
the cohesion of a specific procedure are from functional t
coincidental with decrement. Ideally, the specific procedure
will be process in the single function. Before addressing the
function-oriented cohesion measures, we now ry
investigate the function-oriented live variables in the
specific procedure.
Definition 7. For a given specific procedure(sp), if there
are more than one output functio n (ie.,
I0V(sp)l =N_ov and N_ovr > 1) then the
FOLV(sp) is the union of each FLOV(ov),
where ov belongs to OV(sp). Similary,
FOLS(sp) is the union of each FLOS(ov).
Now, based on definition 6, we the FOLV of the
procedure SumAndProd in the Figure 3, inc luding both sum
and prod in the OV(SumAndProd). The
FOLV(SumAndProd) is {sumy,prods,Is,Ng,sum;z,I7,prods,Is}
with a size of 8. InFigure 3, each element in
FOLV(SumAndProd) will appear either in FOLV(sum) or
FOLV(prod). Hence, the whole set of FOLV(SuumAndProd)
is the union of both FOLV(sum) and FOLV (prod). This
means that some elements of FOLV(SumAndProd) may
exist inboth FOLV(sum) and FOLV(prod.). From the
perspective of the cohesion, the shared function -oriented
live variables of the output functions of swm and prod are
the most critical elements of the specific procedure. The set
of the most critical elements of the specific procedure will
be the intersection of FOLV(sum) and FOLV(prod). The
FOLV(sum) and FOLV(prod) are shown in Figure 4.
However, the previous analysis is based on live variables
semantics, the function-oriented cohesion measurement for
each ov; is defined as follows: FOC(ov)= | FOLV(ov)l /
ILV(sp)l where for each ov; € OVR(sp). According to the
adherent elements in the specific procedure, the cohesion
level of a module is determined by the relation levels of

output pairs[6].

A-174

Variables [FOLV(sum) |[FOLV(sum)~ |FOLV(prod)
FLOV(Prod)
sum Suiny, Sumy
1 I 62 I 7 1 6 1,5, I 8
N Ns Ns Ns
prod prods,prod;
5 2 5

Figure 4. The FOLV of Sum, Prod and their intersection

We define the most tightest function -oriented cohesion
measurement of the specific procedure as follows:
MTFOC(sp)= | NFOLV(ovpl / ILV(sp)l where ov; €
OVR(sp) and FOLV(ov; restricton each ov; In the
procedure, not a 1l live variables have function oriented
relation with each ov. Obviously, the set of elements which
has no functional relationship with each ov in live variable
is denoted VL sp) — FOLV(sp). Therefore, the least tight
function-oriented cohesion measurement is: LTFOC(sp)= |
LV(sp) — v FOLV(ov)l / ILV(sp)l where ov; € OVR(sp)
We propose the average tight function-oriented cohesion
measurement of the specific procedure as follows:
ATFOC(sp)=1 U FOLV(ov) | /| LV(sp) | where ovi€

OVR(sp). Consequently, e proposed four
function-oriented cohesion measures in the specific
procedure. The values of the four proposed cohesion
measures are in the range of between 0 and 1. Therefore,
the numerical systems of the function-oriented cohesion

measures are well-normalized cohesion measures.

4. Experiments

In this section, there are six typical cohesion procedure
implementations to be used to make an experiment on our
proposed measurements. The purpose of measuring the
distinctive cohesion procedure examples is to e valuate the
proposed function-oriented cohesion measurements and to
estimate whether they are compatible with the cohesion
strength spectrum. We believe that the experiments will not
affect the completeness of the empirical study although the
six implementations will not include the temporal one.
Coincidental cohesion (CC) is to estimate whether a

module performs more than one function,” and whether

there are unrelated [11]. The abstract function and

information flow diagrams of a coincidental cohesion

example are depicted in Figure 5.

INawl I N an?

<1 W

Abstract function disgram Information flow diagram

Figure 5. A function diagram of coincidental cohesion
In the coincidental cohesion example, there isn
significant relationship between the elements. However, the
cohesion measures of

values of function -oriented

coincidental cohesion example are given as follows

1 Procedure SumAndProd(N:integer; Var Sum;
Prod:Integer;arr 1, arr2:int_arry)

2 Var IInteger

3 begin
4 Sum:=0;
5 Prodi=1; FOCM(sum) = 0.353
6 ForI=1toNdo FOCM(prod)=0.353
7 Sum:=Sum-+arri{l]; | MTFOCM(CC)=0.0
8 ForI=1 to N do; LTFOCM(CC)=0.29
9 Prod:=Prod*arr2[I}; | ATFOCM(CC)=0.71
10 end
11 end

Figure 6. A coincidental cohesion implementation
and the experimented results

In this example, there are no common processing
elements that are used to produce both output functions.
And, the value of MTFOCM of the coincidental cohesion is
zero. The Coincidental cohesion type is the lowest cohesion
level.

Logical cohesion (LC) is to check whether the module
performs more than one function, and whether there are
related logically [11]. The abstract functionand

information flow diagrams of a logical cohesion example

are depicted in Figure 7.

fag=1?
modale i [i and
logical O
o0 | 4 Y
-+ control ptah
Abstract function disgram Information flow disgram

Figure 7. A function diagram of logical cohesion

In the logical cohesion example, the module performs

A-175

some related functions. One or more of them are selected
by calling module. In other words, there is a dynamic
function selectionin the module. However, values of
function-oriented cohesion measures of logical cohesion

example are given as follows

1 Procedure SumAndProd(N:integer; Var Sum;
Prod:Integer;arrl,an2:int_arry)

1 Procedure SumAndProd(N:integer; Var Sum;
Prod:Integer;arrl,ari2:int_arry)

2 Var LInteger

3 begin
4 Sum:=0, FOCM(sum) = 0.428
5 Prod:=1; FOCM(prod)=0.428

6 ForI=1toNdo

7 Sum:=Sum-+arr1[I];

8 Prod:=Prod*arr2(f];
9 end

MTFOCM(PC)=0.142
LTFOCM(PC)=0.288
ATFOCM(PC)=0.71

2 Var I flag:Integer)
3 begin

4 Sum:=0;

5 Prod=1;

6 If(flag>1)

7 forI=1 to N do begin

8 Sum:=Sum+arrl(l};

9 else

10 for I'=1 to N do begin

FOCM(sum) =0.29
FOCM(prod)=0.29
MTFOCM(L(C)=0.041
LTFOCM(L(C)=0.46
ATFOCM(LC)=0.64

11 Prod:=Prod*arr2l];
12 end
Figure 8. A logical cohesion implementation
and experimented results

In this example, the value of MTFOCM of the logical
cohesion is 0.041. This logical type cohesion is just little
stronger than coincidental cohesion. From a viewpoint of
cohesion strength, this logical cohesion is just little
stronger than coincidental cohesion.

Procedural cohesion (PC) is to evaluate whether the
module that performs more than one function, and whether
the module is related to a general procedural effected by the
software [11]. This means that if each functionin the

module needs to execute following a specific order then it
has the strong procedure cohesion. The abstract function
diagram and information flow diagrams of a procedural

cohesion example are sketched in Figure 9.

ad I W a2

In same repition or
‘} condition construct,
without same inputs

-+ seqeunce pish

Abstract function diagram Information flow disgram

Figure 9. A function diagram of procedure cohesion
In the procedural cohesion example, the module performs a
series of functions related by a sequence of steps. Values of

function-oriented cohesion measurements of procedural

cohesion example are given as follows

Figure 10. A procedure cohesion implementation
and the experimented results

In this example, the value of MTFOCM of the
proccdurél cohesion is 0.142. From the cohesion strength
perspective, Procedural cohesion is a little stronger than
logical cohesion.

Communicational cohesion (CmC) is to indicate whether
the module performs more than one function, and whether
the module is on the same data [11]. This means that if each
function in the module all operate on the same data. The
abstract function and information flow diagrams of

communicational cohesion example are sketched in Figure

11.

I Nay

module

ﬁmation

-+ Seqeunce plah

In same repition or
condition construct,
and with same inputs

Abstract function disgram Information flow disgram

Figure 11. A function diagram of communication cohesion
In the communicational cohesion example, the module
performs a series of functions related by the same data.
Values of function -oriented cohesion measurements of

communicational cohesion example are given as follows

1 Procedure SumAndProd(N:integer; Var Sum;
Prod:Integer;arr:int_arry)

2 Var Llnteger
3 Begin
4 Sum:=0, FOCM(sum) = 0.428
5 Prod:=I; FOCM(prod)=0.428

6 For =1 to N do begin
7 Sum:=Sum-+arr{l];
8 Prod:=Prod*arrfl];
9 end
10 end

MTFOCM(Cm(C)=0.142
LTFOCM(Cm()=0.288
ATFOCM(Cm(C)=0.71

Figure 12. A communicational cohesion implementation
and the experimented results

In this example, the value of MTFOCM of the

A-176

communicational cohesion is 0.142. The value is same as
procedural cohesion. From the viewpoint of cohesion
strength, Communicational cohesion is not significant
stronger than procedural cohesion.

Sequential cohesion (SC) is to estimate whether the module
performs more than one function. Function dependency
occurs in an order, which is described in the specification
f11]. Generailly, this means that the output data from a
function is the input for the next function in a module. The

abstract function diagram and flow diagram of sequential

cohesion example are illustrated in Figure 13.
iN oz

module \
fmmdz:edvy @ O
fune!

tion

Abstract function diagram Information flow diagram

Figure 13. A function diagram of sequential cohesion
In the sequential cohesion example, the module performs
a series of functions related by 1/0 data. Values of function
oriented cohesion measurements of sequential cohesion

example are given as follows

1 Procedure SumAndProd(N:integer; Var Sum;
Prod:Integer;arr:int_armry)

2 Var Llnteger

3 Begin
4 Sum:=0; FOCM(sum) = 0.46
5 Prod=1; FOCM(prod)=0.69
6 For I=1 to N do begin MTFOCM(SC)=0.46
7 Sum:=Sum-arr(I]; LTFOCM(S(C)=0.31
8 Prod:=Prod*Sum; ATFOCM(S(C)=0.69
9 end

10 end

Figure 14. A sequential cohesion implementation
and the experimented results

In this example, the value of MTFOCM of the sequential
cohesion is 0.46. The value is a litdle larger than the one of
communicational cohesion. From a viewpoint of cohesion
strength, Sequential ~ cohesion is Stronger than
communicational cohesion.

Functional cohesion (FC) is to check whether the
module performs on a single function [11]. This means that
the module is the one on which all ofthe eleme nts

contribuie to exactly one function. The abstract function

and information flow diagrams of functional cohesion

example are illustrated in Figure 15.

module N
fl.mcﬁ.on
Abstract function disgram Information flow diagram

Figure 15. A function diagram of functional cohesion

In this example, all elements involved in a single activity.
The value of MTFOCM of the functional cohesion is 0.86.
Functional cohesion is stronger cohesion strength than
sequential cohesion.

In the functional cohesion example, the module achieves
exactly one goal Valuesof function -oriented cohesion
measurements of functional cohesion example are given as

follows

1 Procedure SumAndProd(N:integer; Var Sum;
Prod:Integer;arr:int_arry)

2 Var Linteger
3 Begin FOCM(sum) = 0.86
4 Sum:=0; MTFOCM(FC)=0.86

5 For Ii=1 to N do begin
6 Sum:=Sum-+arr(l];
7 end
Figure 16. A functional cohesion implementation
and the experimented resulis

In this example, the value of MTFOCM of the functional

LTFOCM(FC)=0.143
ATFOCM(FC)=0.857

cohesion is 0.86. Functional cohesion is stronger than
sequential cohesion. The functional cohesion type is the
highest cohesion level.

According to the empirical experiments, we know that
the MTFOCM not only closely matches the Fenton’
cohesion strength spectrum, but also meets nonlinear
cohesion scale of Pressman's cohesion. More important,
there are some paradigmatic characteristics about the
proposed LTFOCM, ATFOCM and MTFOCM as follows:
(1)MTFOCM(sp) SFOCM(ov;) for each ov; <ATFOCM(sp),
(2)LTFOCM(sp)+ ATFOCM(sp)=1.0, (3) normalization.,

5.Conclusions
Cohesion is an attribute that can be predict properties of
implementations such as “ease of debugging, ease of

maintenance, and ease of modification”[9]. Cohesion can

A-177

be characterized as module strength. In this paper, we
proposed the function-oriented cohesion metrics, which use
live variables semantics to analyze the specific procedure,
and toderive the FOCM, MTFOCM, LTFOCM and

ATFOCM based measurement theory. They have been

examined by six typical cohesion implementation examgles.

Together, the result of MTFOCM consists with the Fenton’

cohesion spectrum, and the nonlinear scale that is siressed
by Pressman and Somerville in their literatures. The major
contributions of this paper are that we proposed a formal

definition, scientific basis, well-designed experiments and
easy measure algorithmically function-oriented cohesion
metrics to improve software quality and maintainability.
Our future works is to extend the current workst

investigate the cohesion issues in object oriented paradigm.

Reference

(1] J. Martin,C. McClure, Software Maintenance the
problem and its solutions, Prentice -Hall, INC.

[2] W. Stevens, G. Myers, and L. Constantine, “Structured
Design”, IBM Systems Journal,Vol. 13, No 2(1974).

[3] N. E. Fenton, “Software Measurement: A Necessar
Scientific Basis”, IEEE Transactions on Software
Engineering,Vol. 20. No.3, March 1994.

[4] S. D. Conte, H. E. Dunsmore, V.Y. Shen, “Software
Engineering Metrics and Models”,
TheBenjamin/Cummings Publishing Company, Inc.

[51 http:/fwww.hatteras.com/metr_dis.htm]

[6] J. E. Bieman, Byung-Kyoo Kang, “Measureing
Design-Level Cohesion”, IEEE Transactions on
Software Engineering, Vol. 24, No. 2, Feb. 1998,

(7] Dunsmore, Gannon,”Data referencing: an empirical
investigation”,IEEE Comp., pp50-59,Dec. 1979.

[8] Bill Curtis, "Human Factors in Software Development”,
pp- 170-179, Silver Spring, Comp. Soc. Press, 1981.

{91 E. Yourdon, L.L. Constantine, “Structured Design”,

Prentice Hall, 1979.

{10] Roger S. Pressman, “Software Engineering:

Practitioners Approach”, McGraw-Hill International
Editions.
[11] N. E. Fenton,’Software Metrics, a Rigorous
Approach”, Chapman& Hall, London,1991.
[12] 1 Sommerville, “Software Engineering”, 5t ed.

Addison-Wesley, 1996.

A-178

